E. Yildiz Ozkan, "Inequalities for Approximation of New Defined Fuzzy Post-Quantum Bernstein Polynomials via Interval-Valued Fuzzy Numbers," SYMMETRY-BASEL , vol.14, no.4, 2022
Yildiz Ozkan, E. 2022. Inequalities for Approximation of New Defined Fuzzy Post-Quantum Bernstein Polynomials via Interval-Valued Fuzzy Numbers. SYMMETRY-BASEL , vol.14, no.4 .
Yildiz Ozkan, E., (2022). Inequalities for Approximation of New Defined Fuzzy Post-Quantum Bernstein Polynomials via Interval-Valued Fuzzy Numbers. SYMMETRY-BASEL , vol.14, no.4.
Yildiz Ozkan, ESMA. "Inequalities for Approximation of New Defined Fuzzy Post-Quantum Bernstein Polynomials via Interval-Valued Fuzzy Numbers," SYMMETRY-BASEL , vol.14, no.4, 2022
Yildiz Ozkan, ESMA Y. . "Inequalities for Approximation of New Defined Fuzzy Post-Quantum Bernstein Polynomials via Interval-Valued Fuzzy Numbers." SYMMETRY-BASEL , vol.14, no.4, 2022
Yildiz Ozkan, E. (2022) . "Inequalities for Approximation of New Defined Fuzzy Post-Quantum Bernstein Polynomials via Interval-Valued Fuzzy Numbers." SYMMETRY-BASEL , vol.14, no.4.
@article{article, author={ESMA YILDIZ ÖZKAN}, title={Inequalities for Approximation of New Defined Fuzzy Post-Quantum Bernstein Polynomials via Interval-Valued Fuzzy Numbers}, journal={SYMMETRY-BASEL}, year=2022}