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GUC SISTEMLERININ ZAMANDA HIZLI DEGISEN YUKLERI ICIN OZEL
TASARLANMIS KIRPISMA, HARMONIK VE ARAHARMONIK KESTIRIMI VE
GUC KALITESI OLAY SINIFLANDIRMASI ICIN VERIMLI ALGORITMALARIN
GELISTIRILMESI
(Doktora Tezi)

Ebrahim BALOUJI

GAZI UNIVERSITESI
FEN BILIMLERI ENSTITUSU
Haziran 2019

OZET

Bu tezin amaci, akilli bir giig kalitesi (GK) ¢oziimleme sistemi olusturmak i¢in gerekli tamamlayict
araglart gelistirmektir. Giincel bilimsel yazin ve ticari GK 6l¢iim cihazlart incelendiginde su ii¢
gereksinim ortaya cikmustir: kirpisma tespiti i¢in hafiza ve islem agisindan verimli algoritma
ihtiyaci, zamanda degisen harmonik ve araharmoniklerin tespiti i¢in ger¢ek-zamanli algoritmalar ve
yiiksek dogrulukta GK olay tespiti. ilk olarak, kirpismayir tahmin etmek icin, gerilim dalga
biciminin yerine girdi olarak gerilim dalga bi¢iminin kok ortalama karesini (RMS) kullanarak
IEC'nin (Uluslararas1 Elektroteknik Komite) kirpisma-0lger standardinda Onerilen o6lgiim
yonteminin sayisal olarak gergeklestirilmesi sunulmaktadir. Amag, sadece gerilim dalga formunun
RMS degerleri mevcut oldugunda, IEC kirpisma-6lger standardi IEC 61000-4-15'e gore titresim
siddetini hesaplamaktir. Simiilasyon ve saha verilerinde ortalama %0.021 hata oraniyla onerilen
yontemle kirpisma hesaplanabilecegi gosterilmistir. Harmoniklerinin ve araharmoniklerinin ger¢ek
zamanl tespiti konusunda, elektrik ark ocagmin (EAF) zamanla degisen harmoniklerini ve ara
harmoniklerini dogru bir sekilde elde etmek icin derecesi optimize edilmis listel yumusatma (ES)
ile birlikte kullanilan ¢oklu senkronize referans cercevesi (MSRF) bazli bir analiz yontemi
onerilmistir. Gergek zamanli ¢alisma i¢in, parallel isleme yapilmis ve grafik isleme birimi (GPU)
ile calisilmustir. Saha verilerinde, uygulanan sinyalin 50. harmonige kadar olan tiim harmonikleri ve
araharmonikleri 5 Hz c¢ozinirlikte gercek zamanli olarak basarili bir sekilde kestirilmis ve
simiilasyon ortaminda harmoniklerin ve araharmoniklerin aktif olarak filtrelenmesi basartyla
gerceklestirilmistir. Son olarak, GK olaylarinin siniflandirilmast i¢in, derin 6grenme yaklasimina
dayali yeni bir yontem sunulmustur. Onerilen yaklasimin yeniligi, giic sebekesinin ii¢ fazindaki
gerilim dalga bigimlerinin goriintii dosyalarinin siniflandirilmasidir. Bir yil boyunca elektrik iletim
sisteminin dort trafo merkezinden elde edilen PQ olaylari, onerilen siniflandirma yonteminin
egitimi ve test edilmesi i¢in kullanilmis ve potansiyel PQ olaylarina karsi otomatik bir karsi 6nlem
gelistirilebilecegi gosterilmistir.
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ABSTRACT

The aim of this thesis is to develop tools which will provide complementary solutions to develop a
complete and smart power quality (PQ) monitoring system. Based on the survey carried out on the
current literature on PQ analysis and commercial devices, three main problems have been defined
and solutions have been provided: the need of memory- and operation-efficient algorithms to
estimate flicker, online detection of harmonics and interharmonics for highly time-varying load
cases, and accurate PQ event classification. To estimate flicker from voltage RMS waveform, a
digital realisation of the IEC (International Electrotechnical Committee) flickermeter using root
mean square (RMS) of the voltage waveform as its input, instead of the voltage waveform, is
presented. The aim is to compute the flicker severity according to the IEC flickermeter standard, IEC
61000-4-15, when only the RMS values of the voltage waveform are available. It has been shown on
simulation and field data that short-term flicker severity can be computed by the proposed method
with an average error rate of 0.021%. For the real-time detection of harmonics and interharmonics of
current waveform, a multiple synchronous reference frame (MSRF) based analysis method is used
together with order-optimized exponential smoothing (ES) to accurately obtain the time-varying
harmonics and interharmonics of electric arc furnace (EAF) currents. Parallel processing of all
harmonics and interharmonics are achived by graphical processing unit (GPU). It has been shown on
field data that the implemented system is capable of successfully estimating all harmonics up to the
50th and all interharmonics at 5 Hz resolution in real-time. Moreover, active filtering of certain
harmonics and interharmonics has been successfully achieved in the simulation environment.
Finally, a new method for the classification of PQ events based on deep learning (DL) approach is
presented. Novelty of the proposed method is that, image files of the voltage waveforms of the three
phases of the power grid are classified. PQ events obtained from four transformer substations of the
electricity transmission system for a year are used for training and testing the proposed classification
method. The proposed method is shown to be able to classify the PQ events collected in the field.
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1. INTRODUCTION

In this thesis, development of efficient and fast algorithms for flicker, harmonics,
interharmonics and power quality events developed specifically for harsh conditions, such
as the existence of intermittent loads, in the power systems is the main focus. The effort
towards this focus in this research work can be presented under three main topics: (i)
computation of light flicker, (ii) extraction of power system harmonics and interharmonics,
and (ii1) power quality event classification. All the analyses have been developed and tested
on both synthetically generated voltage and current waveforms and field data collected
from the transmission substations of the electricity transmission system of Turkey, located
around the intermittent loads such as electric arc furnace plants. In this section, a detailed

literature review is presented on all of the above listed three topics.

Light flicker refers to quick and repeated changes in the light intensity caused by the
amplitude fluctuations of the voltage supplying the lamp and it can be measured directly
from the voltage waveform, as recommended by the IEC standard, IEC 61000-4-15 [2].
Light flicker is caused due to the low-frequency fluctuations of the voltage magnitude and
a 10-min raw data of the voltage signal is required to obtain the short-term flicker severity
[2], which is not always easy to achieve due to memory limitations. There are various
approaches in the literature for the computation of light flicker [3 - 14], yet there is no
study which directly computes the light flicker in the absence of the voltage waveform, but
presence of its RMS form instead, except for the work reported in [8]. In [8]; however, four
of the five blocks of the IEC flickermeter are used, but RMS computation is used to obtain
the signal envelope instead of the first block of the IEC flickermeter [2]. The root-mean-
square (RMS) method is widely used in quantifying the effective magnitude of an
alternating current (AC) signal. In power-quality (PQ) analysis, the RMS value of the
voltage is used for the characterization of PQ events, such as voltage sags and swells, as
well as for quantifying voltage or current variations [1]. Based on the PQ measurement
standard IEC-61000-4-30 [1], RMS value of a signal is usually calculated from a half-
cycle- or a one-cycle-length window. In many PQ analysis systems and devices, RMS
values of the voltage and current waveforms are stored instead of the raw data, for later
analyses and evaluations, due to the fact that storage of the raw data is not practical and is

extremely expensive.



The main concern of the research work presented in the first part of this thesis is
developing a method, which can measure the light flicker from the RMS values of the
voltage, instead of the voltage waveform itself. Such a case can occur, for example, when
flicker analysis is required on previously recorded RMS voltage waveforms, but there exist
no sampled voltage data. The proposed method in this thesis provides a solution to this
problem by analyzing the RMS values of a voltage waveform in terms of its flicker

frequency components.

The second main topic of this thesis, which is the detection of the harmonics and
interharmonics of the power system has been a hot and challenging topic of research,
especially when the current and voltage waveforms are non-stationary with time-varying
components as in the case of an Electric Arc Furnac (EAF) [21-45]. [21] provides
classification and comparison of various time-varying harmonics and interharmonics
detection methods existing in the literature by 2014. In [21], among short-time Fourier
Transform (STFT), ESPRIT- and Prony-based methods, ADALINE-based methods,
Kalman filtering, PLL-based methods, and artificial neural network (ANN)-based methods,
only ANN- and Kalman-based methods are claimed to be suitable for real-time
applications, under certain conditions such as similar type of loads, and etc. In [29], Pony’s
method is used to extract exact frequency of voltage variations because measuring accurate
frequencies is undeniable when the extracting of voltage characterization comes into
account. The use of PLLs for harmonics and interharmonics detection has been studied in
[36- 39], while Kalman-based methods have been proposed in [40]. In the recent years
multiple synchronous reference frame (MSRF)-based methods have been popular [24] and
[41-56], due to the fact that MSRF provides time-domain waveform for each harmonic and
interharmonic frequency; however, the need for low-pass filtering in the MSRF analysis is
the bottle-neck of the method in terms of processing-time. In order to minimize the time for
the low-pass filtering (LPF) in the MSRF analysis, Kalman filtering has been proposed and
applied in [24], and it has been shown that LPF delay is reduced significantly; however,
Kalman filtering (KF) provides estimations with variable delays depending on the data
statistics. The use of graphical processing units (GPU) has been considered in [45] to make
the MSRF analysis with KF method real-time. With the use of GPU, parallel processing of
all harmonics and interharmonics have been shown to be possible [45]. GPUs have been
widely used in different areas, especially in image processing applications, but they have

also been popular recently in the power electronics and power systems area [45-48].



Electric Arc Furnaces (EAF) are one of the most interesting harmonic and interharmonic
generators of the electric grids with highly stochastic nature of operation and the resulting
currents with time-varying harmonics and interharmonics. EAF currents are rich in
interharmonics between the fundamental and the second harmonic resulting in seriously
distorted point of common coupling (PCC) voltages also with flicker, from which EAF
plants are supplied [17-19]. In order to improve the quality of power at the PCC, time-
varying EAF current harmonics and interharmonics have to be analyzed fast and accurately
so that reference signals are supplied to the controllers of the advanced technology
compensation systems such as active power filters (APF), synchronous static compensators

(STATCOM) and energy storage systems (ESS) [20].

The second aim of the research work presented in this thesis is to detect of harmonics and
interharmonics in real-time. An MSRF-based method is proposed together with
Exponential Smoothing (ES) as the LPF on a GPU framework for the real-time analysis of
time-varying harmonics and interharmonics of current waveforms obtained from an EAF
plant supplied from the electricity transmission system. ES has been especially proposed
for prediction of direct current (DC) level component of market trends in economics [49-
53]. Recently, it has also been used for information technology applications and load
forecasting in power grids [49]. In this thesis, ES has been used in the MSRF analysis for
the low-pass filtering, which is the bottle neck of the processing time for harmonics and
interharmonics analysis. ES is used to low-pass filter the positive- and negative-sequences
of both d and g components of three-phase harmonic and interharmonic voltage and current
components. Order of ES application has been optimized for each frequency component so
that amplitude estimation for each frequency component is maximized while minimizing
the erroneous and unexpected component amplitudes in the computation. ES with
optimized order has been shown to provide accurate harmonic and interharmonic estimates
with less delay than the use of KF with MSRF, hence resulting in more accurate amplitude
and phase estimates of the frequency components. Implementation of the proposed
MSRF+ES algorithm for each frequency component in parallel on an NVDIA Geforce
GTX 960 graphics card has led real-time analysis of actual EAF currents obtained from the
field. The preference of the use of GPUs for parallel processing analysis instead of FPGASs
is that, not only the GPUs are cheaper but also thanks to a lot of memory access, they are

capable of handling high-level languages such as CUDA and C++. On the other hand, less



level of complexity is needed for GPU programming compared to FPGAs. Finally, It is
easy to update a task on GPU based system since in FPGA based system the hardware

update will be required which is costly [53].

The third and the final aim of this thesis is to classify PQ events, such as voltage sags,
swells or interruptions. While PQ is defined as the wellbeing of electrical power for
consumer devices by the IEC Standard 61000-4-30 [1], PQ event is defined as the deviation
of PQ out of a predefined tolerance band. The reason that makes PQ events to be taken into
consideration seriously is that they can be the possible reasons of malfunctioning of the
electrical equipment in the system or they can even lead to brownouts or blackouts in the
electricity system. By means of a long-term monitoring of PQ in any electricity grid, at one
of its generation, transmission or distribution level, huge amount of PQ event data will be
available for studying the system characteristics or taking countermeasures to improve the
quality of power. Therefore, PQ event data, collected according to the harmonic standard
IEC 61000-4-7 [54], should be clustered and classified to comprehend and improve the PQ

in an electricity grid.

For the purpose of analyzing PQ event data, significant amount of effort is reported in the
literature [55-66]. In [57], classification of harmonics by using k-means clustering and
Support Vector Machine (SVM) algorithm is proposed. Automatic PQ event data clustering
based on eigenanalysis followed by k-means clustering is achieved in [58]. Using k-means
together with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA)
and Singular Value Decomposition (SVD) for the clustering of PQ events are compared in
[59]. An expert system, which is able to classify voltage dips and interruptions, is proposed
in [62]. An automatic classification, whose policy is to apply empirical-mode
decomposition and Hilbert transform on PQ Events, is reported in [63]. [64] has done PQ
assessment with the application of two empirical mode decomposition based de-noising
techniques in cases of noisy event data. [66] uses Stockwell’s transform and NN-based

classifier to detect multiple PQ disturbances following each other.

In the final part of the research work presented in this thesis, deep learning, which is a
powerful classifier in cases of huge data for train, is employed for PQ event data analysis.
In contrast with the existing PQ event data analysis techniques, sampled voltage data of the

PQ events are not used, but image files of the PQ events are analyzed by taking the
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advantage of the success of the deep leaning approach on image-file-classification.
Therefore, the novelty of the proposed approach is that, images of the voltage waveforms
of three phases of the power grid are classified with almost 100% accuracy, instead of

classifying the sampled voltage data strings of the three phases [65].

There exists a large amount of deep learning publications in other research areas, e.g.
computer vision/image processing area, which can be applicable for PQ event
classification. Deep learning methods, in some areas, have already exceeded human
performance, e.g., playing the game of Alpha Go without human intervention [69]. CNNs,
recurrent neural networks (RNNs), and recurrent convolutional networks (RCNs) have
been successfully employed in automatic image/video feature learning, e.g., in face
recognition from images [70], handwritten digit recognition from images [68], human fall
detection and human activity classification [71] from videos. These deep learning methods
enable automatic feature learning for the dedicated signals when big data is available. The
successful research in these areas inspired us to develop dedicated deep learning methods
for automatic feature learning of PQ events and subsequently use them for PQ event

classification.

In summary, this thesis consists of three parts presenting novel and efficient methods for
light flicker evaluation, online power system harmonics and interharmonics detection and
PQ event classification. All the methods developed have been shown to overperform
compared to the methods in the literature in terms of computational complexity and being
suitable for real-time applications. In Chapter 2 of the thesis, methodologies developed for
all three aims are explained in subsections. In Chapter 3, results are provided and discussed
for all three methods on both synthetically generated and field data obtained from the

electricity transmission system of Turkey. Finally Chapter 4 provides the conclusions.






2. METHODOLOGY

In this chapter, the methods used to develop the proposed algorithms are discussed under
three subsections. The first subsection will present the developed method to estimate the
flicker according to IEC flickermeter method from true RMS values of the voltage
waveform. Then the second subsection addresses the methodologies developed for real
time detection of harmonics and interharmonics out of EAF current waveforms to generate
reference signals for possible active power filter applications of highly time-varying power
signals. In the third subsection, the developed deep learning based method for classification

of PQ events are presented.
2.1. Method Developed for Flickermeter

In this subsection, the methodology developed to estimate the flicker from rms values is

described.
2.1.1. Expressing the instantaneous flicker sensation in terms of voltage RMS values

As the IEC standard proposes [2], the flicker-causing fluctuation of the voltage can be
modelled as an amplitude modulated (AM) signal, where the power system frequency (50
or 60 Hz) is the carrier frequency and the flicker frequency is the message frequency as

givenin (2.1),
1AV
v(t) =V sin(2nft) {1 + Evsin(Zﬂfft + (D)}, (2.1)

where f; is the frequency of the flicker, f is the fundamental frequency of the power system,
which can be 50 or 60Hz, V is the amplitude of the fundamental component, AV is the
amplitude of the flicker component, and @ is its phase. In cases when the voltage signal
caries several flicker components, in other words, if the voltage envelope varies in a more
complicated manner including more than one frequency component, v(t) can be expressed

in a more general form as given in (2.2),



8

AV,

N

1

v(t) = V sin(2mft) {1 + ——sin(Zﬂffit + @i) . (2.2)
;2 V

In (2.2), N is the number of flicker frequency components forming the envelope of the

signal, f;.are the flicker frequencies, and @;are the corresponding phases.

Now the RMS value of the voltage waveform in (2.2) can be evaluated. The most popular
formula for RMS computation of a continuous voltage waveform, v(t), is given in (2.3),

1 (T 1/2
Vs = v©2) 23)

where T is the period of the fundamental component of the voltage waveform. Now if half-

cycle RMS of v(t) in (2.2) is computed as recommended in [1], the expression in (2.4),

2

N

2 (T2 1

Vews = | f {V sin(2nft) + - sin(2ft) Z AV; sin(2mfy,t + q)i)} dat , (2.4)
0 i=1

A

is obtained. T in (2.5) is ideally 20 ms for the power system frequency at exactly 50Hz.

Evaluating the square inside the integral, denoted by A in (4), yields the expression in (2.5),

A

( N N )
2 . 2 1 . 2 . .

V4sin“(2mft) + zsin (2mtft) ) AV, sm(Zﬂffit + (Z)i) AV; sin (anfjt + (Dj)

i=1 j=1

J > (2.5)

N
+ Vsin?(2mft) Z AV; sin(Zﬂffit +0;)

Taking the square of the both sides of the equation in (2.4) and then taking the first term
inside the integral to the left side of the equation, (2.6) is obtained as



T

, 2 (2 . o
Veums —7 V4sin®(2mft)dt
0

B

. T/2 N N
= o7 sin?(2mft) Z AV; sin(anfit +0;) z AV; sin(anfit + Q)j) dt

0 i=1 j=1
c
T/2 N
2

+ ?J. V sin?(2mft) Z AV; sin(anfit +0;)dt . (2.6)

0 j=1

D

In (2.6), square of Vrws is the square of the true RMS of the voltage waveform and it can
be obtained from the voltage waveform directly by computing the half-cycle RMS. The
second term, B, on the left side of (2.6) can be computed by calculating the square of the
mean of all Vrus values over the voltage data for which flicker is to be evaluated. That is
because B is expected to be constant over all data for all half-cycle windows, being the
square of the RMS value of only the fundamental component evaluated at exactly its half
period. Therefore, it can be considered as the mean value of the square of the RMS of the
voltage signal with no fluctuations. Hence, left-hand-side of (2.6) can be expressed as a
function of Vrws, and can be called as F(Vrws).

In (2.6), C can be considered to be negligibly small with respect to D since the amplitude of
C is scaled by the multiplication of AV; and AV}, while D is scaled by the multiplication of

V and AV;. Being the amplitude of the flicker components of the voltage waveform, AV; is
expected to be much smaller than the amplitude of the fundamental, V. Hence, (2.6) can be
approximately expressed as given in (2.7)

T
2 N

2
F(Vaus) = = f Vsinz(ant)ZAVi sin(2nfy,t + @;)dt. (2.7)
0 i=1

Evaluating the right-hand side of (2.7), by using the expansion of the sine square, the

expression in (2.8),
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(
[ T
1 2
F(Vrus) = T i.f
073
T N
— fz Z V AV; cos(4ft) sin(2nffit +0;)dtp, (2.8)
0

i=1
; )

VAV, sin(2nfy,t + @, )dt

N
=1

is obtained. E in (2.8) yields two sine components with frequencies 2f+f; and 2f-fs and
integration of those sine components at an interval, which corresponds to the half-cycle of
the fundamental frequency, results in values close to zero, since flicker frequencies fs; are

much smaller than 2f. Since the expansion of E in (2.8) is rewritten as in (2.9),

1/ (7/2 N
E = > <.f Z VAV;sin(4mft + 21fr t + @;) dt
0 =1

/2 N
_ f z VAV;sin(4nft — 2nf; t — 0;) dt). (2.9)
0 =

Hence, (8) can be approximated as given in (10),

~

N
VAV;sin(2nfy,t + 9;) dt. (2.10)
1

0

i=

The expression in (2.10) is the basis of the flicker computation method proposed in this

research work. F(Vrws) is expressed as in (2.11),

2 T
F(Vams) = Vms® = sz VZsin?(2mft)dt, (2.11)
0

and it can be computed directly from the voltage waveform, if it exists, or it can be
computed from the half-cycle RMS values of the voltage signal. As to the right-hand side
of (2.10), since the integration period, T/2, is much smaller than the period of the flicker

frequency components, fs, integration will yield the same frequency components, fsi, with
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an approximate scaling factor of T/2, which is illustrated in Figure 2.1. In Figure 2.1, the
sine wave represents one of the flicker frequency components and the integration periods
are illustrated by T/2, which corresponds to the half the fundamental period. The
integration over very small intervals with respect to the period of the signal will result in
values, which will oscillate with the same frequency of the flicker frequency component.
Integration will approximately yield the value of the signal sample at the mid point of the
integration period scaled by T/2. Hence, obtaining the Discrete Fourier Transform (DFT) of
F (Vrws), computed from the voltage waveform or its RMS values, flicker frequency

components, fi, and the corresponding amplitudes, AV;, can be obtained.
To illustrate the proposed flicker frequency determination method, a synthetic signal with
three flicker frequency components at 3.5Hz, 10Hz and 15Hz has been generated, as given

in (2.12),

v(t) = sin(2nft) {1 + () 0.045sin(2n3.5¢) + (3) 0.020sin(2m10¢) +

(%) 0.0lOsin(anSt)} , (2.12)

0

T

3
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T 5112 1 15112 107 25712

=

0

X

L

m

Time

Figure 2.1. A sample sine wave component at any flicker frequency, f;, with the integration
intervals, T/2, equal to half the period of the fundamental frequency. Integration
will approximately yield the value of the signal sample at the mid point of the
integration period scaled by T/2
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where, f denotes the fundamental frequency, which is 50Hz. The amplitudes of the flicker
frequency components have been selected to be 1%, 2%, and 4.5% of the fundamental
component, respectively, which are common ratios for a real-life voltage signal [7].
F(Vrms) in (2.11) has been computed for the generated waveform v(t) in (2.12) and the
amplitude of its DFT is shown in Figure 2.2, which shows that the flicker frequency
components can be determined by detecting the components with amplitudes higher than a
threshold. The other components with negligibly small amplitudes around 5Hz, 6Hz, 11Hz,
and 13Hz correspond to the components neglected in (2.6). The neglected term C in (2.6),
includes frequency components at the summations and differences of individual frequency
components. Therefore, the synthetic signal in (2.12), is expected to have frequency
components at 13.5Hz, 6.5Hz, 11.5Hz, 18.5Hz, 5Hz, and 25Hz with negligibly small

amplitudes, which is observed in Figure 2.2.

0.04 A

=
=
(%]
T
1

0.02

AV Values

0.0

1.66 33 5 6.66 8.33 10 11.66 13.33 15  16.66

freq (Hz)

Figure 2.2. Amplitudes of the flicker frequency components (AVi) versus the
corresponding flicker frequencies, fi, using the proposed flicker frequency
decomposition method for the voltage waveform generated using (12)

2.1.2. Computation of the instantaneous flicker sensation values

The IEC flickermeter response for sinusoidal fluctuations with flicker frequencies and
AV/V amplitude ratios for the signal model given in (2.1), which result in unity
instantaneous flicker sensation (S = 1) are listed for 230 V/ 50 Hz systems in Table 2.1 [2].
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Instantaneous flicker sensation, S, is a measure of the sensation of human beings of the
voltage fluctuation effect on an incandescent lamp and it is the output of the Block-4 of the
IEC flickermeter, which is given in [2]. When S = 1, it means that at least 50% of the

human beings realize the fluctuation of the voltage [2].

It has been shown in a previous work in [7] that S is approximately equal to the summation
of the flicker-causing effects of the individual flicker frequency components, fs in (2.2), as
given in (2.13). Contribution of each flicker frequency to S, which is represented here by S;,
can be attained by comparing the square of the AV/V values obtained from the voltage
waveform to the AV/V values obtained from Table 2.1, denoted by (AV/V) IEC, for each
flicker frequency. AV is obtained from the Fourier Transform amplitudes of the signal in

(2.10) and V can be obtained from mean of calculated RMS value of the signal.

(AVi /V)2

= (2.13)
(")

The instantaneous flicker sensation, S, is obtained as the summation of all S;, S = . §;, for
which fsi varies from 0.5 to 25.0 Hz with 0.5 Hz increments when the FFT window size is
100 cycles of the fundamental period (2-s), and hence the frequency resolution of the DFT
is 0.5Hz. This method inherently includes both the effect of the human eye sensitivity and
the effect of the incandescent lamp sensitivity to voltage fluctuations, which is realized in
the third block of the IEC flickermeter, because the denominator of (2.13) contains the
voltage fluctuation level which causes average flicker sensitivity equal to unity at the
output of Block-4 of the IEC flickermeter [7].

2.1.3. The proposed method for flicker severity computation

The block diagram of the proposed flicker severity computation method using RMS values
of the voltage waveform is illustrated in Figure 2.3 (a). Block-A in Figure 2.3 (a) illustrates
the computation of the decomposition of the flicker frequency components using the RMS
values of the voltage waveform, explained in detail in Section 2. Block-B represents the
computation of the instantaneous flicker sensation values, S, from the decomposed flicker

frequency components. The third and the final block is the statistical analysis block, which
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is the same as Block-5 of the IEC flickermeter given in 2]. The third block in Figure 2.3 (a)
analyses the instantaneous flicker sensation values, S, for a 10-min period to provide the
short-term flicker severity, Ps. Details of the instantaneous flicker sensation computation
inside Block-A and Block-B in Figure 2.3 (a) is illustrated in Figure 2.3 (b). Each frame in
Figure 2.3 (b), includes squares of the half-cycle RMS values, from which mean square of
the RMS values inside that frame are subtracted. Frames include 200 values, which means
2-s data (i.e. 200 half-cycle values make 100 values per second for a 50Hz system). Hence
the DFT resolution for 2-s frames corresponds to a frequency resolution of 0.5Hz. Then
from each DFT frame, flicker frequencies, fsi, and the corresponding amplitudes, AV;, are
obtained using the method described in subsection 2.1.2 and an instantaneous flicker
sensation value, S, is then obtained for each frame as detailed in subsection 2.1.3. Frames
are shifted by two half-cycle-RMS samples, which correspond to S being obtained every
cycle of the fundamental frequency. This is consistent with the requirement of the
flickermeter standard that input for Block-5, which is the instantaneous flicker sensation S,
should be sampled by at least 50Hz [2]. Once S is obtained, Block-5 of the IEC
flickermeter is used to obtain short-term flicker severity, Ps, from 50x600 S samples,

which correspond to the short-term flicker severity computation period of 10 minutes.

Table 2.1. Normalised flickermeter response for sinusoidal voltage fluctuations, 230
V/50Hz systems, which result in unity instantaneous flicker sensation, S — IEC
standard 61000-4-15 [2]

Hz A_V' % Hz A_V, % Hz A_V, % Hz A_V, %
v v v v
0.5 2.340 5.0 0.398 10.0 0.260 17.0 0.530
1.0 1.432 5.5 0.360 10.5 0.270 18.0 0.584
15 1.080 6.0 0.328 11.0 0.282 19.0 0.640
2.0 0.882 6.5 0.300 11.5 0.296 20.0 0.700
2.5 0.754 7.0 0.280 12.0 0.312 21.0 0.760
3.0 0.654 7.5 0.266 13.0 0.348 22.0 0.824
3.5 0.568 8.0 0.256 14.0 0.388 23.0 0.890
4.0 0.500 8.8 0.250 15.0 0.432 24.0 0.962
4.5 0.446 9.5 0.254 16.0 0.480 25.0 1.042

2.2. Methods Developed for Harmonics and Interharmonics Estimation in Real-Time

In this subsection methods developed to extract real harmonics and interharmonics in real-

time are explained. Application of the Multiple Synchronous Reference Frame (MSRF)
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analysis with Exponential Smoothing (ES) and obtaining the best order of exponential
smoothing specific to each harmonic and interharmonic component are presented in this

section.

2.2.1. MSRF+exponential smoothing method for the fundamental, harmonic and
interharmonic analysis

MSRF analysis is used to obtain both positive- and negative-sequences of d, g, and zero
components of all harmonics and interharmonics. Note that, since the EAF transformer is a
A/A connected transformer, EAF currents obtained from the MP in Figure 2.3 (a) are
balanced but asymmetrical due to the nature of the EAF operation [25]. Hence, the zero
sequence components are zero for 99.9% of the operation time, therefore in this analysis
zero sequences are equated to zero to compensate any measurement errors. After obtaining
the direct current (DC) components of the positive- and negative sequences of the d and q
components, they are transformed back to the phase current components so that one of the
fundamental, harmonics, and the interharmonics is obtained. The DC components of the
positive and negative-sequences of d and g components carry on both the amplitude and
phase information of all three phases of the EAF current, corresponding to the selected
frequency component. Starting with the three-phase EAF currents with the fundamental,
and all possible harmonic and interharmonic components, three-phase current waveforms

are as given in (2.14),

N
is(t) = Z A;sin(2nfit + @y,)
i=0
N
s () = Z Bisin(2nfit + @p)
i=0

N
ic(t) = Z ¢ sin(2nfit + @) (2.14)
i=0

where, fi represents all the frequency components existing in the waveform, A;, B, and C;;
and @i, ®gi, and Pc; are the corresponding amplitudes and phases, respectively. In order to

give the idea of MSRF analysis and the low-pass filtering to obtain any of the frequency
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components from the original current waveform here, only computation of the positive

sequence d component is shown in (2.15):

N|D>

ir(t) = Lsin(2rfit + ®,)cos(2nft)

ST “oTe

M= IbV]=

N|CU

21
ln(anBt + @g)cos (27Tft - ?)

m

Z %sin(anCt + @) cos (2nft + Z?R) (2.15)

f in (2.15) is the frequency component for which the analysis is carried out, i.e. f is the
frequency component which is looked for in the current waveform. If there is any f
frequency component in the current waveform, then the DC component of (2.15) is going
to be nonzero and hence the low-pass filtered form of the positive sequence d components

is obtained as given in (2.16):

iLPr(t) = j; sin(2n(fi — It + Pa, ) +\/; sin(2n(fy — )t + P3,)
+ \/;—sm(Zn(fk t+oc,) (2.16)

In (2.16), f« is the frequency component, which is equal to or very close to the frequency f.
If such an fx exists, (2.16) is the output of the LPF. If it does not exist, then (2.16) is going
to be equal to zero or almost zero, since the frequency f-fx is much larger than the cut-off
frequency of the LPF. As observed in (2.16), accurate estimation of the DC components of
both the positive- and negative-sequences of d and q components are essential for the
spectral analysis, because the DC components include both the phase and amplitude
information, which are Ak, Bk, and Ck; and ®ak, ®sk, and @ck. Therefore, the smaller the
phase delay of the LPF at zero frequency, the less error is achieved for the estimation of the
spectral components of the EAF current. Low-pass filtering is achieved by ES in this
research work. Since the amplitude of the fundamental component is much higher than the

other frequency components, first the fundamental frequency component at 50Hz is
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estimated and it is subtracted from the original current waveform, so that the remaining
frequency components are estimated more accurately. Then parallel processing of the

remaining waveform including the harmonics and the interharmonics is
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Figure 2.3. Obtaining the field data used in this research work; (a) schematic of the data
collection at the measurement point (MP) and the proposed system, (b) sample
three-phase current waveform obtained from the boring phase of the EAF
current, (c) 10-cycle RMS of the EAF current for Phase-A for a period of
60min (BP: boring period, MeP: Melting Period, RP: Refining Period)

achieved using the same MSRF analysis with exponential smoothing. Figure 2.4. illustrates
the overall system to obtain the fundamental and the other frequency components. The
parallel processing is used to repeat the Frequency Component Estimation Block in Figure

2.4 for each harmonic and interharmonic frequency. In Figure 2.4, Top(f) represents the
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optimum order of exponential smoothing specific to the frequency, f. Obtaining the best
order of the exponential smoothing method is described in detail in this subsection. In
Figure 2.4, ia, T (Topt(f), 1), s, T (Topt(f), 1), ic, f (Topt(f), t) represent the output of the
implemented system for each frequency component, f. For harmonics, f corresponds to the
integer multiples of the fundamental frequency, while for the interharmonics, f corresponds
to the integer multiples of 5Hz, which is the recommended frequency resolution in the IEC
Standard for harmonic and interharmonic analysis [56]. In Figure 2.5, details of the
estimation blocks (given in Figure 2.4) are illustrated. As given in Figure 2.5, both d and q
components of the negative- and positive-sequences are obtained using MSRF analysis.
Then exponential smoothing is applied to obtain their DC components. Next, back
transformation is achieved to attain the current component at frequency f, which is also a
function of the optimum order of exponential smoothing, Topt(f) for f. As the exponential
smoothing order deviates from its optimal value, the estimation performance of the

frequency component deteriorates.
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Figure 2.4. Extraction of the fundamental (50 Hz) component and the rest of all harmonic
and interharmonic components

[ I
(iA) d+ Exponential
Smoothin, .
(e) MSRF ¢ — (MSRF)*
. Exponential
(|C) Smoothing
[ [ -
L— d Exponential +iz; iA’f (TOpt.(f)rt)
Smoothing -1 7+;'/z\\'; iB,f (TOpt.(f):t)
MSRF ¢ (MSRF) &, .
Esxpon::_tial /z\ it (Topt(f),t)
moothing ~




19

Figure 2.5. Frequency component estimation block: MSRF+ES application to obtain any
frequency component
2.2.1. Exponential smoothing technique for low pass filtering

Exponential smoothing is used to estimate the DC variation of the data to obtain the low-
pass filtered form of the positive- and negative-sequences of the d and g components of the
frequency components. The input current waveform of the ES block is modeled as given in
(2.17) according to [48]:

i(t) =a + bt + &(t). (2.17)

In (4), a + bt is defined as the trend of the input waveform, which is required as the output
of the ES block. The &(t) represents the variation around the trend of the current, which is
required to be eliminated. The ES estimates the trend as the low-pass filtered form of its

input given in (5):

iLPF(t) =a+ bt ) (218)

using the ES defined in [50] as in (6):

in+1) = Sn=o" (1- B i(T-n). (2.19)

T in (2.19) is the order of the ES operation, which is optimized per frequency component in

this research work, £ = 0.333 as suggested in [50], and n is the time index.

Obtaining the Optimal Exponential Smoothing Order for Each Frequency Component: Two
criteria are used to obtain the optimum order for ES applied following the MSRF analysis:
(i) Total Harmonic and Interharmonic Distortion (THID), (ii) Amplitude Error (AE)
between the estimated frequency component and the corresponding frequency component
of the original current waveform. A function of these two criteria is obtained for different
orders of ES in order to obtain the optimum order matching each harmonic or
interharmonic frequency component. Then obtaining the best matching order of ES for

each frequency component can be solved as an optimization problem given in (2.20):
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M
{1
min {M; a.THID,(T(f)) + (1 — )AEL(T(f)) (2.20)
subject to 10ms < T(f) < 40ms

In (2.20), M represents the number of 10-cycle analysis windows, along which the THID
and AE computations are carried on. M is taken to be 3000, which corresponds to 10-cycles
inside 10-min period of the boring phase. THIDk (T(f)) is the THID computed for the k" 10-
cycle frame using ES order of T for the frequency component f. Similarly, AEx(T(f)) is the
amplitude error of the frequency component f with the order of T for ES. The range of T(f)
corresponds to the half cycle of the fundamental frequency to 20 cycles and the
minimization is achieved by incrementing the T(f) value from 10 ms to 400 ms with a step
size of 10 ms. In (2.20), o determines the balance between the two criteria and it has been
equated to 0.7 for the fundamental frequency and 0.6 for other frequency components.
After all the minimization process is achieved for all frequency components from the

fundamental frequency to the 50" harmonic with 5Hz resolution, Top(f) is obtained.

Amplitude error (AE) is computed as the absolute error between the amplitudes of the
component that is being extracted, using the 10-cycle Discrete Fourier Transform (DFT) of
the original waveform and the 10-cycle DFT of the waveform including only the extracted
frequency component, which is the output of the proposed MSRF+ES method. Therefore,
AE is a measure of the accuracy of individual frequency component detection, while THID
is the measure of the misdetection of the components other than the extracted component.
A sample comparison for the spectrum around the fundamental component is given in
Figure 2.6. In Figure 2.6 (a), (b), and (c), the original amplitudes (in blue) are compared
with the DFT of the estimated fundamental current component by the proposed method for
the ES order of 10 ms, 300 ms, and 140 ms, respectively. Figure 2.6 (d) shows the same
comparison for the fundamental estimation using MSRF+KF algorithm, proposed
previously in [7]. In Figure 2.7, block diagrams of the computation of the two criteria,
which are AE and THID are given both for the fundamental frequency and other frequency

components.

It is observed that for the comparatively small order of 10 ms in Figure 4(a), the

fundamental component estimation is successful, however, the obtained ia,f (Topt(f), t) still
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includes other frequency components around the fundamental frequency, which are 40Hz,
45Hz, 55Hz, 60Hz, and etc, which results in high AE. For the much larger order of 300ms
(Figure 2.6 (b)), the interharmonic frequency components are successfully eliminated,
however, estimation of the fundamental component is not very accurate. In order to obtain
the best order, the two criteria are applied on the DFTs of the original and the extracted
waveform of the specific frequency component. THID computation is as given in (2.21):

N 12 _ -2
THID, = Y257 100 (2.21)
f e . .
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Figure 2.6. Comparison of the original EAF current spectrum (blue) with the extracted
fundamental component spectrum using MSRF+ES (red) for exponential
smoothing with an order of size (a) 10ms, (b) 300ms, (c) 140ms, which is the

best in terms of fundamental estimation and low THID, and (d) using MSRF
with Kalman filtering
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In (8), G5i represents the amplitudes of the frequency components with 5 Hz resolution
based on 200-s DFT windows, whereas G stands for frequency component to be. In (2.21),
N is the index of the 5-Hz-apart frequency components to be summed up. It can be
concluded from both Figure 2.6 and Figure 6 that, small order of ES results in high THID
and low fundamental AE, and large order of ES results in low THID and high AE. For the
fundamental frequency component estimation using MSRF+ES method, order of 140 ms
has been determined as the best order of ES application based on the two criteria. To
clarify, the THIDs and AEs corresponding to different ES orders for the fundamental
frequency and the interharmonics at 45Hz and 55Hz are given in Figs. 2.8 and 2.9,
respectively. In order to obtain the optimal orders, THID and AE are computed for all

frequency components and the optimal ES order is obtained using (7).

l T
1a(t) > iar(T(.Y
Component »  DFT(10cycle) »> AmplltUde —_— AE(T(f))
Computation error and
THID
Computation — THIDT(f))
»  DFT(10cycle) >

Figure 2.7. THID and amplitude error (AE) computation for any frequency component to
obtain the best order of ES for each

The optimum orders (Topt(f)) of MSRF+ES analysis obtained as the solution of the
optimization problem defined in (2.20) for the most typical EAF boring phase harmonics

and interharmonics are given in Figure 2.9.

It should be noted here that, the ES algorithm can also be used with a constant order for all
harmonic and interharmonic frequencies, however, in order to obtain the shortest possible
estimation delay, the presented optimization procedure is run over the 10-min boring phase
data of the EAF current to make the best and fastest possible estimation. In fact, the
algorithm will still work for any constant order ES without the optimization. For each
measurement site, the train process may be run before starting the measurents and it can be
repeated regularly for possible updates, and this procedure cannot be considered as a

drawback of the proposed algorithm.
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Figure 2.8. Comparison of the original EAF current spectrum (blue) with the extracted
second harmonic component spectrum using MSRF+ES (red) for exponential
smoothing with a order of (a) 160ms, (b) 10ms, (c) 80ms, which is the best in
terms of fundamental estimation and low THID, (d) using MSRF with Kalman
filtering
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Figure 2.9. Amplitude error of the MSRF+ES estimation compared to the original
waveform component with respect to ES order for the fundamental frequency
(50Hz), and interharmonics at 45Hz and 55Hz. Error is computed for a typical
boring phase period of 10-min cycles (mean error of 3000 10 cycles of the

fundamental) as the percent of the original frequency component amplitude
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Figure 2.10. THID for the fundamental (50Hz) and interharmonics at 45Hz and 55Hz
obtained from the MSRF+ES for a typical boring phase period of 10-min
cycles (mean error of 3000 10 cycles of the fundamental)

2.3. Method Developed for Power Quality Event Classification

PQ event data used in this work is provided by the National Power Quality Monitoring
System of Turkey, whose architecture is illustrated in Figure 2.12. [2]. The aim of the work
presented in this research work is to use deep learning techniques to obtain a successful PQ

event classification.

PQ events are defined as the voltage interruptions, voltage sags and voltage swells by the
Standard IEC-61000-4-30 [1]. A swell event is detected when the root mean square (RMS)
of the measured voltage exceeds the nominal RMS value by 10%, while a sag (dip) event is
defined as the reduction of the RMS value of the voltage by more than 10%, and an
interruption is defined to occur when the RMS value of the voltage is more than 90% less

than its nominal RMS value and an interruption is known as the most serious event [1].

The data used in this research work, includes raw event data are collected for a period of
one-year from four different regions of the electricity transmission system with 25.6KHz
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sampling rate. Table 2.2 summarizes the information of the whole event data used in this
work. The RMS value computation from raw voltage data is achieved every cycle of the
50Hz fundamental frequency of the power grid, which ideally corresponds to 20ms
according to [1], so that they are transformed to form event matrices of sizes 3x150. Figure
2.13. (a) presents a real event data collected from the transmission system of Turkey using
the architecture given in Figure 2.12. Each phase of the voltage is represented by a different
color and the RMS values computed for each cycle (every 20ms) is given, hence 150 cycles
represent 3s of voltage data. Here the nominal RMS value of the voltage is normalized to
100 Vrms, therefore it can be seen that there is a general reduction of the voltage, for the
whole measurement period, however there are serious voltage sags in in phases A and B
from approximately cycle 25th to 55th and voltage swell in Phase C during the same
measurement period as shown in Figure 2.13. (a). The both the lengths and the amplitudes
of the voltage sags, swells and interruptions may vary from event to event. Therefore, an
event length may vary from a few samples in each window to the total length of the data,
which is 3s in this case. Considering the different possible event amplitudes and the three
phases of power system, may different event types may occur and they have to be classified
so that automatic countermeasures for the power system can be generated in real-time for a

smart grid.

For the purpose of analysis in this work, all three phases are arranged as a single voltage

RMS vector as given in (2.22):

Xevent = [VA[0] ... Va[149] V&[0]...78[149] Vc[O]... Vc[149]]. (2.22)

which is also shown in Figure 2.13 (b). A, B and C subscripts in (2.22), represent three
phases and the RMS values of voltage data for each cycle in each phase is settled together
with the other phases in a single 1x450 voltage RMS matrix as shown in Figure 2.13 (b).
All 1337 events in Table 2.2 are plotted and saved in “.jpg” format. They are all manually

labeled to form 10 groups of events and arranged inside 10 folders for the event types. The
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types of the events are listed in Table 2.3 85% of the whole event data is used for the train
process of the MLCNN and 15% is used for the test. Cross validation is also applied to
obtain the test results.

The aim of event classification using machine learning techniques is to achieve a deep

understanding of PQ events — like a human data expert vision or even better- with

machines.
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Figure 2.12. Sample sag event in two-phases and swell in the other phase, (a) RMS
voltages of each phase, (b) arranged event data in a single row vector
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Table 2.2. PQ event data obtained from the transmission system (1337 events in total)

Transformer Substation Feeder id Type Event Number
(TS) (per one-year)

TS1 3 Heavy Industry 353

TS2 33 Industry + Urban 216

TS3 53 Urban 746

TS4 4 Rural + Industry 103

Table 2.3. PQ event data labels obtained manually for all the events listed in

Event Event Type Event Number
id (per one-year)
1 One sag and one swell in three phases 395
2 Long-sag in one phase 312
3 Instantaneous sag in three phases 240
4 Interruption in three phases 186
5 Interruption in one phase 99
6 Instantaneous-sag in one phase 66
7 Swell in one phase 30
8 Two interruptions and one sag in three phases 50
9 Interruption in two phases 20
10 Frequent and short interruptions in all phases 20

The number of event data used in this work is not high enough, but considering event data
coming from all transformer substations from all over the transmission and distribution
system, the number of events received at the PQ center every minute can be compared to
the 150 hours of video uploaded every 60 seconds to the YouTube website [72]. Hence,
there is no way for human ability to analyze such a big data. It is crystal clear that a proper
way to understand such huge amount of data is one of the most important necessities and
deep learning is known as the most up-to-date method for such analysis, which is defined
as the first method of artificial intelligent technique that is able to see, listen, think and

comment [65].

In this section, the approach of using deep neural networks for PQ event recognition and
classification is described. Based on related reference works starting with LeNet-5,
GoogleNet, ImageNet [67-71], Convolutional Neural Networks (CNN) generally have the
same format — weighted convolutional layers (optionally followed by contrast
normalization and max-pooling), which are tracked by one or more fully-connected layers.
Figure 2.14. is an example of Classification with Deep CNN from ImageNet [67]. Details

of the layer formation in Figure 2.15. are given in the following section.
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2.2.2. Architecture overview

A standard NN gets a single vector as input and by having fully connection of all neurons
to the previous layer, and neurons with an independent single layer function, it provides
classification class scores called weights (w) as illustrated in Figure 2.15. (a). For instance,
for an image sized 32x32x3, a single NN hidden layer has 32x32x3 = 3072 weights. This
amount of weights seems manageable but when the size of data gets bigger like
200x200x3, 120,000 weights would be obtained in the first layer. In other words, NNs
receive an input (a single vector), and transform it through a series of hidden layers. Each
hidden layer is made up of a set of neurons, where each neuron is fully connected to all
neurons in the previous layer, and where neurons in a single layer function completely
independently and do not share any connections. The last fully-connected layer is called the
“output layer” and in classification settings it represents the class scores. Thus, to get free
from overfitting problems and quickly adding up, the MLCNN is employed as the deep
learning method in this research work. CNNs take advantage of the fact that the input
consists of images and they constrain the architecture in a more sensible way. In particular,
unlike a regular NN, the layers of a ConvNet have neurons arranged in three
dimensions: width, height, depth. (Note that the word depthhere refers to the third
dimension of an activation volume, not to the depth of a full NN, which can refer to the
total number of layers in a network.) For example, the input images in 32x32x3 with are an
input volume of activations, and the volume has dimensions 32x32x3 (width, height, depth
respectively). As we will soon see, the neurons in a layer will only be connected to a small
region of the layer before it, instead of all of the neurons in a fully-connected manner
which is illustrated in Figure 2.15 (b).

Two most important functions that are mostly used in the MLCNN are Convolution and

MaxPooling. Brief definitions for these functions are given below:

- Convolution first multiplies the selected weight values with the data and then sums all of
them. Then it shifts the weight window on the data image with the optional amount like

one or two.
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Figure 2.13. Image net classification with deep convolutional neural networks [16]

Figure 2.16 (a) is a demo of a CONV layer. Since 3D volumes are hard to visualize, all the
volumes (the input volume (in blue), the weight volumes (in red), the output volume (in
green)) are visualized with each depth slice stacked in rows. The input volume is of
size W1=5, H1=5, D1=3 W1=5, H1=>5, D1=3, and the CONV layer parameters are K=2,
F=3, S=2, P=1, K=2, F=3, S=2, P=1. That is, we have two filters of size 3x33x3, and
they are applied with a stride of 2. Therefore, the output volume size has spatial size (5 - 3
+ 2)/2 + 1 = 3. Moreover, notice that a padding of P=1 is applied to the input volume,
making the outer border of the input volume zero. The visualization below iterates over the
output activations (green), and shows that each element is computed by elementwise
multiplying the highlighted input (blue) with the filter (red), summing it up, and then
offsetting the result by the bias.

MaxPooling is a function which downsamples the available matrixes. Figure 2.16 (b) is an
example of using this function. In Figure 2.16 (b), assume that Y is a matrix, which is
obtained after convolution. A 2x2 MaxPool filter gets the maximum value of Y from every

2X2 matrix indexes.

From the input image data matrix, after Convolve and MaxPool operations, a 1x1x10 score
vector is obtained for 10 classes of images or any other data and this is the aim that
MLCNN is trying to achieve. So that with the full size image data is reduced into a single

vector of class scores, arranged along the depth dimension.
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Figure 2.14. Layer structure of a (a) NN, (b) MLCNN

Deep learning architecture used for PQ event image data classification is given in Figure 6.
For the deep leaning application on image data, DIGITS (the Deep Learning GPU Training
System) application environment of NVDIA has been employed[71]. The fundamental
steps of the MLCNN method can be summarized as INPUT, CONV, RELU, NORM,
POOL, and FC as shown in Figure 2.17. Below given are the explanations for each step:

e An event raw data as an INPUT [220x220x3] holds the raw pixel values of the image, in
this case an image of width 220, height 220, and with three color channels R, G, B.

e In CONV layer the output of neurons that are connected to local areas in the input is
computed. These computed elements are produced between input and final weights. As
an example if we try to use 12 filters the obtained matrix becomes [220x220x12].

e The elementwise activation will be applied with RELU layer function. The actions
like max (0,x) thresholding at zero. This function leaves the other layers output
unchanged ([220x220x12]) in terms of size. Figure 5(b) represents how the POOL
function works on an example.

e Down-sampling process is performed by the POOL function. With down-sampling

operation on any previous resultant, volume will be changed to [110x110x12].
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e NORM function represents normalization of the obtained weight scores after each

convolution.
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Figure 2.15. Examples: (a) first two steps of the convolving procedure for a 7x7 data matrix
by a 3x3 weighting matrix, (b) application of MaxPool function with a 2x2
filter with two units of shifting
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Figure 2.16. Flow chart of the implemented deep learning algorithm in this work, obtained
by DIGITS deep learning application platform
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In this case the number of classes is 10 therefore class scores will be obtained in a [1x1x10]
data vector. This vector is results in the final FC (fully-connected) layer. Applying the
flowchart shown in Figure 2.16 on the PQ event data, softmax classifier, accuracy and loss

are obtained. Discussion and explanations about these results are given in the next section.
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3. RESULTS AND DISCUSSION

In this section results obtained from proposed methods will be presented in three
subsections. The fist subsection contains results from estimation of flicker component
extracted from true rms values. Then the second subsection will address the results of real
time dectection of harmonics and interharmonics from current vawform. In third subsection
results of developed deep learning based method for classification of PQ events will be

addressed. Finally, a discussion will be done on the obtained results.

3.1. Results for Flickermeter

To verify the proposed method, the signal modelled as given in Section 2, has been
generated for different fq and AVi values and then the mean values of the flicker sensation,
S, generated for 10-min period, has been obtained both by the IEC flickermeter and by the
proposed method. Figure 3.1 illustrates the proposed digital realization of the proposed
flickermeter using RMS of the voltage waveform. Figure 3.1 (a) is the general block
diagram and Figure 3.1 (b) is the details of the signal processing in Block-A and Block-B.
the results obtained from proposed method will be addressed in this subsection.

3.1.1. Verification of the proposed method using synthetic voltage waveforms

IEC flickermeter computes S values directly from the generated voltage waveform, while
the proposed method assumes only the half-cycle RMS values of the voltage signal exists
and computes S values using those RMS values. The results are given in Table 3.1., In the
first three rows in Table 3.1 the expected value of the mean S is unity since AV/V and the
corresponding flicker frequency values from Table 2.1 are used for the single flicker
frequency component. Note that, as mentioned before in Section 3, Table 2.1 lists the
flicker frequency and the corresponding amplitude values which result in unity
instantaneous flicker sensation, S, at the output of Block-4 of the IEC flickermeter
according to the IEC Flickermeter Standard [2].
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Figure 3.1. Digital realization of the proposed flickermeter using RMS of the voltage
waveform, a) The general block diagram, b) Details of the signal processing in
Block-A and Block-B

It is shown that the proposed method successfully yields S values very close to unity.
Similarly, for the other cases, where more than one flicker frequency component with
various amplitudes given in Table 3.1 the mean values of the flicker sensation values are
very close to those obtained by the digital realization of the standard IEC flickermeter. For

the first five synthetic voltage waveforms in Table 3.1 (first five rows), the expected values

of the mean values of S can be deduced directly from the input voltage waveform directly,
which are given in the second row of Table 3.1. For a single flicker component mean of S

should be unity, while it is expected to be two for two flicker components selected from
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Table 2.1 [2]. The error rates for both the digital realization of the IEC flickermeter and the

proposed method are given together with the mean S values in Table 3.1. It is observed that

the proposed method generated instantaneous flicker sensation values with an error rate

less than or equal to 0.04% in all cases and that is 0.099% for the digital realisation of the

IEC flickermeter. The average error rate is obtained as 0.021% for the proposed method,

while it is 0.045% for digital realisation of the IEC flickermeter for first five cases

experimented in Table 3.1. From the S values computed by both the IEC flickermeter and

the proposed method for a period of 10 minutes, flicker severity, Ps, has also been

Table 3.1. Mean of flicker sensation (S) values obtained by the proposed method using
signal RMS values and by the IEC flickermeter using voltage waveform

Mean (S)/
Flicker Frequency Mean (S) Error (%) Mean(S)/ Pst Digital p
Components and Expected Digital Error (%) Realisation of Pro gsed
Corresponding Vpalue Realisation Proposed the IEC M eQ[hOd
Amplitudes of the IEC Method flickermeter
flickermeter
fr; =3.5Hz, 0.9010/ 1.0044/
AV = 0.568 10 | 00990 0.0044 GEg | 0ot
fr;=8.8Hz, 1.0073/ 0.9906/
AV = 0.25 10 0.0073 0.0094 0.7041 ) 07140
fr1=15Hz, 0.9921/ 0.9606/
AV = 0.432 Lo 0.0079 0.0394 Oty | Bkl
fr;=3.5Hz,
AV; = 0.568 1.9079/ 1.9897/
f,=8.8Hz, 2.0 0.0461 0.0103 0.9180 | 0.9300
AV, = 0.25
fr,=8.8Hz,
AV, = 0.25 1.9812/ 1.9592/
f,=16Hz, = 0.0094 0.0408 0010 S 0-6910
AV, = 0.48
fr,=8.8Hz,
AV; = 2x0.25
b =16Hz 7.9242 7.8370 1.550 1.4490
AV, = 2x0.480
fr;=3.5Hz,
AI? =8%EI68x2
»=8.8Hz,
AV, = 0.250 X 2 13.8959 13.86 1.6950 1.7733
fr,=14Hz

AV, = 0.388x3
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computed using Block-5 of the IEC flickermeter. The results are given in the last two
columns of Table 3.1. It is observed that the proposed method also provides flicker
severities very close to those generated by the IEC flickermeter. Hence, it can be concluded
that the proposed method can successfully generate both flicker sensation and flicker

severity from the half-cycle RMS values of a voltage waveform.

3.1.2. Verification of the proposed method using field data

For the verification using field data, a three-phase voltage waveform, sampled at a
frequency of 3.2 kHz, collected from a transformer substation supplying one of the major
electric arc furnace (EAF) installations of the country using the power quality monitoring
systems developed through the National Power Quality Project of Turkey [16-17], has been
used. RMS values computed every half-cycle from the voltage waveform are shown in
Figure 3.2 for the three-phase 10-min voltage waveforms. The data is from the boring
phase of the electric arc furnace operation; therefore, voltage waveform is dramatically
time-varying as observed from Figure 3.3 Instantaneous flicker sensation, S, is computed
by both the digital realization of the IEC flickermeter and the proposed method, for the 10-
min measurement period and the mean values of S are compared in Table 3.2. S values for
the 10-min period are also shown in Figure 3.3 to compare the responses of the IEC
flickermeter and the proposed method. Flicker severity (Pst) values are also obtained from
the 10-min S and the results are given in Table 3.3 for all three phases of the power system
separately. It has been shown that the proposed method gives very close mean flicker
sensation (S) and flicker severity (Pst) results with that of the mean values of the flicker
sensation. The difference between the results obtained by the digital realisation of the IEC
flickermeter and the proposed method is computed as the percentage of the value computed
by the IEC flickermeter table given in [2] As given in the third and the sixth columns of
Table 3.2, percentage differences are negligibly small, i.e. less than 0.01% for the mean of
S and 0.4% for the Py values.

Although flicker severity denoted by Ps is defined for only the 10-min measurement
period, flicker severity can also be obtained out of instantaneous flicker sensation, S, values
computed for 1-min, 5-min, and 15-min period according to the IEC Standard 61000-4-15
[2]. The comparison of the proposed method and the digital realisation of the IEC

flickermeter is given in Table 3.3 for the 1-min flicker severity outputs. It can be concluded
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from both Table 3.2 and Table 3.3 that the proposed method provides results very close to

the IEC flickermeter results.
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Figure 3.2. Half-cycle RMS of the three-phase voltage waveforms obtained from a
transformer substation supplying an EAF plant, a Phase-A, b) Phase-B, c)
Phase-C
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Table 3.2. Mean of instantaneous flicker sensation, S, values and the flicker severity, Pst,
obtained by the standard IEC flickermeter and the proposed method (PM) from
field data (10-min voltages obtained at a transformer substation supplying an

EAF plant)

Mean (S) Difference Pst Difference,
gc | Men® %) EC | o3| o) (EC&
flickermeter (IEC& PM) | flickermeter PM)
Phase A 72.85 72.78 0.0014 12.63 12.41 0.1352
Phase B 73.41 73.79 0.0071 11.36 11.54 0.1456
Phase C 71.36 71.84 0.0093 12.27 12.87 0.3965

Table 3.3. Comparison of the flicker severities obtained by the IEC flickermeter and the

proposed method (PM)

Measurement Period (min) | Flicker Severity IEC flickermeter | Flicker Severity PM
(0-1) 15.93 15.54
(1-2) 10.06 9.84
(2-3) 11.80 11.45
(3-4) 16.34 16.86
(4-5) 10.25 10.21
(5-6) 3.53 3.53
(6-7) 2.76 2.71
(7-8) 3.02 2.99
(8-9) 3.79 3.79
(9-10) 1.82 1.85
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3.2. Results and Discussion on Real Time Detection of Harmonics and
Interharmonics

In order to compare the results of MSRF+ES with those of the MSRF+KF, the outputs of

the two filters for the same input positive-sequence d component of the fundamental
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Figure 3.4. Block diagram of the GPU-accelarated MSRF+ES method implemented on
NVDIA Geforce GTX 960 graphics card

frequency is shown for a period of 45s in Figure 3.5 It can be concluded that for the whole
measurement period, ES is preceding the KF output by a period of approximately 47=3ms.
The same observation has been also obtained for the negative-sequence d component and
the positive- and negative-sequence g components. This situation increases the accuracy of
both the amplitude and the phase estimations of all frequency components for MSRF+ES
application.
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The proposed MSRF+ES method to obtain the time-varying harmonics and interharmonics
of the EAF currents is implemented on the GPU framework of a laptop computer. The
three-phase EAF current waveform samples are obtained by the PQ analyzers developed

through the National Power Quality Project of Turkey [56]. The 25.6kHz-sampled current

200

150

100

Topt (MS)

50

40 45 50 55 60 75 95 100 105 150 250 350
Harmonics and Interharmonics

Figure 3.5. The optimum orders (Topt(f)) of MSRF+ES analysis obtained as the solution of
the optimization problem defined in (2.20) for the most typical EAF boring
phase harmonics and interharmonics

waveforms are then used to obtain the fundamental frequency component, harmonics up to
50th harmonic and all interharmonics at the integer multiples of 5Hz resolution as
recommended in [56]. The use of GPU lets the parallel processing of all interharmonics and
harmonics, significantly reducing the data processing duration and making the analysis
real-time. The processing durations of one-min three-phase EAF current data per frequency
component is given in Table 3.4. The comparison in Table 3.4 is achieved for the three
cases, application of MSRF+ES without GPU, MSRF+KF without GPU, and finally
MSRF+ES implemented on NVIDIA Geforce GTX 960 graphics card (with GPU). In
Table 3.4, processing duration per data sample is also provided. For the sampling rate of
25.6kHz, the time between two subsequent samples is 39us, therefore, if the processing
time per sample is less than 39us, for all the harmonics and interharmonics, then it can be
concluded that real-time operation is possible. Also note that, durations in Table 3.4 are per
frequency component, hence the processing durations will be directly multiplied by the

number of frequency components to be estimated, for the cases without GPU. According to
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the execution flow in Figure 3.4 for the case of GPU use, it has been shown that the total
processing duration of one-min data of the fundamental, harmonics and interharmonics up
to 50th harmonics, is reduced to 2.5 s, which makes real-time operation of harmonics and

interharmonics analysis serve the needs of any active power filtering application. However,

Table 3.4. Processing times of one-min EAF current data for MSRF+ES, and MSRF+KF
on CPU, and MSRF+ES implemented on NVIDIA geforce GTX 960 graphics
card (GPU)

MSRF+ES | MSRF+KF MSRF+ES
(no GPU) (no GPU) (with GPU)

45s 758 1.5s

Time to process one-min data for a single
frequency component
Time to process one-min data for a single

frequency component per sample 48.07 ps 480.76 s 0.9615 ps
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Figure 3.6. Positive sequence d component for the fundamental frequency together with its
DC component obtained by Kalman Filter and ES

for MSRF+KF and MSRF+ES without using GPU, the processing durations, which are
determined as the number of frequency components to be analyzed multiplied by the
processing durations shown in Table 3.4, are obviously not suitable for real-time operation.
To compare the estimation accuracy of both the phases and amplitudes of the fundamental

frequency component and all harmonics and interharmonics, the current waveform is
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reconstructed out of its MSRF+ES estimated components with optimal orders
(fundamental, harmonics at 2nd and odd ones up to 30th, and interharmonics with 5 Hz
resolution up to 150Hz). The result is shown together with the original waveform in Figure
3.6 for the phase-A current of the EAF.

- QOriginal Current waveform
400 |- - Reconstructed Current waveform

Current (A)
=
o o

<100
-200 ‘ ) J
-300 |- \ Y

] 1

24.62 24.64 24.66 24.68 24.7 2472
Time (s)

Figure 3.7. Comparison of the original EAF current with the reconstructed EAF current
waveform, constructed by summing up the estimated frequency components
with MSRF+ES method (fundamental, harmonics at 2nd and odd ones up to
30th, and interharmonics with 5 Hz resolution up to 150Hz)

Moreover, in order to observe the performance of any possible APF application, some
frequency components estimated through MSRF+ES with the optimal ES orders are
subtracted directly from the original current waveform. In Figure 3.7 (a), the estimated time
domain components at 100Hz, 105Hz, and 95Hz are subtracted from the original current
waveform and their 10-cycle DFT’s are compared around 100Hz. It is observed that the
proposed MSRF+ES method is good at eliminating the second harmonic subgroup defined
in [56]. For the elimination of the interharmonics around the fundamental, which are
usually high and rapidly fluctuating for the EAF currents, the interharmonic components at
30Hz, 55Hz, 60Hz, and 65 Hz are subtracted from the original waveform and the
comparison of the 10-cycle DFT with the original waveform spectrum is given in Figure
3.7 (b). Note that the selected interharmonic components are those with the highest
amplitudes around the fundamental. It is observed that the proposed method is successful at

estimating the interharmonic amplitudes and phases accurately as observed in Figure 3.7

(b).
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Figure 3.8. Comparison of the DFT spectrums of the original current Phase-A current
waveform of 10 cycles (blue) and (a) that of waveform from which the
components at 95Hz, 100Hz, and 105Hz obtained by MSRF+ES with optimal
ES orders are subtracted (red); (b) that of waveform from which the
components at 30Hz, 55Hz, 60Hz, and 65Hz obtained by MSRF+ES with
optimal ES orders are subtracted (red), to simulate an APF operation

3.3. Results for Classification of PQ Events

During the train procedure of the MLCNN, 85% of the event data is used. In order to
determine the number of epochs needed for accurate classification, accuracy and loss
functions of the DIGITS platform is used. In Figure 3.8 (a), loss and accuracy functions
versus epoch number is plotted for the train data. Learning rate is also provided by DIGITS
up to epoch number 150 as given in Figure 3.8 (b). In terms of the learning rate, it is
observed that epoch numbers 65 and 135 are critical, but increasing it more than 135 seems
to be useless. It is also observed in Figure 3.8 (a) that when the epoch reaches 135,

accuracy and loss remain approximately the same.

Figs. 3.9. and 3.10. show some of the classification results obtained by the trained system
based on the test data, which is 15% of the whole PQ event data. Figure 3.9 shows sample
interruption events with the classification predictions next to it. It is observed that although
the event durations of interruption is completely different in events Figure 3.9 (a) and 3.9
(b), the classifications obtained by deep learning correspond to the correct one with 99.76%
and 94.08%, respectively. Figure 3.10 shows other sample events from the test data

classified. It is observed that the proposed classification is also successful in discriminating
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dip events with different amplitudes and durations. Classification results of all the test data
are compared with the labels assigned by the human expert and it is observed that 100% of
the test data is classified correctly with the proposed deep learning-based PQ event
classification algorithm. It is interesting to note that, images of the PQ events, but not the
event waveforms themselves are used for classification. Thus, thanks to the processing
speed and high accuracy of deep learning algorithms on images, both off-line and online

classification of PQ events will be possible with the proposed PQ classification method.
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Figure 3.9. Loss and accuracy versus epoch number during the MLCNN training
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Figure 3.10. Examples of interruption event images out of the PQ event data used for test
with the predicted event types using deep learning in DIGITS platform, (a)
interruption in three phases, (b) interruption in two phases
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fast opration time of DL based algorithims, it can be concoluded that the developed

algorithim can be used to real-time and offline detection of PQ events.
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Figure 3.11. Examples of dip and swell event images out of the PQ event data used for test
with the predicted event types using deep learning in DIGITS platform, (a)
long dip in one phase, (b) dip in three phases
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4. CONCLUSION

In this section conclusions and discussions over the proposed methods described in the
previous sections are presented. The aim of this thesis is to develop tools which will
provide complementary solutions to develop a complete and smart power quality (PQ)
monitoring system. Based on the survey carried out on the current literature on PQ analysis

and commercial devices, the following needs can be listed at first sight:

(i) fast and efficient light flicker computation: Flicker severity is computed over 10-min
raw data of voltage, which is demanding in terms of both memory requirements and
data processors,

(i) real-time harmonics and interharmonics computation: In cases of highly time-varying
harmonics and interharmonics, it is important to be able to serve fast and accurate
references to the applications such as active filters for a successful compensation,

(iii) accurate PQ event classification: Automatic classification of PQ events is cruel for a

smart grid to take actions automatically after the detection of any event.

Hence, new and novel methods have been proposed to solve the above-mentioned
problems. The first method proposed is a new method for the evaluation of light flicker out
of the root-mean-square (RMS) computations of voltage waveforms instead of using the
whole 10-min raw data. According to the IEC and IEEE standards, light flicker
computation is achieved on the raw data of the voltage waveforms. However, in many real
world systems, since raw data storage is expensive and difficult, only RMS values of the
voltage are stored for later analysis. This thesis proposes a new method to compute light
flicker directly from RMS values of the voltage, which also comply with the IEC power
quality standard, IEC 61000-4-30. It has been shown that the developed method reveals
significantly satisfactory estimations of flicker sensation and severity values, obtained from
the RMS strings of the voltage waveforms when compared with those obtained by the
digital realization of the IEC flickermeter. It can be mentioned that this method provides an
accurate, simple, and fast solution for the flicker computation, where raw data of the
voltage waveforms are not available, but RMS values are present. The developed method is
directly based on the current form of the IEC flickermeter, which includes the response of
the incandescent lamps and the human eye response to the voltage fluctuations. Since the
proposed method uses the response tables given in the IEC standard as explained in Section
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3 of this thesis, if response to other types of lamps are included in the future versions of the
IEC flickermeter, it can easily be adopted to the new lamp responses. Hence, the proposed
method has the flexibility of considering the lamp type for any possible future versions of
the IEC flickermeter. The method can be easily adopted by smart-grid applications, where
fast and accurate flicker computation is required from RMS voltage waveforms, especially
for generating control signals for the FACTS devices.

The second part of this thesis proposes the use of exponential smoothing (ES) together with
the Multiple Synchronous Reference Frame (MSRF) analysis to estimate the EAF current
harmonics and interharmonics, which are time-varying and stochastic due to the nature of
the EAF operation. ES is a statistical technique used for detecting the data trend especially
used in economics, which has been shown in this thesis to improve the amplitude and phase
estimations of the time-varying harmonics and interharmonics, with minimized phase delay
compared to other methods used previously for low-pass filtering in MSRF analysis. In
order to achieve real-time processing of all EAF current harmonics and interharmonics to
serve the needs of the controllers of the modern compensation systems such as active
power filters (APF) for the automatic compensation of power system harmonics and
interharmonics in smart grid applications, graphical processing unit (GPU) of NVIDIA
(GEFORCE GTX 960 graphical processor) of the laptop computer is employed for the
parallel processing of all harmonics and interharmonics. It has been shown using actual
EAF current waveforms that real-time processing is possible to analyze all harmonics up to
50th and all interharmonics at 5Hz resolution. Moreover, active filtering of certain
harmonics and interharmonics has been achieved in the simulation environment and it has
been shown that successful real-time filtering of any harmonic and interharmonic
component is possible with the proposed MSRF+ES method. It has to be mentioned that
the proposed method helped to reduce the filtering delay of Kalman filter from 3ms
approximately almost 1 ms. Hence the computation time of a single sample with the
proposed method is reduced to 1lus, which gives the opportunity to make the system

operating in real-time.

Finally, in the third part of the thesis, a power quality (PQ) event classification method
using deep learning of the PQ event images is proposed. PQ events are defined as voltage
sags, swells, and interruptions in the three phases of the electricity grid. Many methods for

PQ event classification have been proposed in the literature; however, the proposed one is
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the first one using the images of the PQ events instead of the voltage data vectors. The
proposed method takes the advantage of the success of the deep-learning (DL) algorithms
on image data. Therefore, the novelty of the proposed approach is that, images of the
voltage waveforms of three phases of the power grid are classified with 100% accuracy,
instead of classifying the sampled voltage data strings of the three phases. The DIGITS DL
platform of NVIDIA is used for training and testing of the proposed method. Future work is
planned to be increasing the number of train and test data with applying an automatic
clustering algorithm for initial labeling of the train data. The proposed work is believed to
serve the needs of the future smart grid applications, which are fast and automatic analysis
of the electricity grid and taking automatic countermeasures against potential PQ events.
Thus, thanks to the processing speed and high accuracy of deep learning algorithms on
images, both off-line and online classification of PQ events will be possible with the

proposed PQ classification method.

As future work, all three proposed methods can be used to upgrade an existing PQ
monitoring system, which is developed suitable for future upgrades, such as the PQ"
monitoring system developed through the National Power Quality Project of Turkey [55],

to make it a smart-grid monitoring system of the future.
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