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TASARLANMIŞ KIRPIŞMA, HARMONİK VE ARAHARMONİK KESTİRİMİ VE 

GÜÇ KALİTESİ OLAY SINIFLANDIRMASI İÇİN VERİMLİ ALGORİTMALARIN 
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ÖZET 

Bu tezin amacı, akıllı bir güç kalitesi (GK) çözümleme sistemi oluşturmak için gerekli tamamlayıcı 

araçları geliştirmektir. Güncel bilimsel yazın ve ticari GK ölçüm cihazları incelendiğinde şu üç 

gereksinim ortaya çıkmıştır: kırpışma tespiti için hafıza ve işlem açısından verimli algoritma 

ihtiyacı, zamanda değişen harmonik ve araharmoniklerin tespiti için gerçek-zamanlı algoritmalar ve 

yüksek doğrulukta GK olay tespiti. İlk olarak, kırpışmayı tahmin etmek için, gerilim dalga 

biçiminin yerine girdi olarak gerilim dalga biçiminin kök ortalama karesini (RMS) kullanarak 

IEC'nin (Uluslararası Elektroteknik Komite) kırpışma-ölçer standardında önerilen ölçüm 

yönteminin sayısal olarak gerçekleştirilmesi sunulmaktadır. Amaç, sadece gerilim dalga formunun 

RMS değerleri mevcut olduğunda, IEC kırpışma-ölçer standardı IEC 61000-4-15'e göre titreşim 

şiddetini hesaplamaktır. Simülasyon ve saha verilerinde ortalama %0.021 hata oranıyla önerilen 

yöntemle kırpışma hesaplanabileceği gösterilmiştir. Harmoniklerinin ve araharmoniklerinin gerçek 

zamanlı tespiti konusunda, elektrik ark ocağının (EAF) zamanla değişen harmoniklerini ve ara 

harmoniklerini doğru bir şekilde elde etmek için derecesi optimize edilmiş üstel yumuşatma (ES) 

ile birlikte kullanılan çoklu senkronize referans çerçevesi (MSRF) bazlı bir analiz yöntemi 

önerilmiştir. Gerçek zamanlı çalışma için, parallel işleme yapılmış ve grafik işleme birimi (GPU) 

ile çalışılmıştır. Saha verilerinde, uygulanan sinyalin 50. harmoniğe kadar olan tüm harmonikleri ve 

araharmonikleri 5 Hz çözünürlükte gerçek zamanlı olarak başarılı bir şekilde kestirilmiş ve 

simülasyon ortamında harmoniklerin ve araharmoniklerin aktif olarak filtrelenmesi başarıyla 

gerçekleştirilmiştir. Son olarak, GK olaylarının sınıflandırılması için, derin öğrenme yaklaşımına 

dayalı yeni bir yöntem sunulmuştur. Önerilen yaklaşımın yeniliği, güç şebekesinin üç fazındaki 

gerilim dalga biçimlerinin görüntü dosyalarının sınıflandırılmasıdır. Bir yıl boyunca elektrik iletim 

sisteminin dört trafo merkezinden elde edilen PQ olayları, önerilen sınıflandırma yönteminin 

eğitimi ve test edilmesi için kullanılmış ve potansiyel PQ olaylarına karşı otomatik bir karşı önlem 

geliştirilebileceği gösterilmiştir. 
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ABSTRACT 

The aim of this thesis is to develop tools which will provide complementary solutions to develop a 

complete and smart power quality (PQ) monitoring system. Based on the survey carried out on the 

current literature on PQ analysis and commercial devices, three main problems have been defined 

and solutions have been provided: the need of memory- and operation-efficient algorithms to 

estimate flicker, online detection of harmonics and interharmonics for highly time-varying load 

cases, and accurate PQ event classification. To estimate flicker from voltage RMS waveform, a 

digital realisation of the IEC (International Electrotechnical Committee) flickermeter using root 

mean square (RMS) of the voltage waveform as its input, instead of the voltage waveform, is 

presented. The aim is to compute the flicker severity according to the IEC flickermeter standard, IEC 

61000-4-15, when only the RMS values of the voltage waveform are available. It has been shown on 

simulation and field data that short-term flicker severity can be computed by the proposed method 

with an average error rate of 0.021%. For the real-time detection of harmonics and interharmonics of 

current waveform, a multiple synchronous reference frame (MSRF) based analysis method is used 

together with order-optimized exponential smoothing (ES) to accurately obtain the time-varying 

harmonics and interharmonics of electric arc furnace (EAF) currents. Parallel processing of all 

harmonics and interharmonics are achived by graphical processing unit (GPU). It has been shown on 

field data that the implemented system is capable of successfully estimating all harmonics up to the 

50th and all interharmonics at 5 Hz resolution in real-time. Moreover, active filtering of certain 

harmonics and interharmonics has been successfully achieved in the simulation environment. 

Finally, a new method for the classification of PQ events based on deep learning (DL) approach is 

presented. Novelty of the proposed method is that, image files of the voltage waveforms of the three 

phases of the power grid are classified. PQ events obtained from four transformer substations of the 

electricity transmission system for a year are used for training and testing the proposed classification 

method. The proposed method is shown to be able to classify the PQ events collected in the field. 
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1. INTRODUCTION 

 

In this thesis, development of efficient and fast algorithms for flicker, harmonics, 

interharmonics and power quality events developed specifically for harsh conditions, such 

as the existence of intermittent loads, in the power systems is the main focus. The effort 

towards this focus in this research work can be presented under three main topics: (i) 

computation of light flicker, (ii) extraction of power system harmonics and interharmonics, 

and (iii) power quality event classification. All the analyses have been developed and tested 

on both synthetically generated voltage and current waveforms and field data collected 

from the transmission substations of the electricity transmission system of Turkey, located 

around the intermittent loads such as electric arc furnace plants. In this section, a detailed 

literature review is presented on all of the above listed three topics.  

 

Light flicker refers to quick and repeated changes in the light intensity caused by the 

amplitude fluctuations of the voltage supplying the lamp and it can be measured directly 

from the voltage waveform, as recommended by the IEC standard, IEC 61000-4-15 [2]. 

Light flicker is caused due to the low-frequency fluctuations of the voltage magnitude and 

a 10-min raw data of the voltage signal is required to obtain the short-term flicker severity 

[2], which is not always easy to achieve due to memory limitations. There are various 

approaches in the literature for the computation of light flicker [3 - 14], yet there is no 

study which directly computes the light flicker in the absence of the voltage waveform, but 

presence of its RMS form instead, except for the work reported in [8]. In [8]; however, four 

of the five blocks of the IEC flickermeter are used, but RMS computation is used to obtain 

the signal envelope instead of the first block of the IEC flickermeter [2]. The root-mean-

square (RMS) method is widely used in quantifying the effective magnitude of an 

alternating current (AC) signal. In power-quality (PQ) analysis, the RMS value of the 

voltage is used for the characterization of PQ events, such as voltage sags and swells, as 

well as for quantifying voltage or current variations [1]. Based on the PQ measurement 

standard IEC-61000-4-30 [1], RMS value of a signal is usually calculated from a half-

cycle- or a one-cycle-length window. In many PQ analysis systems and devices, RMS 

values of the voltage and current waveforms are stored instead of the raw data, for later 

analyses and evaluations, due to the fact that storage of the raw data is not practical and is 

extremely expensive.  
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The main concern of the research work presented in the first part of this thesis is 

developing a method, which can measure the light flicker from the RMS values of the 

voltage, instead of the voltage waveform itself. Such a case can occur, for example, when 

flicker analysis is required on previously recorded RMS voltage waveforms, but there exist 

no sampled voltage data. The proposed method in this thesis provides a solution to this 

problem by analyzing the RMS values of a voltage waveform in terms of its flicker 

frequency components.  

 

The second main topic of this thesis, which is the detection of the harmonics and 

interharmonics of the power system has been a hot and challenging topic of research, 

especially when the current and voltage waveforms are non-stationary with time-varying 

components as in the case of an Electric Arc Furnac (EAF) [21-45]. [21] provides 

classification and comparison of various time-varying harmonics and interharmonics 

detection methods existing in the literature by 2014. In [21], among short-time Fourier 

Transform (STFT), ESPRIT- and Prony-based methods, ADALINE-based methods, 

Kalman filtering, PLL-based methods, and artificial neural network (ANN)-based methods, 

only ANN- and Kalman-based methods are claimed to be suitable for real-time 

applications, under certain conditions such as similar type of loads, and etc. In [29], Pony’s 

method is used to extract exact frequency of voltage variations because measuring accurate 

frequencies is undeniable when the extracting of voltage characterization comes into 

account. The use of PLLs for harmonics and interharmonics detection has been studied in 

[36- 39], while Kalman-based methods have been proposed in [40]. In the recent years 

multiple synchronous reference frame (MSRF)-based methods have been popular [24] and 

[41-56], due to the fact that MSRF provides time-domain waveform for each harmonic and 

interharmonic frequency; however, the need for low-pass filtering in the MSRF analysis is 

the bottle-neck of the method in terms of processing-time. In order to minimize the time for 

the low-pass filtering (LPF) in the MSRF analysis, Kalman filtering has been proposed and 

applied in [24], and it has been shown that LPF delay is reduced significantly; however, 

Kalman filtering (KF) provides estimations with variable delays depending on the data 

statistics. The use of graphical processing units (GPU) has been considered in [45] to make 

the MSRF analysis with KF method real-time. With the use of GPU, parallel processing of 

all harmonics and interharmonics have been shown to be possible [45].  GPUs have been 

widely used in different areas, especially in image processing applications, but they have 

also been popular recently in the power electronics and power systems area [45-48].  
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Electric Arc Furnaces (EAF) are one of the most interesting harmonic and interharmonic 

generators of the electric grids with highly stochastic nature of operation and the resulting 

currents with time-varying harmonics and interharmonics. EAF currents are rich in 

interharmonics between the fundamental and the second harmonic resulting in seriously 

distorted point of common coupling (PCC) voltages also with flicker, from which EAF 

plants are supplied [17-19]. In order to improve the quality of power at the PCC, time-

varying EAF current harmonics and interharmonics have to be analyzed fast and accurately 

so that reference signals are supplied to the controllers of the advanced technology 

compensation systems such as active power filters (APF), synchronous static compensators 

(STATCOM) and energy storage systems (ESS) [20]. 

 

The second aim of the research work presented in this thesis is to detect of harmonics and 

interharmonics in real-time. An MSRF-based method is proposed together with 

Exponential Smoothing (ES) as the LPF on a GPU framework for the real-time analysis of 

time-varying harmonics and interharmonics of current waveforms obtained from an EAF 

plant supplied from the electricity transmission system. ES has been especially proposed 

for prediction of direct current (DC) level component of market trends in economics [49-

53]. Recently, it has also been used for information technology applications and load 

forecasting in power grids [49]. In this thesis, ES has been used in the MSRF analysis for 

the low-pass filtering, which is the bottle neck of the processing time for harmonics and 

interharmonics analysis. ES is used to low-pass filter the positive- and negative-sequences 

of both d and q components of three-phase harmonic and interharmonic voltage and current 

components. Order of ES application has been optimized for each frequency component so 

that amplitude estimation for each frequency component is maximized while minimizing 

the erroneous and unexpected component amplitudes in the computation. ES with 

optimized order has been shown to provide accurate harmonic and interharmonic estimates 

with less delay than the use of KF with MSRF, hence resulting in more accurate amplitude 

and phase estimates of the frequency components. Implementation of the proposed 

MSRF+ES algorithm for each frequency component in parallel on an NVDIA Geforce 

GTX 960 graphics card has led real-time analysis of actual EAF currents obtained from the 

field. The preference of the use of GPUs for parallel processing analysis instead of FPGAs 

is that, not only the GPUs are cheaper but also thanks to a lot of memory access, they are 

capable of handling high-level languages such as CUDA and C++. On the other hand, less 
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level of complexity is needed for GPU programming compared to FPGAs. Finally, It is 

easy to update a task on GPU based system since in FPGA based system the hardware 

update will be required which is costly [53]. 

 

The third and the final aim of this thesis is to classify PQ events, such as voltage sags, 

swells or interruptions. While PQ is defined as the wellbeing of electrical power for 

consumer devices by the IEC Standard 61000-4-30 [1], PQ event is defined as the deviation 

of PQ out of a predefined tolerance band. The reason that makes PQ events to be taken into 

consideration seriously is that they can be the possible reasons of malfunctioning of the 

electrical equipment in the system or they can even lead to brownouts or blackouts in the 

electricity system. By means of a long-term monitoring of PQ in any electricity grid, at one 

of its generation, transmission or distribution level, huge amount of PQ event data will be 

available for studying the system characteristics or taking countermeasures to improve the 

quality of power. Therefore, PQ event data, collected according to the harmonic standard 

IEC 61000-4-7 [54], should be clustered and classified to comprehend and improve the PQ 

in an electricity grid.  

 

For the purpose of analyzing PQ event data, significant amount of effort is reported in the 

literature [55-66]. In [57], classification of harmonics by using k-means clustering and 

Support Vector Machine (SVM) algorithm is proposed. Automatic PQ event data clustering 

based on eigenanalysis followed by k-means clustering is achieved in [58]. Using k-means 

together with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) 

and Singular Value Decomposition (SVD) for the clustering of PQ events are compared in 

[59]. An expert system, which is able to classify voltage dips and interruptions, is proposed 

in [62]. An automatic classification, whose policy is to apply empirical-mode 

decomposition and Hilbert transform on PQ Events, is reported in [63]. [64] has done PQ 

assessment with the application of two empirical mode decomposition based de-noising 

techniques in cases of noisy event data. [66] uses Stockwell’s transform and NN-based 

classifier to detect multiple PQ disturbances following each other. 

 

In the final part of the research work presented in this thesis, deep learning, which is a 

powerful classifier in cases of huge data for train, is employed for PQ event data analysis. 

In contrast with the existing PQ event data analysis techniques, sampled voltage data of the 

PQ events are not used, but image files of the PQ events are analyzed by taking the 

http://en.wikipedia.org/wiki/Consumer
http://en.wikipedia.org/wiki/Device
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advantage of the success of the deep leaning approach on image-file-classification. 

Therefore, the novelty of the proposed approach is that, images of the voltage waveforms 

of three phases of the power grid are classified with almost 100% accuracy, instead of 

classifying the sampled voltage data strings of the three phases [65].  

 

There exists a large amount of deep learning publications in other research areas, e.g. 

computer vision/image processing area, which can be applicable for PQ event 

classification. Deep learning methods, in some areas, have already exceeded human 

performance, e.g., playing the game of Alpha Go without human intervention [69]. CNNs, 

recurrent neural networks (RNNs), and recurrent convolutional networks (RCNs) have 

been successfully employed in automatic image/video feature learning, e.g., in face 

recognition from images [70], handwritten digit recognition from images [68], human fall 

detection and human activity classification [71] from videos. These deep learning methods 

enable automatic feature learning for the dedicated signals when big data is available. The 

successful research in these areas inspired us to develop dedicated deep learning methods 

for automatic feature learning of PQ events and subsequently use them for PQ event 

classification. 

 

In summary, this thesis consists of three parts presenting novel and efficient methods for 

light flicker evaluation, online power system harmonics and interharmonics detection and 

PQ event classification. All the methods developed have been shown to overperform 

compared to the methods in the literature in terms of computational complexity and being 

suitable for real-time applications. In Chapter 2 of the thesis, methodologies developed for 

all three aims are explained in subsections. In Chapter 3, results are provided and discussed 

for all three methods on both synthetically generated and field data obtained from the 

electricity transmission system of Turkey. Finally Chapter 4 provides the conclusions.  
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2. METHODOLOGY  

 

In this chapter, the methods used to develop the proposed algorithms are discussed under 

three subsections. The first subsection will present the developed method to estimate the 

flicker according to IEC flickermeter method from true RMS values of the voltage 

waveform. Then the second subsection addresses the methodologies developed for real 

time detection of harmonics and interharmonics out of EAF current waveforms to generate 

reference signals for possible active power filter applications of highly time-varying power 

signals. In the third subsection, the developed deep learning based method for classification 

of PQ events are presented.  

 

2.1. Method Developed for Flickermeter  

 

In this subsection, the methodology developed to estimate the flicker from rms values is 

described.  

 

2.1.1. Expressing the instantaneous flicker sensation in terms of voltage RMS values 

 

As the IEC standard proposes [2], the flicker-causing fluctuation of the voltage can be 

modelled as an amplitude modulated (AM) signal, where the power system frequency (50 

or 60 Hz) is the carrier frequency and the flicker frequency is the message frequency as 

given in (2.1), 

 

𝑣(𝑡) = 𝑉 sin(2π𝑓𝑡) {1 +
1

2

∆𝑉

𝑉
sin(2π𝑓𝑓𝑡 + ∅)},                                                                  (2.1) 

                                                                                

where ff is the frequency of the flicker, f is the fundamental frequency of the power system, 

which can be 50 or 60Hz, V is the amplitude of the fundamental component, ∆𝑉 is the 

amplitude of the flicker component, and ∅ is its phase. In cases when the voltage signal 

caries several flicker components, in other words, if the voltage envelope varies in a more 

complicated manner including more than one frequency component, v(t) can be expressed 

in a more general form as given in (2.2), 
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𝑣(𝑡) = 𝑉 sin(2πft) {1 +∑
1

2

∆𝑉𝑖
𝑉
sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)

𝑁

𝑖=1

}.                                                          (2.2) 

  

In (2.2), N is the number of flicker frequency components forming the envelope of the 

signal, 𝑓𝑓𝑖are the flicker frequencies, and ∅𝑖are the corresponding phases.  

 

Now the RMS value of the voltage waveform in (2.2) can be evaluated. The most popular 

formula for RMS computation of a continuous voltage waveform, v(t), is given in (2.3), 

 

𝑉𝑅𝑀𝑆 = (
1

𝑇
∫ 𝑣(𝑡)2
𝑇

0

)

1/2

,                                                                                                              (2.3) 

 

where T is the period of the fundamental component of the voltage waveform. Now if half-

cycle RMS of v(t) in (2.2) is computed as recommended in [1], the expression in (2.4), 

 

𝑉𝑅𝑀𝑆 = √
2

𝑇
∫ {𝑉 sin(2πft) +

1

2
sin(2πft)∑∆𝑉𝑖 sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)

𝑁

𝑖=1

}

2

⏟                                  
𝐴

𝑇/2

0

𝑑𝑡  ,                 (2.4) 

 

is obtained. T in (2.5) is ideally 20 ms for the power system frequency at exactly 50Hz. 

Evaluating the square inside the integral, denoted by A in (4), yields the expression in (2.5), 

𝐴

=

{
 
 

 
 𝑉2sin2(2πft) +

1

4
sin2(2πft)∑∆𝑉𝑖 sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)∑∆𝑉𝑗 sin (2π𝑓𝑓𝑗𝑡 + ∅𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+ 𝑉sin2(2πft)∑∆𝑉𝑖 sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)

𝑁

𝑖=1 }
 
 

 
 

(2.5) 

 

Taking the square of the both sides of the equation in (2.4) and then taking the first term 

inside the integral to the left side of the equation, (2.6) is obtained as                   
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𝑉𝑅𝑀𝑆
2 −

2

𝑇
∫  𝑉2𝑠𝑖𝑛2(2πft)𝑑𝑡

𝑇

2

0⏟              
𝐵

   

=  
1

2𝑇
∫ sin2(2πft)∑∆𝑉𝑖 sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)∑∆𝑉𝑗 sin(2π𝑓𝑓𝑖𝑡 + ∅𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

𝑇/2

0⏟                                          
𝐶

𝑑𝑡 

                           +
2

𝑇
∫ 𝑉 sin2(2πft) ∑∆𝑉𝑗 sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)𝑑𝑡  

𝑁

𝑗=1

𝑇/2

0⏟                                
𝐷

.                                   (2.6) 

 

 In (2.6), square of VRMS is the square of the true RMS of the voltage waveform and it can 

be obtained from the voltage waveform directly by computing the half-cycle RMS. The 

second term, B, on the left side of (2.6) can be computed by calculating the square of the 

mean of all VRMS values over the voltage data for which flicker is to be evaluated. That is 

because B is expected to be constant over all data for all half-cycle windows, being the 

square of the RMS value of only the fundamental component evaluated at exactly its half 

period. Therefore, it can be considered as the mean value of the square of the RMS of the 

voltage signal with no fluctuations. Hence, left-hand-side of (2.6) can be expressed as a 

function of VRMS, and can be called as F(VRMS).  

 

In (2.6), C can be considered to be negligibly small with respect to D since the amplitude of 

C is scaled by the multiplication of ∆𝑉𝑖 and ∆𝑉𝑗, while D is scaled by the multiplication of 

V and ∆𝑉𝑖. Being the amplitude of the flicker components of the voltage waveform, ∆𝑉𝑖 is 

expected to be much smaller than the amplitude of the fundamental, V.  Hence, (2.6) can be 

approximately expressed as given in (2.7) 

 

𝐹(𝑉𝑅𝑀𝑆) ≅  
2

𝑇
∫V sin2(2πft)∑∆𝑉𝑖 sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)𝑑𝑡

𝑁

𝑖=1

𝑇

2

0

.                                                  (2.7) 

                 

Evaluating the right-hand side of (2.7), by using the expansion of the sine square, the 

expression in (2.8),   
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𝐹(𝑉𝑅𝑀𝑆) ≅   
1 

𝑇

{
 
 

 
 

∫ ∑𝑉∆𝑉𝑖 sin(2π𝑓𝑓𝑖𝑡 + ∅1)𝑑𝑡

𝑁

𝑖=1

𝑇

2

0

− ∫ ∑𝑉∆𝑉𝑖 cos(4πft) sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)

𝑁

𝑖=1

𝑑𝑡

𝑇

2

0⏟                          
𝐸 }

 
 

 
 

,                                        (2.8) 

              

is obtained. E in (2.8) yields two sine components with frequencies 2f+ffi and 2f-ffi and 

integration of those sine components at an interval, which corresponds to the half-cycle of 

the fundamental frequency, results in values close to zero, since flicker frequencies ffi are 

much smaller than 2f. Since the expansion of E in (2.8) is rewritten as in (2.9),  

 

𝐸 =
1

2
(∫ ∑𝑉∆𝑉𝑖sin (4πft + 2π𝑓𝑓𝑖𝑡 + ∅𝑖)

𝑁

𝑖=1

𝑑𝑡
𝑇/2

0

−∫ ∑𝑉∆𝑉𝑖sin (4πft − 2π𝑓𝑓𝑖𝑡 − ∅𝑖)

𝑁

𝑖=1

𝑑𝑡
𝑇/2

0

).                                        (2.9) 

 

Hence, (8) can be approximated as given in (10), 

 

𝐹(𝑉𝑅𝑀𝑆) ≅
1 

𝑇
∫ ∑𝑉∆𝑉𝑖 sin(2π𝑓𝑓𝑖𝑡 + ∅𝑖)

𝑁

𝑖=1

 

𝑇

2

0

𝑑𝑡.                                                                (2.10)  

 

The expression in (2.10) is the basis of the flicker computation method proposed in this 

research work. F(VRMS) is expressed as in (2.11), 

 

𝐹(𝑉𝑅𝑀𝑆) =  𝑉𝑅𝑀𝑆
2 −

2

𝑇
∫ 𝑉2sin2(2πft)𝑑𝑡

𝑇

2

0

,                                                                        (2.11) 

 

and it can be computed directly from the voltage waveform, if it exists, or it can be 

computed from the half-cycle RMS values of the voltage signal. As to the right-hand side 

of (2.10), since the integration period, T/2, is much smaller than the period of the flicker 

frequency components, ffi, integration will yield the same frequency components, ffi, with 
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an approximate scaling factor of T/2, which is illustrated in Figure 2.1. In Figure 2.1, the 

sine wave represents one of the flicker frequency components and the integration periods 

are illustrated by T/2, which corresponds to the half the fundamental period. The 

integration over very small intervals with respect to the period of the signal will result in 

values, which will oscillate with the same frequency of the flicker frequency component. 

Integration will approximately yield the value of the signal sample at the mid point of the 

integration period scaled by T/2. Hence, obtaining the Discrete Fourier Transform (DFT) of 

F (VRMS), computed from the voltage waveform or its RMS values, flicker frequency 

components, ffi, and the corresponding amplitudes, ∆𝑉𝑖, can be obtained.  

 

To illustrate the proposed flicker frequency determination method, a synthetic signal with 

three flicker frequency components at 3.5Hz, 10Hz and 15Hz has been generated, as given 

in (2.12),  

 

𝑣(t) = sin(2π𝑓𝑡) {1 + (
1

2
) 0.045sin(2π3.5𝑡) + (

1

2
) 0.020sin(2π10𝑡) +

              (
1

2
) 0.010sin(2π15𝑡)} ,                                                                                                (2.12)   

 

 
Figure 2.1. A sample sine wave component at any flicker frequency, ffi, with the integration 

intervals, T/2, equal to half the period of the fundamental frequency. Integration 

will approximately yield the value of the signal sample at the mid point of the 

integration period scaled by T/2 



12 

where, f denotes the fundamental frequency, which is 50Hz. The amplitudes of the flicker 

frequency components have been selected to be 1%, 2%, and 4.5% of the fundamental 

component, respectively, which are common ratios for a real-life voltage signal [7]. 

F(VRMS) in (2.11) has been computed for the generated waveform v(t) in (2.12) and the 

amplitude of its DFT is shown in Figure 2.2, which shows that the flicker frequency 

components can be determined by detecting the components with amplitudes higher than a 

threshold. The other components with negligibly small amplitudes around 5Hz, 6Hz, 11Hz, 

and 13Hz correspond to the components neglected in (2.6).  The neglected term C in (2.6), 

includes frequency components at the summations and differences of individual frequency 

components. Therefore, the synthetic signal in (2.12), is expected to have frequency 

components at 13.5Hz, 6.5Hz, 11.5Hz, 18.5Hz, 5Hz, and 25Hz with negligibly small 

amplitudes, which is observed in Figure 2.2. 

 

 
 

Figure 2.2. Amplitudes of the flicker frequency components (∆𝑉𝑖) versus the 

corresponding flicker frequencies, ffi, using the proposed flicker frequency 

decomposition method for the voltage waveform generated using (12) 

 

2.1.2. Computation of the instantaneous flicker sensation values 

 

The IEC flickermeter response for sinusoidal fluctuations with flicker frequencies and 

∆V/V amplitude ratios for the signal model given in (2.1), which result in unity 

instantaneous flicker sensation (S = 1) are listed for 230 V/ 50 Hz systems in Table 2.1 [2]. 
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Instantaneous flicker sensation, S, is a measure of the sensation of human beings of the 

voltage fluctuation effect on an incandescent lamp and it is the output of the Block-4 of the 

IEC flickermeter, which is given in [2]. When S = 1, it means that at least 50% of the 

human beings realize the fluctuation of the voltage [2].  

 

It has been shown in a previous work in [7] that S is approximately equal to the summation 

of the flicker-causing effects of the individual flicker frequency components, ffi in (2.2), as 

given in (2.13). Contribution of each flicker frequency to S, which is represented here by Si, 

can be attained by comparing the square of the ∆𝑉/V values obtained from the voltage 

waveform to the ∆𝑉/V values obtained from Table 2.1, denoted by (∆𝑉/V) IEC, for each 

flicker frequency. ∆𝑉i is obtained from the Fourier Transform amplitudes of the signal in 

(2.10) and V can be obtained from mean of calculated RMS value of the signal.  

 

𝑆𝑖 =
(
∆𝑉𝑖

𝑉⁄ )
2

((
∆𝑉𝑖

𝑉⁄ )
𝐼𝐸𝐶
)2
                                                                                                                     (2.13) 

 

The instantaneous flicker sensation, S, is obtained as the summation of all Si, 𝑆 =  ∑𝑆𝑖, for 

which ffi varies from 0.5 to 25.0 Hz with 0.5 Hz increments when the FFT window size is 

100 cycles of the fundamental period (2-s), and hence the frequency resolution of the DFT 

is 0.5Hz. This method inherently includes both the effect of the human eye sensitivity and 

the effect of the incandescent lamp sensitivity to voltage fluctuations, which is realized in 

the third block of the IEC flickermeter, because the denominator of (2.13) contains the 

voltage fluctuation level which causes average flicker sensitivity equal to unity at the 

output of Block-4 of the IEC flickermeter [7]. 

 

2.1.3. The proposed method for flicker severity computation  

 

The block diagram of the proposed flicker severity computation method using RMS values 

of the voltage waveform is illustrated in Figure 2.3 (a). Block-A in Figure 2.3 (a) illustrates 

the computation of the decomposition of the flicker frequency components using the RMS 

values of the voltage waveform, explained in detail in Section 2. Block-B represents the 

computation of the instantaneous flicker sensation values, S, from the decomposed flicker 

frequency components. The third and the final block is the statistical analysis block, which 
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is the same as Block-5 of the IEC flickermeter given in 2]. The third block in Figure 2.3 (a) 

analyses the instantaneous flicker sensation values, S, for a 10-min period to provide the 

short-term flicker severity, Pst. Details of the instantaneous flicker sensation computation 

inside Block-A and Block-B in Figure 2.3 (a) is illustrated in Figure 2.3 (b). Each frame in 

Figure 2.3 (b), includes squares of the half-cycle RMS values, from which mean square of 

the RMS values inside that frame are subtracted. Frames include 200 values, which means 

2-s data (i.e. 200 half-cycle values make 100 values per second for a 50Hz system). Hence 

the DFT resolution for 2-s frames corresponds to a frequency resolution of 0.5Hz. Then 

from each DFT frame, flicker frequencies, ffi, and the corresponding amplitudes, ∆Vi, are 

obtained using the method described in subsection 2.1.2 and an instantaneous flicker 

sensation value, S, is then obtained for each frame as detailed in subsection 2.1.3. Frames 

are shifted by two half-cycle-RMS samples, which correspond to S being obtained every 

cycle of the fundamental frequency. This is consistent with the requirement of the 

flickermeter standard that input for Block-5, which is the instantaneous flicker sensation S, 

should be sampled by at least 50Hz [2]. Once S is obtained, Block-5 of the IEC 

flickermeter is used to obtain short-term flicker severity, Pst, from 50x600 S samples, 

which correspond to the short-term flicker severity computation period of 10 minutes.   

 

Table 2.1. Normalised flickermeter response for sinusoidal voltage fluctuations, 230 

V/50Hz systems, which result in unity instantaneous flicker sensation, S – IEC 

standard 61000-4-15 [2] 
 

Hz ∆𝑉

𝑉
 , % Hz ∆𝑉

𝑉
,  % Hz ∆𝑉

𝑉
, % Hz ∆𝑉

𝑉
, % 

0.5 2.340 5.0 0.398 10.0 0.260 17.0 0.530 

1.0 1.432 5.5 0.360 10.5 0.270 18.0 0.584 

1.5 1.080 6.0 0.328 11.0 0.282 19.0 0.640 

2.0 0.882 6.5 0.300 11.5 0.296 20.0 0.700 

2.5 0.754 7.0 0.280 12.0 0.312 21.0 0.760 

3.0 0.654 7.5 0.266 13.0 0.348 22.0 0.824 

3.5 0.568 8.0 0.256 14.0 0.388 23.0 0.890 

4.0 0.500 8.8 0.250 15.0 0.432 24.0 0.962 

4.5 0.446 9.5 0.254 16.0 0.480 25.0 1.042 

 

2.2. Methods Developed for Harmonics and Interharmonics Estimation in Real-Time 

 

In this subsection methods developed to extract real harmonics and interharmonics in real-

time are explained. Application of the Multiple Synchronous Reference Frame (MSRF) 
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analysis with Exponential Smoothing (ES) and obtaining the best order of exponential 

smoothing specific to each harmonic and interharmonic component are presented in this 

section. 

 

2.2.1. MSRF+exponential smoothing method for the fundamental, harmonic and 

interharmonic analysis  

 

MSRF analysis is used to obtain both positive- and negative-sequences of d, q, and zero 

components of all harmonics and interharmonics. Note that, since the EAF transformer is a 

Δ/Δ connected transformer, EAF currents obtained from the MP in Figure 2.3 (a) are 

balanced but asymmetrical due to the nature of the EAF operation [25]. Hence, the zero 

sequence components are zero for 99.9% of the operation time, therefore in this analysis 

zero sequences are equated to zero to compensate any measurement errors. After obtaining 

the direct current (DC) components of the positive- and negative sequences of the d and q 

components, they are transformed back to the phase current components so that one of the 

fundamental, harmonics, and the interharmonics is obtained. The DC components of the 

positive and negative-sequences of d and q components carry on both the amplitude and 

phase information of all three phases of the EAF current, corresponding to the selected 

frequency component. Starting with the three-phase EAF currents with the fundamental, 

and all possible harmonic and interharmonic components, three-phase current waveforms 

are as given in (2.14),  

 

𝑖𝐴(𝑡) =∑𝐴𝑖 sin(2𝜋𝑓𝑖𝑡 + 𝛷𝐴𝑖)

𝑁

𝑖=0

 

𝑖𝐵(𝑡) =∑𝐵𝑖sin (2𝜋𝑓𝑖𝑡 + 𝛷𝐵𝑖)

𝑁

𝑖=0

                                                                                                           

𝑖𝐶(𝑡) =∑𝐶𝑖 sin(2𝜋𝑓𝑖𝑡 + 𝛷𝐶𝑖)

𝑁

𝑖=0

                                                                                               (2.14) 

 

where, fi represents all the frequency components existing in the waveform, Ai, Bi, and Ci; 

and ΦAi, ΦBi, and ΦCi are the corresponding amplitudes and phases, respectively. In order to 

give the idea of MSRF analysis and the low-pass filtering to obtain any of the frequency 
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components from the original current waveform here, only computation of the positive 

sequence d component is shown in (2.15): 

 

𝑖𝐷
+(𝑡) = √

2

3
∑

𝐴𝑖
2
𝑠𝑖𝑛(2𝜋𝑓𝑖𝑡 + 𝛷𝐴)𝑐𝑜𝑠(2𝜋𝑓𝑡)                                                                                 

𝑁

𝑖=0

 

            +√
2

3
∑

𝐵𝑖
2
𝑠𝑖𝑛(2𝜋𝑓𝐵𝑡 + 𝛷𝐵)𝑐𝑜𝑠 (2𝜋𝑓𝑡 −

2𝜋

3
)

𝑁

𝑖=0

 

          + √
2

3
∑

𝐶𝑖
2
𝑠𝑖𝑛(2𝜋𝑓𝐶𝑡 + 𝛷𝐶) cos (2𝜋𝑓𝑡 +

2𝜋

3
)

𝑁

𝑖=0

                                                        (2.15) 

 

f in (2.15) is the frequency component for which the analysis is carried out, i.e. f is the 

frequency component which is looked for in the current waveform. If there is any f 

frequency component in the current waveform, then the DC component of (2.15) is going 

to be nonzero and hence the low-pass filtered form of the positive sequence d components 

is obtained as given in (2.16): 

 

𝑖𝐷
𝐿𝑃+(𝑡) = √

2

3

𝐴𝑘
2
𝑠𝑖𝑛(2𝜋(𝑓𝑘 − 𝑓)𝑡 + 𝛷𝐴𝑘) + √

2

3

𝐵𝑘
2
𝑠𝑖𝑛(2𝜋(𝑓𝑘 − 𝑓)𝑡 + 𝛷𝐵𝑘)

+ √
2

3

𝐶𝑘
2
𝑠𝑖𝑛(2𝜋(𝑓𝑘 − 𝑓)𝑡 + 𝛷𝐶𝑘)                                                                (2.16) 

 

In (2.16), fk is the frequency component, which is equal to or very close to the frequency f. 

If such an fk exists, (2.16) is the output of the LPF. If it does not exist, then (2.16) is going 

to be equal to zero or almost zero, since the frequency f-fk is much larger than the cut-off 

frequency of the LPF. As observed in (2.16), accurate estimation of the DC components of 

both the positive- and negative-sequences of d and q components are essential for the 

spectral analysis, because the DC components include both the phase and amplitude 

information, which are Ak, Bk, and Ck; and ΦAk, ΦBk, and ΦCk. Therefore, the smaller the 

phase delay of the LPF at zero frequency, the less error is achieved for the estimation of the 

spectral components of the EAF current. Low-pass filtering is achieved by ES in this 

research work. Since the amplitude of the fundamental component is much higher than the 

other frequency components, first the fundamental frequency component at 50Hz is 
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estimated and it is subtracted from the original current waveform, so that the remaining 

frequency components are estimated more accurately. Then parallel processing of the 

remaining waveform including the harmonics and the interharmonics is 

 

 

            (a) 

 

              (b) 

 
 (c) 

Figure 2.3. Obtaining the field data used in this research work; (a) schematic of the data 

collection at the measurement point (MP) and the proposed system, (b) sample 

three-phase current waveform obtained from the boring phase of the EAF 

current, (c) 10-cycle RMS of the EAF current for Phase-A for a period of 

60min (BP: boring period, MeP: Melting Period, RP: Refining Period)  

  

achieved using the same MSRF analysis with exponential smoothing. Figure 2.4. illustrates 

the overall system to obtain the fundamental and the other frequency components. The 

parallel processing is used to repeat the Frequency Component Estimation Block in Figure 

2.4 for each harmonic and interharmonic frequency. In Figure 2.4, Topt(f) represents the 
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optimum order of exponential smoothing specific to the frequency, f. Obtaining the best 

order of the exponential smoothing method is described in detail in this subsection. In 

Figure 2.4, iA, f (Topt(f), t), iB, f (Topt(f), t), iC, f (Topt(f), t) represent the output of the 

implemented system for each frequency component, f. For harmonics, f corresponds to the 

integer multiples of the fundamental frequency, while for the interharmonics, f corresponds 

to the integer multiples of 5Hz, which is the recommended frequency resolution in the IEC 

Standard for harmonic and interharmonic analysis [56].  In Figure 2.5, details of the 

estimation blocks (given in Figure 2.4) are illustrated. As given in Figure 2.5, both d and q 

components of the negative- and positive-sequences are obtained using MSRF analysis. 

Then exponential smoothing is applied to obtain their DC components. Next, back 

transformation is achieved to attain the current component at frequency f, which is also a 

function of the optimum order of exponential smoothing, Topt(f) for f. As the exponential 

smoothing order deviates from its optimal value, the estimation performance of the 

frequency component deteriorates. 

 

 
 

Figure 2.4. Extraction of the fundamental (50 Hz) component and the rest of all harmonic 

and interharmonic components 
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Figure 2.5. Frequency component estimation block: MSRF+ES application to obtain any 

frequency component 

2.2.1. Exponential smoothing technique for low pass filtering 

 

Exponential smoothing is used to estimate the DC variation of the data to obtain the low-

pass filtered form of the positive- and negative-sequences of the d and q components of the 

frequency components. The input current waveform of the ES block is modeled as given in 

(2.17) according to [48]: 

 

i(t) = a + bt + ε(t).                                                                                                          (2.17)  

 

In (4), a + bt is defined as the trend of the input waveform, which is required as the output 

of the ES block. The ε(t) represents the variation around the trend of the current, which is 

required to be eliminated. The ES estimates the trend as the low-pass filtered form of its 

input given in (5): 

 

𝑖𝐿𝑃𝐹(𝑡) = 𝑎 + 𝑏𝑡 ,                                                                                                         (2.18) 

 

using the ES defined in [50] as in (6): 

 

î(n+1) = Σn=0
T (1- β)n i(T-n).                                                                                           (2.19) 

 

T in (2.19) is the order of the ES operation, which is optimized per frequency component in 

this research work, β = 0.333 as suggested in [50], and n is the time index. 

 

Obtaining the Optimal Exponential Smoothing Order for Each Frequency Component: Two 

criteria are used to obtain the optimum order for ES applied following the MSRF analysis: 

(i) Total Harmonic and Interharmonic Distortion (THID), (ii) Amplitude Error (AE) 

between the estimated frequency component and the corresponding frequency component 

of the original current waveform. A function of these two criteria is obtained for different 

orders of ES in order to obtain the optimum order matching each harmonic or 

interharmonic frequency component. Then obtaining the best matching order of ES for 

each frequency component can be solved as an optimization problem given in (2.20): 
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{
𝑚𝑖𝑛 {

1

𝑀
∑𝛼. 𝑇𝐻𝐼𝐷𝑘(𝑇(𝑓)) + (1 − 𝛼)𝐴𝐸𝑘(𝑇(𝑓))

𝑀

𝑘=1

}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                           10𝑚𝑠 ≤ 𝑇(𝑓) ≤ 40𝑚𝑠

                                                           (2.20) 

 

In (2.20), M represents the number of 10-cycle analysis windows, along which the THID 

and AE computations are carried on. M is taken to be 3000, which corresponds to 10-cycles 

inside 10-min period of the boring phase. THIDk (T(f)) is the THID computed for the kth 10-

cycle frame using ES order of T for the frequency component f. Similarly, AEk(T(f)) is the 

amplitude error of the frequency component f with the order of T for ES. The range of T(f) 

corresponds to the half cycle of the fundamental frequency to 20 cycles and the 

minimization is achieved by incrementing the T(f) value from 10 ms to 400 ms with a step 

size of 10 ms. In (2.20), α determines the balance between the two criteria and it has been 

equated to 0.7 for the fundamental frequency and 0.6 for other frequency components. 

After all the minimization process is achieved for all frequency components from the 

fundamental frequency to the 50th harmonic with 5Hz resolution, Topt(f) is obtained.  

 

Amplitude error (AE) is computed as the absolute error between the amplitudes of the 

component that is being extracted, using the 10-cycle Discrete Fourier Transform (DFT) of 

the original waveform and the 10-cycle DFT of the waveform including only the extracted 

frequency component, which is the output of the proposed MSRF+ES method. Therefore, 

AE is a measure of the accuracy of individual frequency component detection, while THID 

is the measure of the misdetection of the components other than the extracted component. 

A sample comparison for the spectrum around the fundamental component is given in 

Figure 2.6. In Figure 2.6 (a), (b), and (c), the original amplitudes (in blue) are compared 

with the DFT of the estimated fundamental current component by the proposed method for 

the ES order of 10 ms, 300 ms, and 140 ms, respectively. Figure 2.6 (d) shows the same 

comparison for the fundamental estimation using MSRF+KF algorithm, proposed 

previously in [7]. In Figure 2.7, block diagrams of the computation of the two criteria, 

which are AE and THID are given both for the fundamental frequency and other frequency 

components.  

 

It is observed that for the comparatively small order of 10 ms in Figure 4(a), the 

fundamental component estimation is successful, however, the obtained iA,f (Topt(f), t) still 
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includes other frequency components around the fundamental frequency, which are 40Hz, 

45Hz, 55Hz, 60Hz, and etc, which results in high AE. For the much larger order of 300ms 

(Figure 2.6 (b)), the interharmonic frequency components are successfully eliminated, 

however, estimation of the fundamental component is not very accurate. In order to obtain 

the best order, the two criteria are applied on the DFTs of the original and the extracted 

waveform of the specific frequency component. THID computation is as given in (2.21): 

 

𝑇𝐻𝐼𝐷𝑓 =
√∑ 𝐺5𝑖

2 −𝐺𝑓
2𝑁

𝑖=0

√∑ 𝐺5𝑖
2𝑁

𝑖=0

100.                                                                                              (2.21) 

 

  
               (a)                (b) 

 
                      (c)     (d) 

 

Figure 2.6. Comparison of the original EAF current spectrum (blue) with the extracted 

fundamental component spectrum using MSRF+ES (red) for exponential 

smoothing with an order of size (a) 10ms, (b) 300ms, (c) 140ms, which is the 

best in terms of fundamental estimation and low THID, and (d) using MSRF 

with Kalman filtering  
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In (8), G5i represents the amplitudes of the frequency components with 5 Hz resolution 

based on 200-s DFT windows, whereas Gf stands for frequency component to be. In (2.21), 

N is the index of the 5-Hz-apart frequency components to be summed up. It can be 

concluded from both Figure 2.6 and Figure 6 that, small order of ES results in high THID 

and low fundamental AE, and large order of ES results in low THID and high AE. For the 

fundamental frequency component estimation using MSRF+ES method, order of 140 ms 

has been determined as the best order of ES application based on the two criteria. To 

clarify, the THIDs and AEs corresponding to different ES orders for the fundamental 

frequency and the interharmonics at 45Hz and 55Hz are given in Figs. 2.8 and 2.9, 

respectively. In order to obtain the optimal orders, THID and AE are computed for all 

frequency components and the optimal ES order is obtained using (7). 

 

 

Figure 2.7. THID and amplitude error (AE) computation for any frequency component to 

obtain the best order of ES for each 

 

The optimum orders (Topt(f)) of MSRF+ES analysis obtained as the solution of the 

optimization problem defined in (2.20) for the most typical EAF boring phase harmonics 

and interharmonics are given in Figure 2.9.  

 

It should be noted here that, the ES algorithm can also be used with a constant order for all 

harmonic and interharmonic frequencies, however, in order to obtain the shortest possible 

estimation delay, the presented optimization procedure is run over the 10-min boring phase 

data of the EAF current to make the best and fastest possible estimation. In fact, the 

algorithm will still work for any constant order ES without the optimization. For each 

measurement site, the train process may be run before starting the measurents and it can be 

repeated regularly for possible updates, and this procedure cannot be considered as a 

drawback of the proposed algorithm. 
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                                      (a) 

 
                                      (b) 

 
                                      (c) 

 
                                     (d) 

 

Figure 2.8. Comparison of the original EAF current spectrum (blue) with the extracted 

second harmonic component spectrum using MSRF+ES (red) for exponential 

smoothing with a order of (a) 160ms, (b) 10ms, (c) 80ms, which is the best in 

terms of fundamental estimation and low THID, (d) using MSRF with Kalman 

filtering 
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      T(ms) 
 

Figure 2.9. Amplitude error of the MSRF+ES estimation compared to the original 

waveform component with respect to ES order for the fundamental frequency 

(50Hz), and interharmonics at 45Hz and 55Hz. Error is computed for a typical 

boring phase period of 10-min cycles (mean error of 3000 10 cycles of the 

fundamental) as the percent of the original frequency component amplitude 
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Figure 2.10. THID for the fundamental (50Hz) and interharmonics at 45Hz and 55Hz 

obtained from the MSRF+ES for a typical boring phase period of 10-min 

cycles (mean error of 3000 10 cycles of the fundamental) 

 

2.3. Method Developed for Power Quality Event Classification 

 

PQ event data used in this work is provided by the National Power Quality Monitoring 

System of Turkey, whose architecture is illustrated in Figure 2.12. [2]. The aim of the work 

presented in this research work is to use deep learning techniques to obtain a successful PQ 

event classification.  

 

PQ events are defined as the voltage interruptions, voltage sags and voltage swells by the 

Standard IEC-61000-4-30 [1]. A swell event is detected when the root mean square (RMS) 

of the measured voltage exceeds the nominal RMS value by 10%, while a sag (dip) event is 

defined as the reduction of the RMS value of the voltage by more than 10%, and an 

interruption is defined to occur when the RMS value of the voltage is more than 90% less 

than its nominal RMS value and an interruption is known as the most serious event [1].  

 

The data used in this research work, includes raw event data are collected for a period of 

one-year from four different regions of the electricity transmission system with 25.6KHz 
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sampling rate. Table 2.2 summarizes the information of the whole event data used in this 

work. The RMS value computation from raw voltage data is achieved every cycle of the 

50Hz fundamental frequency of the power grid, which ideally corresponds to 20ms 

according to [1], so that they are transformed to form event matrices of sizes 3x150. Figure 

2.13. (a) presents a real event data collected from the transmission system of Turkey using 

the architecture given in Figure 2.12. Each phase of the voltage is represented by a different 

color and the RMS values computed for each cycle (every 20ms) is given, hence 150 cycles 

represent 3s of voltage data. Here the nominal RMS value of the voltage is normalized to 

100 Vrms, therefore it can be seen that there is a general reduction of the voltage, for the 

whole measurement period, however there are serious voltage sags in in phases A and B 

from approximately cycle 25th to 55th and voltage swell in Phase C during the same 

measurement period as shown in Figure 2.13. (a). The both the lengths and the amplitudes 

of the voltage sags, swells and interruptions may vary from event to event. Therefore, an 

event length may vary from a few samples in each window to the total length of the data, 

which is 3s in this case. Considering the different possible event amplitudes and the three 

phases of power system, may different event types may occur and they have to be classified 

so that automatic countermeasures for the power system can be generated in real-time for a 

smart grid. 

 

For the purpose of analysis in this work, all three phases are arranged as a single voltage 

RMS vector as given in (2.22): 

 

XEvent = [VA[0] … VA[149]  VB[0]…VB[149]  VC[0]…VC[149]].                               (2.22)                          

 

which is also shown in Figure 2.13 (b). A, B and C subscripts in (2.22), represent three 

phases and the RMS values of voltage data for each cycle in each phase is settled together 

with the other phases in a single 1x450 voltage RMS matrix as shown in Figure 2.13 (b). 

All 1337 events in Table 2.2 are plotted and saved in “.jpg” format. They are all manually 

labeled to form 10 groups of events and arranged inside 10 folders for the event types. The  

 



27 

 

 
 

Figure 2.11. The PQ monitoring system architecture [2] 

 

types of the events are listed in Table 2.3 85% of the whole event data is used for the train 

process of the MLCNN and 15% is used for the test. Cross validation is also applied to 

obtain the test results. 

 

The aim of event classification using machine learning techniques is to achieve a deep 

understanding of PQ events – like a human data expert vision or even better- with 

machines. 

 

 

a      b 

Figure 2.12. Sample sag event in two-phases and swell in the other phase, (a) RMS 

voltages of each phase, (b) arranged event data in a single row vector 
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Table 2.2. PQ event data obtained from the transmission system (1337 events in total) 
 

Transformer Substation 

(TS) 

Feeder id Type Event Number 

(per one-year) 

TS1 3 Heavy Industry 353 

TS2 33 Industry + Urban 216 

TS3 53 Urban 746 

TS4 4 Rural + Industry 103 

 

Table 2.3.  PQ event data labels obtained manually for all the events listed in  

 

Event 

id 

Event Type Event Number 

(per one-year) 

1 One sag and one swell in three phases 395 

2 Long-sag in one phase 312 

3 Instantaneous sag in three phases 240 

4 Interruption in three phases 186 

5 Interruption in one phase 99 

6 Instantaneous-sag in one phase 66 

7 Swell in one phase 30 

8 Two interruptions and one sag in three phases 50 

9 Interruption in two phases 20 

10 Frequent and short interruptions in all phases 20 

 

The number of event data used in this work is not high enough, but considering event data 

coming from all transformer substations from all over the transmission and distribution 

system, the number of events received at the PQ center every minute can be compared to 

the 150 hours of video uploaded every 60 seconds to the YouTube website [72]. Hence, 

there is no way for human ability to analyze such a big data. It is crystal clear that a proper 

way to understand such huge amount of data is one of the most important necessities and 

deep learning is known as the most up-to-date method for such analysis, which is defined 

as the first method of artificial intelligent technique that is able to see, listen, think and 

comment [65].  

 

In this section, the approach of using deep neural networks for PQ event recognition and 

classification is described. Based on related reference works starting with LeNet-5, 

GoogleNet, ImageNet [67-71], Convolutional Neural Networks (CNN) generally have the 

same format – weighted convolutional layers (optionally followed by contrast 

normalization and max-pooling), which are tracked by one or more fully-connected layers. 

Figure 2.14.  is an example of Classification with Deep CNN from ImageNet [67]. Details 

of the layer formation in Figure 2.15. are given in the following section. 
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2.2.2. Architecture overview 

 

A standard NN gets a single vector as input and by having fully connection of all neurons 

to the previous layer, and neurons with an independent single layer function, it provides 

classification class scores called weights (w) as illustrated in Figure 2.15. (a). For instance, 

for an image sized 32x32x3, a single NN hidden layer has 32x32x3 = 3072 weights. This 

amount of weights seems manageable but when the size of data gets bigger like 

200x200x3, 120,000 weights would be obtained in the first layer. In other words, NNs 

receive an input (a single vector), and transform it through a series of hidden layers. Each 

hidden layer is made up of a set of neurons, where each neuron is fully connected to all 

neurons in the previous layer, and where neurons in a single layer function completely 

independently and do not share any connections. The last fully-connected layer is called the 

“output layer” and in classification settings it represents the class scores. Thus, to get free 

from overfitting problems and quickly adding up, the MLCNN is employed as the deep 

learning method in this research work. CNNs take advantage of the fact that the input 

consists of images and they constrain the architecture in a more sensible way. In particular, 

unlike a regular NN, the layers of a ConvNet have neurons arranged in three 

dimensions: width, height, depth. (Note that the word depthhere refers to the third 

dimension of an activation volume, not to the depth of a full NN, which can refer to the 

total number of layers in a network.) For example, the input images in 32x32x3 with are an 

input volume of activations, and the volume has dimensions 32x32x3 (width, height, depth 

respectively). As we will soon see, the neurons in a layer will only be connected to a small 

region of the layer before it, instead of all of the neurons in a fully-connected manner 

which is illustrated in Figure 2.15 (b).  

 

Two most important functions that are mostly used in the MLCNN are Convolution and 

MaxPooling. Brief definitions for these functions are given below:  

 

- Convolution first multiplies the selected weight values with the data and then sums all of 

them. Then it shifts the weight window on the data image with the optional amount like 

one or two. 
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Figure 2.13.  Image net classification with deep convolutional neural networks [16] 

 

Figure 2.16 (a) is a demo of a CONV layer. Since 3D volumes are hard to visualize, all the 

volumes (the input volume (in blue), the weight volumes (in red), the output volume (in 

green)) are visualized with each depth slice stacked in rows. The input volume is of 

size W1=5, H1=5, D1=3 W1=5, H1=5, D1=3, and the CONV layer parameters are K=2, 

F=3, S=2, P=1, K=2, F=3, S=2, P=1. That is, we have two filters of size 3×33×3, and 

they are applied with a stride of 2. Therefore, the output volume size has spatial size (5 - 3 

+ 2)/2 + 1 = 3. Moreover, notice that a padding of P=1 is applied to the input volume, 

making the outer border of the input volume zero. The visualization below iterates over the 

output activations (green), and shows that each element is computed by elementwise 

multiplying the highlighted input (blue) with the filter (red), summing it up, and then 

offsetting the result by the bias. 

 

MaxPooling is a function which downsamples the available matrixes. Figure 2.16 (b) is an 

example of using this function. In Figure 2.16 (b), assume that Y is a matrix, which is 

obtained after convolution. A 2x2 MaxPool filter gets the maximum value of Y from every 

2x2 matrix indexes. 

 

From the input image data matrix, after Convolve and MaxPool operations, a 1x1x10 score 

vector is obtained for 10 classes of images or any other data and this is the aim that 

MLCNN is trying to achieve. So that with the full size image data is reduced into a single 

vector of class scores, arranged along the depth dimension. 
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(a) 

 
(b) 

 

Figure 2.14. Layer structure of a (a) NN, (b) MLCNN 

 

Deep learning architecture used for PQ event image data classification is given in Figure 6. 

For the deep leaning application on image data, DIGITS (the Deep Learning GPU Training 

System) application environment of NVDIA has been employed[71]. The fundamental 

steps of the MLCNN method can be summarized as INPUT, CONV, RELU, NORM, 

POOL, and FC as shown in Figure 2.17. Below given are the explanations for each step:   

 

• An event raw data as an INPUT [220x220x3] holds the raw pixel values of the image, in 

this case an image of width 220, height 220, and with three color channels R, G, B.  

• In CONV layer the output of neurons that are connected to local areas in the input is 

computed. These computed elements are produced between input and final weights. As 

an example if we try to use 12 filters the obtained matrix becomes [220x220x12]. 

• The elementwise activation will be applied with RELU layer function. The actions 

like max (0,x) thresholding at zero. This function leaves the other layers output 

unchanged ([220x220x12]) in terms of size. Figure 5(b) represents how the POOL 

function works on an example. 

• Down-sampling process is performed by the POOL function. With down-sampling 

operation on any previous resultant, volume will be changed to [110x110x12].  
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• NORM function represents normalization of the obtained weight scores after each 

convolution. 

 

 
       (a) 

 
       (b) 

Figure 2.15. Examples: (a) first two steps of the convolving procedure for a 7x7 data matrix 

by a 3x3 weighting matrix, (b) application of MaxPool function with a 2x2 

filter with two units of shifting 
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Figure 2.16. Flow chart of the implemented deep learning algorithm in this work, obtained 

by DIGITS deep learning application platform 
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In this case the number of classes is 10 therefore class scores will be obtained in a [1x1x10] 

data vector. This vector is results in the final FC (fully-connected) layer. Applying the 

flowchart shown in Figure 2.16 on the PQ event data, softmax classifier, accuracy and loss 

are obtained. Discussion and explanations about these results are given in the next section. 
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3. RESULTS AND DISCUSSION  

 

In this section results obtained from proposed methods will be presented in three 

subsections. The fist subsection contains results from estimation of flicker component 

extracted from true rms values. Then the second subsection will address the results of real 

time dectection of harmonics and interharmonics from current vawform. In third subsection 

results of developed deep learning based method for classification of PQ events will be 

addressed. Finally, a discussion will be done on the obtained results.  

 

3.1. Results for Flickermeter  

 

To verify the proposed method, the signal modelled as given in Section 2, has been 

generated for different ffi and ∆𝑉i values and then the mean values of the flicker sensation, 

S, generated for 10-min period, has been obtained both by the IEC flickermeter and by the 

proposed method. Figure 3.1 illustrates the proposed digital realization of the proposed 

flickermeter using RMS of the voltage waveform. Figure 3.1 (a) is the general block 

diagram and Figure 3.1 (b) is the details of the signal processing in Block-A and Block-B.  

the results obtained from proposed method will be addressed in this subsection. 

 

3.1.1. Verification of the proposed method using synthetic voltage waveforms 

 

IEC flickermeter computes S values directly from the generated voltage waveform, while 

the proposed method assumes only the half-cycle RMS values of the voltage signal exists 

and computes S values using those RMS values. The results are given in Table 3.1., In the 

first three rows in Table 3.1 the expected value of the mean S is unity since ∆𝑽/V and the 

corresponding flicker frequency values from Table 2.1 are used for the single flicker 

frequency component. Note that, as mentioned before in Section 3, Table 2.1 lists the 

flicker frequency and the corresponding amplitude values which result in unity 

instantaneous flicker sensation, S, at the output of Block-4 of the IEC flickermeter 

according to the IEC Flickermeter Standard [2]. 
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(a) 

  (b) 

 

Figure 3.1. Digital realization of the proposed flickermeter using RMS of the voltage 

waveform, a) The general block diagram, b) Details of the signal processing in 

Block-A and Block-B 

 

It is shown that the proposed method successfully yields S values very close to unity. 

Similarly, for the other cases, where more than one flicker frequency component with 

various amplitudes given in Table 3.1 the mean values of the flicker sensation values are 

very close to those obtained by the digital realization of the standard IEC flickermeter. For 

the first five synthetic voltage waveforms in Table 3.1 (first five rows), the expected values  

 

of the mean values of S can be deduced directly from the input voltage waveform directly, 

which are given in the second row of Table 3.1. For a single flicker component mean of S 

should be unity, while it is expected to be two for two flicker components selected from 
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Table 2.1 [2]. The error rates for both the digital realization of the IEC flickermeter and the 

proposed method are given together with the mean S values in Table 3.1. It is observed that 

the proposed method generated instantaneous flicker sensation values with an error rate 

less than or equal to 0.04% in all cases and that is 0.099% for the digital realisation of the 

IEC flickermeter. The average error rate is obtained as 0.021% for the proposed method, 

while it is 0.045% for digital realisation of the IEC flickermeter for first five cases 

experimented in Table 3.1. From the S values computed by both the IEC flickermeter and 

the proposed method for a period of 10 minutes, flicker severity, Pst, has also been 

 

Table 3.1. Mean of flicker sensation (S) values obtained by the proposed method using 

signal RMS values and by the IEC flickermeter using voltage waveform 
 

Flicker Frequency 
Components and 
Corresponding 

Amplitudes 

Mean (S) 
Expected 

Value 

Mean (S)/ 
Error (%) 

Digital 
Realisation 
of the IEC 

flickermeter 

Mean(S)/ 
Error (%) 
Proposed 
Method 

Pst Digital 
Realisation of 

the IEC 
flickermeter 

Pst 
Proposed 
Method 

ff1 =3.5Hz, 
∆𝑉 = 0.568 

1.0 
0.9010/ 
0.0990 

1.0044/ 
0.0044 

0.6908 0.7001 

ff1=8.8Hz,          
∆𝑉 = 0.25 

1.0 
1.0073/ 
0.0073 

0.9906/ 
0.0094 

0.7041 0.7140 

ff1=15Hz,        
∆𝑉 = 0.432 

1.0 
0.9921/ 
0.0079 

0.9606/ 
0.0394 

0.6986 0.6901 

ff1=3.5Hz, 
∆𝑉1 = 0.568 
ff2=8.8Hz, 
   ∆𝑉2 = 0.25 

 
2.0 

1.9079/ 
0.0461 

1.9897/ 
0.0103 

0.9180 0.9300 

ff1=8.8Hz,  
∆𝑉1 = 0.25 
ff2=16Hz, 
∆𝑉2 = 0.48 

2.0 
1.9812/ 
0.0094 

1.9592/ 
0.0408 

0.9010 0.8919 

ff1=8.8Hz, 
∆𝑉1 = 2 x 0.25 
ff2=16Hz 

∆ 𝑉2 = 2 x 0.480 

 
 

7.9242 7.8370 1.550 1.4490 

ff1=3.5Hz, 
  ∆𝑉1 = 0.568x2 
ff2=8.8Hz, 

∆𝑉2 = 0.250 x 2 
ff3=14Hz 

 ∆𝑉3 = 0.388x3 

 
 

13.8959 13.86 1.6950 1.7733 



38 

computed using Block-5 of the IEC flickermeter. The results are given in the last two 

columns of Table 3.1. It is observed that the proposed method also provides flicker 

severities very close to those generated by the IEC flickermeter. Hence, it can be concluded 

that the proposed method can successfully generate both flicker sensation and flicker 

severity from the half-cycle RMS values of a voltage waveform. 

 

3.1.2.  Verification of the proposed method using field data 

 

For the verification using field data, a three-phase voltage waveform, sampled at a 

frequency of 3.2 kHz, collected from a transformer substation supplying one of the major 

electric arc furnace (EAF) installations of the country using the power quality monitoring 

systems developed through the National Power Quality Project of Turkey [16-17], has been 

used. RMS values computed every half-cycle from the voltage waveform are shown in 

Figure 3.2 for the three-phase 10-min voltage waveforms. The data is from the boring 

phase of the electric arc furnace operation; therefore, voltage waveform is dramatically 

time-varying as observed from Figure 3.3 Instantaneous flicker sensation, S, is computed 

by both the digital realization of the IEC flickermeter and the proposed method, for the 10-

min measurement period and the mean values of S are compared in Table 3.2. S values for 

the 10-min period are also shown in Figure 3.3 to compare the responses of the IEC 

flickermeter and the proposed method. Flicker severity (Pst) values are also obtained from 

the 10-min S and the results are given in Table 3.3 for all three phases of the power system 

separately. It has been shown that the proposed method gives very close mean flicker 

sensation (S) and flicker severity (Pst) results with that of the mean values of the flicker 

sensation. The difference between the results obtained by the digital realisation of the IEC 

flickermeter and the proposed method is computed as the percentage of the value computed 

by the IEC flickermeter table given in [2] As given in the third and the sixth columns of 

Table 3.2, percentage differences are negligibly small, i.e. less than 0.01% for the mean of 

S and 0.4% for the Pst values.  

 

Although flicker severity denoted by Pst is defined for only the 10-min measurement 

period, flicker severity can also be obtained out of instantaneous flicker sensation, S, values 

computed for 1-min, 5-min, and 15-min period according to the IEC Standard 61000-4-15 

[2]. The comparison of the proposed method and the digital realisation of the IEC 

flickermeter is given in Table 3.3 for the 1-min flicker severity outputs. It can be concluded 
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from both Table 3.2 and Table 3.3 that the proposed method provides results very close to 

the IEC flickermeter results.   

 

 
                       (a) 

 
                           (b) 

 
                                 (c) 

Figure 3.2. Half-cycle RMS of the three-phase voltage waveforms obtained from a 

transformer substation supplying an EAF plant, a Phase-A, b) Phase-B, c) 

Phase-C 
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Figure 3.3. Instantaneous flicker sensation values, S, obtained by the digital realisation of 

the IEC flickermeter (blue) and the proposed method (green) corresponding to a 

voltage data of 10 minutes obtained from a transformer substation supplying an 

EAF plant 

 

Table 3.2. Mean of instantaneous flicker sensation, S, values and the flicker severity, Pst, 

obtained by the standard IEC flickermeter and the proposed method (PM) from 

field data (10-min voltages obtained at a transformer substation supplying an 

EAF plant) 

 

 

Mean (S) 

IEC 

flickermeter 

Mean(S) 

PM 

Difference 

(%) 

(IEC& PM) 

Pst 

IEC 

flickermeter 

Pst 

PM 

Difference, 

(%) (IEC & 

PM) 

Phase A 72.85 72.78 0.0014 12.63 12.41 0.1352 

Phase B 73.41 73.79 0.0071 11.36 11.54 0.1456 

Phase C 71.36 71.84 0.0093 12.27 12.87 0.3965 
 

 

Table 3.3.  Comparison of the flicker severities obtained by the IEC flickermeter and the 

proposed method (PM) 

 

Measurement Period (min) Flicker Severity IEC flickermeter Flicker Severity PM 

(0-1) 15.93 15.54 

(1-2) 10.06 9.84 

(2-3) 11.80 11.45 

(3-4) 16.34 16.86 

(4-5) 10.25 10.21 

(5-6) 3.53 3.53 

(6-7) 2.76 2.71 

(7-8) 3.02 2.99 

(8-9) 3.79 3.79 

(9-10) 1.82 1.85 
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3.2. Results and Discussion on Real Time Detection of Harmonics and 

Interharmonics 

 

In order to compare the results of MSRF+ES with those of the MSRF+KF, the outputs of 

the two filters for the same input positive-sequence d component of the fundamental  

              NVIDIA Geforce GTX 960

iA(t)

iB(t)

iC(t)

DAQ Unit
DAQe-2205

iA[k]

iB[k]

iC[k]

Fundamental 
Component 

Estimation Block

iA(H-IH)[k]

iB(H-IH)[k]

iC(H-IH)[k]

iAh[k]

iBh[k]

iCh[k]

iAIh[k]

iBIh[k]

iCIh[k]

         h = harmonic order
         (2, 3, ...)

         Ih = interharmonics
        (5Hz, 10Hz, ...)

         execution flow

Harmonics 
Estimation 

Block

Interharmonics 
Estimation 

Block

 
 

Figure 3.4. Block diagram of the GPU-accelarated MSRF+ES method implemented on 

NVDIA Geforce GTX 960 graphics card 

 

frequency is shown for a period of 45s in Figure 3.5 It can be concluded that for the whole 

measurement period, ES is preceding the KF output by a period of approximately Δt=3ms. 

The same observation has been also obtained for the negative-sequence d component and 

the positive- and negative-sequence q components. This situation increases the accuracy of 

both the amplitude and the phase estimations of all frequency components for MSRF+ES 

application.   
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The proposed MSRF+ES method to obtain the time-varying harmonics and interharmonics 

of the EAF currents is implemented on the GPU framework of a laptop computer. The 

three-phase EAF current waveform samples are obtained by the PQ analyzers developed 

through the National Power Quality Project of Turkey [56]. The 25.6kHz-sampled current 

 

 
 

Figure 3.5. The optimum orders (Topt(f)) of MSRF+ES analysis obtained as the solution of 

the optimization problem defined in (2.20) for the most typical EAF boring 

phase harmonics and interharmonics 

 

waveforms are then used to obtain the fundamental frequency component, harmonics up to 

50th harmonic and all interharmonics at the integer multiples of 5Hz resolution as 

recommended in [56]. The use of GPU lets the parallel processing of all interharmonics and 

harmonics, significantly reducing the data processing duration and making the analysis 

real-time. The processing durations of one-min three-phase EAF current data per frequency 

component is given in Table 3.4. The comparison in Table 3.4 is achieved for the three 

cases, application of MSRF+ES without GPU, MSRF+KF without GPU, and finally 

MSRF+ES implemented on NVIDIA Geforce GTX 960 graphics card (with GPU). In 

Table 3.4, processing duration per data sample is also provided. For the sampling rate of 

25.6kHz, the time between two subsequent samples is 39μs, therefore, if the processing 

time per sample is less than 39μs, for all the harmonics and interharmonics, then it can be 

concluded that real-time operation is possible. Also note that, durations in Table 3.4 are per 

frequency component, hence the processing durations will be directly multiplied by the 

number of frequency components to be estimated, for the cases without GPU. According to 
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the execution flow in Figure 3.4 for the case of GPU use, it has been shown that the total 

processing duration of one-min data of the fundamental, harmonics and interharmonics up 

to 50th harmonics, is reduced to 2.5 s, which makes real-time operation of harmonics and 

interharmonics analysis serve the needs of any active power filtering application. However,  

 

Table 3.4.  Processing times of one-min EAF current data for MSRF+ES, and MSRF+KF 

on CPU, and MSRF+ES implemented on NVIDIA geforce GTX 960 graphics 

card (GPU)  

 

 
MSRF+ES 

(no GPU) 

MSRF+KF 

(no GPU) 

MSRF+ES  

(with GPU) 

Time to process one-min data for a single 

frequency component 
45s 75s 1.5s 

Time to process one-min data for a single 

frequency component per sample 
48.07 μs 480.76 μs 0.9615 μs 

 

 
 

Figure 3.6. Positive sequence d component for the fundamental frequency together with its 

DC component obtained by Kalman Filter and ES  

 

for MSRF+KF and MSRF+ES without using GPU, the processing durations, which are 

determined as the number of frequency components to be analyzed multiplied by the 

processing durations shown in Table 3.4, are obviously not suitable for real-time operation. 

To compare the estimation accuracy of both the phases and amplitudes of the fundamental 

frequency component and all harmonics and interharmonics, the current waveform is 
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reconstructed out of its MSRF+ES estimated components with optimal orders 

(fundamental, harmonics at 2nd and odd ones up to 30th, and interharmonics with 5 Hz 

resolution up to 150Hz). The result is shown together with the original waveform in Figure 

3.6 for the phase-A current of the EAF. 

 

 
 

Figure 3.7. Comparison of the original EAF current with the reconstructed EAF current 

waveform, constructed by summing up the estimated frequency components 

with MSRF+ES method (fundamental, harmonics at 2nd and odd ones up to 

30th, and interharmonics with 5 Hz resolution up to 150Hz)  

 

Moreover, in order to observe the performance of any possible APF application, some 

frequency components estimated through MSRF+ES with the optimal ES orders are 

subtracted directly from the original current waveform. In Figure 3.7 (a), the estimated time 

domain components at 100Hz, 105Hz, and 95Hz are subtracted from the original current 

waveform and their 10-cycle DFT’s are compared around 100Hz. It is observed that the 

proposed MSRF+ES method is good at eliminating the second harmonic subgroup defined 

in [56]. For the elimination of the interharmonics around the fundamental, which are 

usually high and rapidly fluctuating for the EAF currents, the interharmonic components at 

30Hz, 55Hz, 60Hz, and 65 Hz are subtracted from the original waveform and the 

comparison of the 10-cycle DFT with the original waveform spectrum is given in Figure 

3.7 (b). Note that the selected interharmonic components are those with the highest 

amplitudes around the fundamental. It is observed that the proposed method is successful at 

estimating the interharmonic amplitudes and phases accurately as observed in Figure 3.7 

(b). 
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      (a)                 (b) 

 

Figure 3.8. Comparison of the DFT spectrums of the original current Phase-A current 

waveform of 10 cycles (blue) and (a) that of waveform from which the 

components at 95Hz, 100Hz, and 105Hz obtained by MSRF+ES with optimal 

ES orders are subtracted (red); (b) that of waveform from which the 

components at 30Hz, 55Hz, 60Hz, and 65Hz obtained by MSRF+ES with 

optimal ES orders are subtracted (red), to simulate an APF operation 

 

3.3. Results for Classification of PQ Events 

 

During the train procedure of the MLCNN, 85% of the event data is used. In order to 

determine the number of epochs needed for accurate classification, accuracy and loss 

functions of the DIGITS platform is used. In Figure 3.8 (a), loss and accuracy functions 

versus epoch number is plotted for the train data. Learning rate is also provided by DIGITS 

up to epoch number 150 as given in Figure 3.8 (b). In terms of the learning rate, it is 

observed that epoch numbers 65 and 135 are critical, but increasing it more than 135 seems 

to be useless. It is also observed in Figure 3.8 (a) that when the epoch reaches 135, 

accuracy and loss remain approximately the same.   

 

Figs. 3.9. and 3.10. show some of the classification results obtained by the trained system 

based on the test data, which is 15% of the whole PQ event data. Figure 3.9 shows sample 

interruption events with the classification predictions next to it. It is observed that although 

the event durations of interruption is completely different in events Figure 3.9 (a) and 3.9 

(b), the classifications obtained by deep learning correspond to the correct one with 99.76% 

and 94.08%, respectively.  Figure 3.10 shows other sample events from the test data 

classified. It is observed that the proposed classification is also successful in discriminating 
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dip events with different amplitudes and durations.  Classification results of all the test data 

are compared with the labels assigned by the human expert and it is observed that 100% of 

the test data is classified correctly with the proposed deep learning-based PQ event 

classification algorithm. It is interesting to note that, images of the PQ events, but not the 

event waveforms themselves are used for classification. Thus, thanks to the processing 

speed and high accuracy of deep learning algorithms on images, both off-line and online 

classification of PQ events will be possible with the proposed PQ classification method. 

 

 
(a)                                                             (b) 

 

Figure 3.9. Loss and accuracy versus epoch number during the MLCNN training 

 

 
       (a) 

 
   (b) 

 

Figure 3.10. Examples of interruption event images out of the PQ event data used for test 

with the predicted event types using deep learning in DIGITS platform, (a) 

interruption in three phases, (b) interruption in two phases 



47 

 

 

fast opration time of DL based algorithims, it can be concoluded that the developed 

algorithim can be used to real-time and offline detection of PQ events.   

 

 

(a) 

 

(b) 

 

Figure 3.11. Examples of dip and swell event images out of the PQ event data used for test 

with the predicted event types using deep learning in DIGITS platform, (a) 

long dip in one phase, (b) dip in three phases 
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4. CONCLUSION 

 

In this section conclusions and discussions over the proposed methods described in the 

previous sections are presented. The aim of this thesis is to develop tools which will 

provide complementary solutions to develop a complete and smart power quality (PQ) 

monitoring system. Based on the survey carried out on the current literature on PQ analysis 

and commercial devices, the following needs can be listed at first sight:  

 

(i) fast and efficient light flicker computation: Flicker severity is computed over 10-min 

raw data of voltage, which is demanding in terms of both memory requirements and 

data processors,  

(ii) real-time harmonics and interharmonics computation: In cases of highly time-varying 

harmonics and interharmonics, it is important to be able to serve fast and accurate 

references to the applications such as active filters for a successful compensation,  

(iii) accurate PQ event classification: Automatic classification of PQ events is cruel for a 

smart grid to take actions automatically after the detection of any event. 

 

Hence, new and novel methods have been proposed to solve the above-mentioned 

problems. The first method proposed is a new method for the evaluation of light flicker out 

of the root-mean-square (RMS) computations of voltage waveforms instead of using the 

whole 10-min raw data. According to the IEC and IEEE standards, light flicker 

computation is achieved on the raw data of the voltage waveforms. However, in many real 

world systems, since raw data storage is expensive and difficult, only RMS values of the 

voltage are stored for later analysis. This thesis proposes a new method to compute light 

flicker directly from RMS values of the voltage, which also comply with the IEC power 

quality standard, IEC 61000-4-30. It has been shown that the developed method reveals 

significantly satisfactory estimations of flicker sensation and severity values, obtained from 

the RMS strings of the voltage waveforms when compared with those obtained by the 

digital realization of the IEC flickermeter. It can be mentioned that this method provides an 

accurate, simple, and fast solution for the flicker computation, where raw data of the 

voltage waveforms are not available, but RMS values are present. The developed method is 

directly based on the current form of the IEC flickermeter, which includes the response of 

the incandescent lamps and the human eye response to the voltage fluctuations. Since the 

proposed method uses the response tables given in the IEC standard as explained in Section 
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3 of this thesis, if response to other types of lamps are included in the future versions of the 

IEC flickermeter, it can easily be adopted to the new lamp responses. Hence, the proposed 

method has the flexibility of considering the lamp type for any possible future versions of 

the IEC flickermeter. The method can be easily adopted by smart-grid applications, where 

fast and accurate flicker computation is required from RMS voltage waveforms, especially 

for generating control signals for the FACTS devices.  

 

The second part of this thesis proposes the use of exponential smoothing (ES) together with 

the Multiple Synchronous Reference Frame (MSRF) analysis to estimate the EAF current 

harmonics and interharmonics, which are time-varying and stochastic due to the nature of 

the EAF operation. ES is a statistical technique used for detecting the data trend especially 

used in economics, which has been shown in this thesis to improve the amplitude and phase 

estimations of the time-varying harmonics and interharmonics, with minimized phase delay 

compared to other methods used previously for low-pass filtering in MSRF analysis. In 

order to achieve real-time processing of all EAF current harmonics and interharmonics to 

serve the needs of the controllers of the modern compensation systems such as active 

power filters (APF) for the automatic compensation of power system harmonics and 

interharmonics in smart grid applications, graphical processing unit (GPU) of NVIDIA 

(GEFORCE GTX 960 graphical processor) of the laptop computer is employed for the 

parallel processing of all harmonics and interharmonics. It has been shown using actual 

EAF current waveforms that real-time processing is possible to analyze all harmonics up to 

50th and all interharmonics at 5Hz resolution. Moreover, active filtering of certain 

harmonics and interharmonics has been achieved in the simulation environment and it has 

been shown that successful real-time filtering of any harmonic and interharmonic 

component is possible with the proposed MSRF+ES method. It has to be mentioned that 

the proposed method helped to reduce the filtering delay of Kalman filter from 3ms 

approximately almost 1 ms. Hence the computation time of a single sample with the 

proposed method is reduced to 1μs, which gives the opportunity to make the system 

operating in real-time. 

 

Finally, in the third part of the thesis, a power quality (PQ) event classification method 

using deep learning of the PQ event images is proposed. PQ events are defined as voltage 

sags, swells, and interruptions in the three phases of the electricity grid. Many methods for 

PQ event classification have been proposed in the literature; however, the proposed one is 
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the first one using the images of the PQ events instead of the voltage data vectors. The 

proposed method takes the advantage of the success of the deep-learning (DL) algorithms 

on image data. Therefore, the novelty of the proposed approach is that, images of the 

voltage waveforms of three phases of the power grid are classified with 100% accuracy, 

instead of classifying the sampled voltage data strings of the three phases.  The DIGITS DL 

platform of NVIDIA is used for training and testing of the proposed method. Future work is 

planned to be increasing the number of train and test data with applying an automatic 

clustering algorithm for initial labeling of the train data. The proposed work is believed to 

serve the needs of the future smart grid applications, which are fast and automatic analysis 

of the electricity grid and taking automatic countermeasures against potential PQ events. 

Thus, thanks to the processing speed and high accuracy of deep learning algorithms on 

images, both off-line and online classification of PQ events will be possible with the 

proposed PQ classification method. 

 

As future work, all three proposed methods can be used to upgrade an existing PQ 

monitoring system, which is developed suitable for future upgrades, such as the PQ+ 

monitoring system developed through the National Power Quality Project of Turkey [55], 

to make it a smart-grid monitoring system of the future. 
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