

AI-TI-Ce KATALİZÖRLERİNİN HAZIRLANMASI VE H₂S'ÜN SEÇİCİ KATALİTİK OKSİDASYONU İLE ELEMENTEL KÜKÜRT ELDESİ İÇİN AKTİVİTE TESTLERİ

Yavuz YAĞIZATLI

YÜKSEK LİSANS TEZİ KİMYA MÜHENDİSLİĞİ ANABİLİM DALI

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MAYIS 2017

Yavuz YAĞIZATLI tarafından hazırlanan "Al-Ti-Ce KATALİZÖRLERİNİN HAZIRLANMASI VE H₂S'ÜN SEÇİCİ KATALİTİK OKSİDASYONU İLE ELEMENTEL KÜKÜRT ELDESİ İÇİN AKTİVİTE TESTLERİ" adlı tez çalışması aşağıdaki jüri tarafından OY BİRLİĞİ ile Gazi Üniversitesi Kimya Mühendisliği Anabilim Dalında YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman: Prof. Dr. Sena YAŞYERLİ Kimya Mühendisliği, Gazi Üniversitesi Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum Başkan : Prof. Dr. Zekiye Serpil TAKAÇ Kimya Mühendisliği, Ankara Üniversitesi Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum Üye: Prof. Dr. İrfan AR Kimya Mühendisliği, Gazi Üniversitesi Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum Üye: Prof. Dr. Nurdan SARAÇOĞLU Kimya Mühendisliği, Gazi Üniversitesi Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum Üye: Doç. Dr. Emrah ÖZENSOY Kimya Bölümü, Bilkent Üniversitesi Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum

Tez Savunma Tarihi: 25/05/2017

Jüri tarafından kabul edilen bu tezin Yüksek Lisans Tezi olması için gerekli şartları yerine getirdiğini onaylıyorum.

Prof. Dr. Hadi GÖKÇEN Fen Bilimleri Enstitüsü Müdürü

ETİK BEYAN

Gazi Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

• Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,

• Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,

• Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,

- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

Yavuz YAĞIZATLI 25.05.2017

Al-Ti-Ce KATALİZÖRLERİNİN HAZIRLANMASI VE H₂S'ÜN SEÇİCİ KATALİTİK OKSİDASYONU İLE ELEMENTEL KÜKÜRT ELDESİ İÇİN AKTİVİTE TESTLERİ (Yüksek Lisans Tezi)

Yavuz YAĞIZATLI

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Mayıs 2017

ÖZET

Bu çalışmada H₂S'ün seçici katalitik oksidasyon ile elementel kükürt eldesi için yeni, aktif, kararlı ve seçici alümina destekli Ti-Ce katalizörleri hazırlanmıştır. Katalizörlerin karakterizasyonu (N2-adsorpsiyon-desorpsiyon, XRD, EDS, XPS, TGA/DTA, TEM, FTIR, TPR) ve farklı reaksiyon şartları altında katalitik aktivite testleri gerçekleştirilmiştir. Destek alümina malzemesi iki farklı sol-jel yöntemi (SG1 ve SG2 yöntemi) ile hazırlanmıştır. Her iki alüminanın da mezogözenekli yapıya ve yüksek yüzey (~270 m²/g) alanına sahip olduğu görülmüştür. Alüminaların XRD desenlerinde γ-Al₂O₃'nın karakteristik pikleri gözlenmiştir. Islak emdirme yöntemi kullanılarak SG1 ve SG2 alümina destekli Ti-Ce (Ti/Ce molar oranı: 4/1) katalizörleri farklı kütlesel oranlarda (Ti+Ce: %20, 10 ve 5) hazırlanmış ve aktivite testleri gerçekleştirilmiştir. Kütlece %10 Ti+Ce içeren SG1 ve SG2 alümina destekli Ti-Ce katalizörleri ile stokiyometrik oranda O2 ve H₂S gaz karışımında ve 250°C şartlarında %100 H₂S dönüşümü ve oldukça yüksek kükürt seçiciliği elde edilmiştir. Sentez yönteminin katalitik aktivite üzerine etkisinin incelenmesi amacıyla kütlece %10 Ti+Ce içeren katalizörler (Ti/Ce molar oran: 4/1) alümina malzemelerinin sentezi sırasında aktif metallerin ilave edildiği tek-kap yöntemleriyle de hazırlanmış ve aktivite testleri gerçekleştirilmiştir. SG2 alümina destekli Ti-Ce katalizörü 150 dakika reaksiyon süresince %100 H₂S dönüşüm değeri göstermiştir. 250°C sıcaklık ve stokiyometrik besleme şartlarında yüksek aktivite sergileyen katalizörlerle uzun ömürlülük, farklı sıcaklık (200°C ve 300°C) ve farklı besleme gazı koşullarında (O₂/H₂S: 0, 1, 2) aktivite testleri tekrarlanmıştır. Çalışmanın son aşamasında besleme gaz bileşiminde su buharı (%2 ve %6) varlığında aktivite çalışmaları gerçekleştirilmiştir. Sentezlenen katalizörler ile su buharı varlığında % 100 kükürt seçiciliği elde edilirken H₂S dönüşümlerinde azalma tespit edilmiştir.

Bilim Kodu: 91208Anahtar Kelimeler: H2S, seçici katalitik oksidasyon, Ti, CeSayfa Adedi: 173Danışman: Prof. Dr. Sena YAŞYERLİ

PREPARATION OF AI-Ti-Ce CATALYSTS AND ACTIVITY TESTS FOR SELECTIVE OXIDATION OF H₂S TO ELEMENTAL SULFUR

(M. Sc. Thesis)

Yavuz YAĞIZATLI

GAZİ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

May 2017

ABSTRACT

In this study, new, active, stable and selective alumina supported Ti-Ce catalysts were prepared for selective oxidation of H₂S to elemental sulfur. The characterization studies (N₂-adsorption-desorption, XRD, EDS, XPS, TGA/DTA, TEM, FTIR, TPR) and catalytic activity tests under different reaction conditions were carried out. Support alumina material was prepared by two different sol-gel methods (SG1 and SG2 method). Both aluminas have mesoporous structure and high surface area (~ 270 m²/g). XRD pattern of alumina materials indicated the formation of y-Al₂O₃. SG1 and SG2 alumina supported Ti-Ce catalysts (Ti/Ce: 4/1) were prepared by using wet impregnation method with different mass ratio (Ti+Ce: 20, 10 and 5%) and activity tests were performed. SG1 and SG2 alumina supported Ti-Ce catalysts containing 10% Ti+Ce by mass showed 100% H₂S conversion and very high sulfur selectivity when feed stream contains stoichiometric mixture of O₂ and H₂S at 250°C. In order to investigate the effect of the synthesis method on the catalytic activity, catalysts (Ti/Ce molar ratio: 4/1) containing 10% Ti+Ce by mass were also prepared by one-pot methods in which active metals were added during the synthesis of alumina materials and activity tests were carried out. SG2 alumina supported Ti-Ce catalyst showed %100 H₂S conversion during 150 minutes of reaction period. The activity tests were repeated at different temperatures (200°C and 300°C), feed ratios (O₂ / H₂S: 0, 1, 2) and reaction times with catalysts which showed high activity at stoichiometric feed conditions and 250°C of reaction temperature. In the last stage of the study, activity studies were carried out in the presence of water vapor (2% and 6%) in the feed gas stream. H₂S conversion decreased when 100% sulfur selectivity was obtained in the presence of water vapor.

Science Code	:	91208
Key Words	:	H ₂ S, selective catalytic oxidation, Ti, Ce
Page Number	:	173
Supervisor	:	Prof. Dr. Sena YAŞYERLİ

TEŞEKKÜR

Yüksek Lisans çalışmalarım boyunca kıymetli bilgilerinden faydalandığım, her türlü yardım ve desteğini esirgemeyen, deneyimleri ve yaklaşımlarıyla beni yönlendiren danışman hocam Sayın Prof. Dr. Sena YAŞYERLİ'ye sonsuz teşekkürü bir borç bilirim.

Tez çalışmalarım süresince bilgi ve tecrübelerini hiçbir zaman esirgemeyen, ilk günden beri yanımda olup bu süreç boyunca manevi desteği ile ailesinden biri gibi hissettiren çok sevgili hocam Arş. Gör. Dr. Hacı Mehmet TAŞDEMİR'e, çalışmalarımda değerli bilgi ve önerilerini benimle paylaşıp yol gösteren hocalarım Prof. Dr. Nail YAŞYERLİ, Prof. Dr. Gülşen DOĞU, Prof. Dr. Timur DOĞU'ya, laboratuvarda çalıştığım süre boyunca her türlü yardımda bulunan, her sorumu sabırla yanıtlayan hocalarım Arş. Gör. Dr. Hüseyin ARBAĞ, Arş. Gör. Dr. Alpay Şahin ve Arş. Gör. Dr. Dilşad Dolunay ESLEK KOYUNCU'ya, tez çalışmalarına beraber başladığım, yardımlarını esirgemeyen çok sevgili çalışma arkadaşım Melike KÜÇÜKER'e teşekkürlerimi sunarım.

Tez çalışmalarım boyunca yanımda olan, 24 saati beraber geçirdiğim, tez sürecini eğlenceli kılan meslektaşlarım ve sevgili arkadaşlarım Gülce AÇIL, Berdan ULAŞ, Buse BOZAN ve Özgü YÖRÜK'e teşekkür ederim.

Hayatım boyunca maddi ve manevi desteklerini benden esirgemeyen, destekleri ve sabırlarıyla her anımda yanımda olan annem Fatma Nurcihan YAĞIZATLI ve babam Bora YAĞIZATLI'ya sonsuz teşekkür ederim.

Çalışmama yaptıkları destekten dolayı TÜBİTAK (Proje No: 114M185) ve bugünlere gelmemizi sağlayan Gazi Üniversitesi Kimya Mühendisliği Bölümü öğretim görevlilerine teşekkürü borç bilirim.

İÇİNDEKİLER

ÖZET	iv
ABSTRACT	v
TEŞEKKÜR	vi
İÇİNDEKİLER	vii
ŞEKİLLERİN LİSTESİ	xi
ÇİZELGELERİN LİSTESİ	xvii
SİMGELER VE KISALTMALAR	xix
1. GİRİŞ	1
2. KAYNAK ARAŞTIRMASI	5
2.1. Seryum ve Titanyum Esaslı Katalizörler ile Yapılan Çalışmalar	5
2.2. Alüminyum Oksit Desteği ile Yapılan Çalışmalar	11
2.3. Diğer Katalizörlerle Yapılan Çalışmalar	15
3. DENEYSEL ÇALIŞMA	19
3.1. Katalizör Sentezi	19
3.1.1.Kompleksleştirme yöntemi	19
3.1.2. Sol-jel 1 (SG1) yöntemi	21
3.1.3. Sol-jel 2 (SG2) yöntemi	22
3.1.4. Islak emdirme yöntemi	23
3.1.5. Tek-kap yöntemi	25
3.2. Karakterizasyon Çalışmaları	27
3.2.1. N ₂ adsorpsiyon-desorpsiyon analizleri	27
3.2.2. X-Işını kırınım deseni (XRD) analizi	27
3.2.3. X-Işını fotoelektron spektroskopisi (XPS) analizi	29

3.2.4. Enerji dispersif X-ışını spektroskopisi (EDS) analizi	29
3.2.5. Sıcaklık programlı indirgeme (TPR) analizi	29
3.2.6. Termal gravimetrik analizi (TGA-DTA)	30
3.2.7. Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizi	30
3.2.8. Pridin adsorplanmış katalizörlerin fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizi	30
3.2.9. Nükleer manyetik rezonans (NMR)	31
3.2.10. Geçirimli elektron mikroskopu (TEM)	31
3.3. Reaksiyon Çalışmaları	33
3.3.1. Aktivite test çalışmaları	33
3.3.2. Su buharı varlığında aktivite test çalışmaları	38
4. BULGULAR VE TARTIŞMA	41
4.1. Alümina Malzemeleri ile Gerçekleştirilen Karakterizasyonlar ve Aktivite Test Çalışmaları	42
4.1.1. Alümina malzemeleri ile gerçekleştirilen karakterizasyon çalışmaları	42
4.1.2. Alümina malzemelerinin aktivite test çalışmaları	56
4.1.3. Alümina malzemeleriyle farklı reaksiyon şartları altında aktivite testleri	69
4.2. Emdirme Yöntemiyle Sentezlenen Katalizörlerle (Ti-Ce@Al ₂ O ₃) Gerçekleştirilen Karakterizayonlar ve Aktivite Test Çalışmaları	77
4.2.1.Emdirme yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin (Ti-Ce@Al ₂ O ₃) karakterizasyon çalışmaları	77
4.2.2. Emdirme yöntemi ile sentezlenen alümina destekli Ti-Ce (Ti-Ce@Al ₂ O ₃) katalizörleri ile gerçekleştirilen aktivite testleri	87
4.2.3. SG2 alümina destekli Ti-Ce (Ti80Ce20@Al ₂ O ₃ -SG2-10w) katalizörüyle farklı reaksiyon şartları altında aktivite testleri	104
4.3. Tek-kap Yöntemiyle Sentezlenen Katalizörlerle (Ti-Ce-Al ₂ O ₃) Gerçekleştirilen Karakterizayonlar ve Aktivite Test Çalışmaları	109

4.3.1. Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin (Ti-Ce-Al ₂ O ₃) karakterizasyon çalışmaları	109
4.3.2. Tek-kap yöntemi ile sentezlenen alümina destekli Ti-Ce (Ti-Ce-Al ₂ O ₃) katalizörleri ile gerçekleştirilen aktivite testleri	115
4.3.3. SG2 alümina destekli Ti-Ce (Ti80Ce20-Al ₂ O ₃ -SG2-10w) farklı reaksiyon şartları altında aktivite testleri	122
5. SONUÇLAR VE ÖNERİLER	127
KAYNAKLAR	131
EKLER	137
EK-1. Reaksiyon sonrası FTIR analizinde gözlenen H ₂ S, SO ₂ ve H ₂ O bileşiklerine ait örnek FTIR spektrumları ile SO ₂ ve H ₂ S'ün kalibrasyon grafikleri	138
EK-2. Alümina malzemelerinin X-ışını kırınım deseni analizleri	141
EK-3. Alümina malzemeleriyle 250°C sıcaklık ve O ₂ /H ₂ S: 0,5 şartlarında elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi	142
EK-4. Alümina malzemeleriyle uzun ömürlülük testi sonrası 250°C sıcaklık ve O ₂ /H ₂ S: 0,5 şartlarında elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi	143
EK-5. Alümina malzemeleriyle 250°C sıcaklık ve O ₂ /H ₂ S: 0 şartlarında elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi	144
EK-6. SG2 Alümina malzemesi ile 250°C sıcaklık ve O ₂ /H ₂ S: 1 ve 2 şartlarında elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi	146
EK-7. Alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları	147
EK-8. Farklı kütlesel yüzdelerde hazırlanan Ti-Ce@Al ₂ O ₃ katalizörlerinin reaksiyon öncesi ve sonrası X-ışını kırınım desenleri	153
EK-9. Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörünün 150 ve 510 dakika süreyle gerçekleştirilen reaksiyon sonrası numunelerine ait EDS raporları	155
EK-10. Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörü ile farklı sıcaklıklar (T=200 ve 300°C) altında gerçekleştirilen katalitik aktivite sonucunda elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi	157
EK-11. Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörü ile 250°C sıcaklıkta farklı besleme oranlarında (O ₂ /H ₂ S: 1, 2) gerçekleştirilen katalitik aktivite sonucunda elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi	158

EK-12.	Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları	159
EK-13.	Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörüne ait literatür verileri ile deneysel verilerin karşılaştırılması	161
EK-14.	Tek-kap yöntemi ile hazırlanan katalizörlerin reaksiyon sonrası EDS raporları	162
EK-15.	Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörü ile 250° C sıcaklıkta farklı besleme oranlarında (O ₂ /H ₂ S: 0, 1, 2) gerçekleştirilen katalitik aktivite deneyleri sonucunda elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi	165
EK-16.	Su buharı varlığında katalitik aktivite sonrası katalizörlerin EDS raporları	167
ÖZGEO	ÇMİŞ	172

ŞEKİLLERİN LİSTESİ

Şekil	bayfa
Şekil 2.1. Farklı değerliklerdeki seryumun kafes yapıları	5
Şekil 3.1. Kompleksleştirme yönteminin şematik gösterimi	20
Şekil 3.2. Sol-jel 1 (SG1) yönteminin şematik gösterimi	22
Şekil 3.3. Sol-jel 2 (SG2) yönteminin şematik gösterimi	23
Şekil 3.4. Islak emdirme yönteminin şematik gösterimi	24
Şekil 3.5. Alümina destekli Ti-Ce katalizörlerinin adlandırılması	26
Şekil 3.6. H ₂ S'ün elementel kükürde seçici katalitik oksidasyon reaksiyonunun gerçekleştirildiği deney sisteminin şematik	35
Şekil 3.7. Su buharı varlığında H ₂ S'ün elementel kükürde seçici katalitik oksidasyon reaksiyonunun gerçekleştirildiği deney sisteminin	39
Şekil 4.1. Alümina malzemelerinin N ₂ adsorpsiyon-desorpsiyon izotermleri ve gözenek boyutu dağılım grafikleri a-b) Sol-Jel-1 yöntemi ile hazırlanan, c-d) Sol-Jel-2 yöntemiyle hazırlanan, e-f) Ticari Alümina	43
Şekil 4.2. Sol-Jel-2 yönteminin tekrar edilmesiyle hazırlanan alümina malzemelerinin N ₂ adsorpsiyon-desorpsiyon izotermi ve gözenek boyutu dağılımı grafiği	44
Şekil 4.3. Alümina malzemelerinin X-Işını Kırınım Desenleri (y: y-Alümina)	46
Şekil 4.4. Sol-Jel-2 yönteminin tekrar edilmesiyle hazırlanan alümina malzemelerinin X-Işını kırınım desenleri (γ: γ-Alümina)	47
Şekil 4.5. Kalsine edilmemiş alümina malzemelerinin TGA/DTA profilleri	48
Şekil 4.6. Kalsine edilmiş alümina malzemelerinin ve ticari (Merck) alüminanın TGA/DTA profilleri (Isıtma Hızı: 10°C/dakika, Ortam: Hava)	50
Şekil 4.7. Alümina malzemelerinin TPR profilleri (Isıtma Hızı: 10°C/dakika, Gaz Karışımı:% 5 H ₂ +%95 N ₂)	51
Şekil 4.8. Piridin adsorplanmış alümina malzemelerinin FTIR spektrumu	52
Şekil 4.9. Ticari, SG1 ve SG2 alümina malzemelerinin FTIR spektrumları (a) Ticari Alümina, b) SG1 Alümina, c) SG2 Alümina)	53
Şekil 4.10. Alümina malzemelerine ait ²⁷ Al MAS NMR spektrumu (Manyetik Alan: 7,05 T)	54

Şekil 4.11.	Alümina malzemelerine ait TEM fotoğrafları
Şekil 4.12.	SG1 alümina malzemesi ile elde edilen H_2S , SO_2 ve H_2O derişimlerinin zaman ile değişimi (T=250° C, $O_2/H_2S=0,5$)
Şekil 4.13.	Alümina malzemeleriyle elde edilen H ₂ S dönüşüm ve elementel kükürt seçicilik değerleri
Şekil 4.14.	SG1 ve SG2 alümina malzemesiyle 150. ve 630. dakikalarda elde edilen H ₂ S dönüşüm ve elementel kükürt seçicilikleri
Şekil 4.15.	SG1 ve SG2 malzemesinin reaksiyon öncesi ve sonrası XPS analizi a) SG1 Alümina b) SG2 Alümina
Şekil 4.16.	Alümina malzemelerinin reaksiyon öncesi ve sonrası X-ışını kırınım desenleri (γ: γ-Alümina)
Şekil 4.17.	Ticari alüminanın reaksiyon öncesi ve reaksiyon sonrası FTIR spektrumları (a) reaksiyon öncesi, (b) reaksiyon sonrası (150 dakika) 62
Şekil 4.18.	SG1 alüminanın reaksiyon öncesi ve reaksiyon sonrası FTIR spektrumları (a) reaksiyon öncesi, reaksiyon sonrası (b) 150 dakika, (c) 630 dakika
Şekil 4.19.	SG2 alüminanın reaksiyon öncesi ve reaksiyon sonrası FTIR spektrumları (a) reaksiyon öncesi, reaksiyon sonrası (b) 150 dakika, (c) 630 dakika
Şekil 4.20.	Alümina malzemelerinin reaksiyon sonrası FTIR spektrumları (a) Ticari Alümina, b) SG1 Alümina, c) SG2 Alümina
Şekil 4.21.	Alümina malzemelerinin uzun ömürlülük testi sonrası FTIR spektrumları (a) SG1 Alümina, b) SG2 Alümina)
Şekil 4.22.	Reaksiyon öncesi ve sonrası piridin adsorplanmış Ticari Alüminanın FTIR spektrumları
Şekil 4.23.	Reaksiyon öncesi ve sonrası piridin adsorplanmış SG1 alüminanın FTIR spektrumları
Şekil 4.24.	Reaksiyon öncesi ve sonrası piridin adsorplanmış SG2 alüminanın FTIR spektrumları
Şekil 4.25.	SG1(a,b) ve SG2(c,d) alümina malzemeleri ile farklı reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H ₂ S ve SO ₂ derişimlerinin zaman ile değişimi

Şekil

Şekil

Şekil 4.26.	SG1 ve SG2 alümina malzemeleriyle elde edilen farklı reaksiyon sıcaklıklarındaki H ₂ S dönüşümü ve elementel kükürt seçicilikleri $(O_2/H_2S=0,5)$ (150. dakika)	71
Şekil 4.27.	SG2 alümina malzemesiyle elde edilen H ₂ S ve SO ₂ derişimlerinin zaman ile değişimi (T=250°C, O ₂ /H ₂ S=0,5, %6 su buharı)	73
Şekil 4.28.	Su buharı varlığında gerçekleştirilen deneyler sonucu alümina malzemelerinin reaksiyon öncesi ve sonrası XRD desenleri	74
Şekil 4.29.	Su buharı varlığında katalitik aktivite testi gerçekleştirilen SG1 Alümina malzemesinin reaksiyon öncesi ve sonrası FTIR spektrumu (%6 su buharı)	75
Şekil 4.30.	Su buharı varlığında katalitik aktivite testi gerçekleştirilen SG2 Alümina malzemesinin reaksiyon öncesi ve sonrası FTIR spektrumu (%6 su buharı)	76
Şekil 4.31.	Su buharı varlığında katalitik aktivite testi gerçekleştirilen SG2 Alümina malzemesinin reaksiyon öncesi ve sonrası FTIR spektrumu (%2 su buharı)	76
Şekil 4.32.	SG1 alümina destekli/desteksiz Ti-Ce katalizörlerinin a,c,e) N ₂ adsorpsiyon-desorpsiyon izotermi b,d,f) Gözenek çap dağılım grafiği	78
Şekil 4.33.	SG2 alümina destekli/desteksiz Ti-Ce katalizörlerinin a,c) N ₂ adsorpsiyon-desorpsiyon izotermi b,d) Gözenek çap dağılım grafiği	79
Şekil 4.34.	Ticari alümina destekli Ti-Ce ve Ti80Ce20 katalizörlerinin X-ışını kırınım desenleri (γ: γ-Alümina)	81
Şekil 4.35.	SG1 Alümina destekli Ti-Ce katalizörlerinin X-ışını kırınım desenleri (γ: γ-Alümina)	82
Şekil 4.36.	SG2 Alümina destekli Ti-Ce katalizörlerinin X-ışını kırınım desenleri (γ: γ-Alümina)	83
Şekil 4.37.	Piridin adsorplanmış alümina destekli kütlece %20'lik Ti-Ce katalizörlerinin FTIR analizleri	84
Şekil 4.38.	Piridin adsorplanmış ticari alümina ve Ti80Ce20@Al ₂ O ₃ -20w katalizörlerinin FTIR analizleri	85
Şekil 4.39.	Piridin adsorplanmış SG1 alümina ve Ti80Ce20@Al ₂ O ₃ -SG1-20w katalizörlerinin FTIR analizleri	86
Şekil 4.40.	Piridin adsorplanmış SG2 alümina ve Ti80Ce20@Al ₂ O ₃ -SG2-20w katalizörlerinin FTIR analizleri.	86

Şekil 4.41.	Alümina destekli Ti-Ce katalizörlerinin reaksiyon öncesi FTIR spektrumları (a) Ti80Ce20@Al ₂ O ₃ -SG1-10w, b) Ti80Ce20@Al ₂ O ₃ -SG2-10w)	87
Şekil 4.42.	Ti80Ce20@Al ₂ O ₃ -SG2-20w katalizörüyle elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi (T=250° C, O ₂ /H ₂ S=0,5)	88
Şekil 4.43.	Farklı alümina malzemelerine kütlece %20 oranında yüklenen Ti-Ce katalizörleriyle elde edilen H ₂ S dönüşümlerinin zaman ile değişimi $(T=250^{\circ}C, O_2/H_2S=0,5)$	88
Şekil 4.44.	Farklı alümina malzemelerine kütlece %20 oranında yüklenen Ti-Ce katalizörleriyle elde edilen H ₂ S dönüşüm ve elementel kükürt seçicilikleri (T= 250°C, O ₂ /H ₂ S= 0,5, 150 dakika)	89
Şekil 4.45.	Ti80Ce20@Al ₂ O ₃ -SG1-10w ve Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörleriyle elde edilen a) H ₂ S dönüşümleri b) elementel kükürt seçicilikleri (T= 250°C, O ₂ /H ₂ S= 0,5)	90
Şekil 4.46.	$\label{eq:constraint} \begin{array}{l} Ti80Ce20@Al_2O_3\text{-}SG1\text{-}5w \ ve \ Ti80Ce20@Al_2O_3\text{-}SG2\text{-}5w \ katalizörleriyle \\ elde \ edilen \ a) \ H_2S \ dönüşümleri \ b) \ elementel \ kükürt \ seçicilikleri \\ (T=250^\circ\text{C}, \ O_2/H_2S=0,5) \ \ldots \end{array}$	90
Şekil 4.47.	Ti80Ce20 katalizörüyle elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi (T=250° C, O ₂ /H ₂ S=0,5)	91
Şekil 4.48.	Farklı kütlesel oranlarda emdirme yöntemiyle ile hazırlanan Ti-Ce ve Ti80Ce20 katalizörlerinin 150.dakika sonundaki H ₂ S dönüşüm ve kükürt seçicilik değerleri	92
Şekil 4.49.	a)Ti80Ce20@Al ₂ O ₃ -SG1-10w ve b)Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörleri ile uzun ömürlülük testi sonucu elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi (T=250°C, O ₂ /H ₂ S: 0,5)	94
Şekil 4.50.	Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörünün a) Titanyum bölgesi b) Alümina bölgesi XPS analizleri	95
Şekil 4.51.	Ti80Ce20, Ti80Ce20@Al ₂ O ₃ -SG1-10w ve Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörlerine ait reaksiyon öncesi ve sonrası XRD desenleri	96
Şekil 4.52.	Ti80Ce20@Al ₂ O ₃ -SG1-10w katalizörünün reaksiyon (a) öncesi ve (b) sonrası FTIR spektrumları	97
Şekil 4.53.	Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörünün reaksiyon (a) öncesi ve (b,c) sonrası (150 ve 510 dakika) FTIR spektrumları	98
Şekil 4.54.	a) SG1 ve b) SG2 alümina destekli Ti-Ce (kütlece % 10) katalizörlerin reaksiyon sonrası FTIR spektrumları S=O titreşim bölgesi	99

Şekil

Şekil

Şekil 4.55.	Ti80Ce20@Al ₂ O ₃ -SG1-10w katalizörünün reaksiyon öncesi ve sonrası (150 ve 510 dakika) piridin adsorplanmış FTIR spektrumları reaksiyon (a) öncesi ve sonrası b)(150 dakika), c) (510 dakika)	100
Şekil 4.56.	Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörünün reaksiyon öncesi ve sonrası (150 ve 510 dakika) piridin adsorplanmış FTIR spektrumları reaksiyon (a) öncesi ve sonrası b)(150 dakika), c) (510 dakika)	101
Şekil 4.57.	Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörünün 150 dakika süreyle gerçekleştirilen reaksiyon sonrası numunesi üzerinde TEM-Mapping görüntüleri	102
Şekil 4.58.	Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörünün 510 dakika süreyle gerçekleştirilen reaksiyon sonrası numunesi üzerinde TEM-Mapping görüntüleri	103
Şekil 4.59.	Ti $80Ce20@Al_2O_3$ -SG2-10w katalizörü ile farklı reaksiyon sıcaklıklarında 150 dakika sonucunda elde edilen H ₂ S dönüşüm ve elementel kükürt seçicilikleri (O ₂ /H ₂ S= 0,5, 150 dakika)	104
Şekil 4.60.	Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörü ile elde edilen H ₂ S ve SO ₂ derişimlerinin zaman ile değişimi (T=250° C, O ₂ /H ₂ S=0,5, %6 su buharı)	106
Şekil 4.61.	Ti80Ce20 katalizörü ile elde edilen H ₂ S ve SO ₂ derişimlerinin zaman ile değişimi (T=250° C, O ₂ /H ₂ S=0,5, %6 su buharı)	106
Şekil 4.62.	Su buharı varlığında gerçekleştirilen deneyler sonucu Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörünün reaksiyon sonrası XRD desenleri	107
Şekil 4.63.	Su buharı varlığında katalitik aktivite testi gerçekleştirilen Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörünün reaksiyon öncesi ve sonrası FTIR spektrumu (%6 su buharı)	108
Şekil 4.64.	Tek kap yöntemi ile hazırlanan katalizörlerin a,c) N_2 adsorpsiyon-desorpsiyon izotermi, b,d) Gözenek çap dağılım grafiği	110
Şekil 4.65.	Ti80Ce20-Al ₂ O ₃ -SG1-10w ve Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörlerinin X-ışını kırınım deseni (γ: γ-Alümina)	112
Şekil 4.66.	Tek-kap yöntemleriyle hazırlanan katalizörlerin FTIR spektrumları	114
Şekil 4.67.	Ti80Ce20-Al ₂ O ₃ -SG1-10w katalizörüyle elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi (T=250° C, O ₂ /H ₂ S=0,5)	115

Şekil

Şekil 4.68. 7	Ti80Ce20-Al ₂ O ₃ -SG1-10w ve Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörleriyle elde edilen H ₂ S dönüşüm ve elementel kükürt seçicilikleri (T= 250°C, $O_2/H_2S=0,5$; 150 dakika)	116
Şekil 4.69. 1	Uzun ömürlülük testi boyunca Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörüyle elde edilen H ₂ S, SO ₂ ve H ₂ O derişimlerinin zaman ile değişimi (T=250° C, O ₂ /H ₂ S=0,5)	117
Şekil 4.70.	Ti80Ce20-Al ₂ O ₃ -SG1-10w ve Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörünün reaksiyon öncesi ve sonrası X-ışını kırınım deseni (γ : γ -Alümina, A: TiO ₂ Anatase, R: TiO ₂ Rutile, C: CeO ₂)	118
Şekil 4.71.	Ti80Ce20-Al ₂ O ₃ -SG1-10w katalizörünün reaksiyon a)öncesi ve b)sonrası FTIR spektrumları	119
Şekil 4.72.	Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörünün a)reaksiyon öncesi, b)150 ve c)510 dakika reaksiyon sonrasında FTIR spektrumları	119
Şekil 4.73.	Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörünün reaksiyon sonrası (150 ve 510. dakika) FTIR spektrumları	120
Şekil 4.74.	Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörünün reaksiyon a)öncesi ve b)150 dakika c) 510 dakika reaksiyon sonrasında FTIR spektrumu	121
Şekil 4.75. 7	Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörü ile farklı reaksiyon sıcaklıklarında 150 dakika sonucunda elde edilen H ₂ S dönüşüm ve elementel kükürt seçicilikleri (O ₂ /H ₂ S= 0,5)	122
Şekil 4.76.7	Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörüyle elde edilen H ₂ S ve SO ₂ derişimlerinin zaman ile değişimi (T=250° C, O ₂ /H ₂ S=0,5, %6 su buharı)	124
Şekil 4.77. S	Su buharı varlığında katalitik aktivite testi gerçekleştirilen Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörünün reaksiyon öncesi ve sonrası FTIR spektrumu (%6 su buharı)	125
Şekil 5.1. A H	lümina malzemeleri farklı ile farklı besleme koşullarında elde edilen ¹ 2S dönüşümleri	128
Şekil 5.2. A ec	lümina destekli Ti-Ce katalizörleri ile farklı besleme koşullarında elde dilen H ₂ S dönüşümleri	130

ÇİZELGELERİN LİSTESİ

Çizelge		Sayfa
Çizelge 2.1.	H ₂ S'ün katalitik oksidasyonunda seryum ile yapılan çalışmalar	. 10
Çizelge 2.2.	H ₂ S'ün katalitik oksidasyonunda titanyum dioksit ile yapılan çalışmalar	. 11
Çizelge 2.3.	H ₂ S'ün katalitik oksidasyonunda alümina ile yapılan çalışmalar	. 14
Çizelge 2.4.	H ₂ S'ün katalitik oksidasyonunda farklı metaller ile yapılan çalışmalar	. 17
Çizelge 3.1.	Çalışma kapsamında sentezlenen katalizörler	. 26
Çizelge 3.2.	Katalizörlerle gerçekleştirilen karakterizasyonlar	. 32
Çizelge 3.3.	Reaktör çıkışındaki gaz akımı analizi için dalga boyları	. 36
Çizelge 3.4.	Alümina malzemeleri ile gerçekleştirilen reaksiyon deneyleri	. 37
Çizelge 3.5.	Ti-Ce ve Emdirme metodu ile hazırlanan alümina destekli Ti-Ce katalizörleri ile gerçekleştirilen reaksiyon deneyleri	. 37
Çizelge 3.6.	Tek-kap metodu ile hazırlanan alümina destekli Ti-Ce katalizörleri ile gerçekleştirilen reaksiyon deneyleri	. 38
Çizelge 3.7.	Su buharı varlığında gerçekleştirilen reaksiyon deneyleri	. 40
Çizelge 4.1.	Alümina malzemelerinin bazı fiziksel özellikleri	. 45
Çizelge 4.2.	SG1 Alümina malzemesinin X-ışını kırınım deseni analizi	. 47
Çizelge 4.3.	Alümina malzemelerinin katalitik aktivite ve karakterizasyon çalışmalarının sonuçları (O ₂ /H ₂ S: 0,5; 250°C, Reaksiyon süresi: 150 dakika)	. 59
Çizelge 4.4.	Reaksiyon sonrası SG1, SG2 ve ticari alüminaların FTIR spektrumlarında gözlenen S=O bağları ve dalga boyları	. 66
Çizelge 4.5.	Alümina malzemeleri ile farklı sıcaklıklarda gerçekleştirilen aktivite testleri sonrasında EDS analizleri	. 71
Çizelge 4.6.	Farklı besleme koşullarında SG2 alümina malzemesi ile elde edilen H ₂ S dönüşümü ve elementel kükürt seçicilikleri (T=250°C)	. 72
Çizelge 4.7.	Su buharı varlığında alümina malzemelerinin H ₂ S dönüşüm, elementel kükürt seçicilik değerleri ve EDS sonuçları (150 dakika)	. 74
Çizelge 4.8.	Alümina destekli/desteksiz Ti-Ce katalizörlerinin fiziksel özellikleri	. 80

Çizelge

Çizelge		Sayfa
Çizelge 4.9.	Alümina destekli Ti-Ce katalizörlerinin EDS analiz sonuçları	. 80
Çizelge 4.10.	SG1 alümina destekli Ti-Ce katalizörlerinin H_2S dönüşümü, elementel kükürt seçiciliği, reaksiyon öncesi ve sonrası yüzey alanı ve EDS analiz sonuçları (T= 250°C, O ₂ /H ₂ S= 0,5, 150 dakia)	93
Çizelge 4.11.	SG2 alümina destekli Ti-Ce katalizörlerinin H_2S dönüşümü, elementel kükürt seçiciliği, reaksiyon öncesi ve sonrası BET ve EDS analiz sonuçları (T= 250°C, $O_2/H_2S=0,5$)	. 93
Çizelge 4.12.	Reaksiyon sonrası SG1 ve SG2 alümina destekli Ti-Ce (kütlece %10) katalizörlerinin FTIR spektrumlarında gözlenen S=O bağları ve dalga boyları	. 100
Çizelge 4.13.	Farklı besleme bileşimlerinde Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörü ile elde edilen H ₂ S dönüşümü ve elementel kükürt seçicilikleri (250°C; 150 dakika)	. 105
Çizelge 4.14.	Ti80Ce20 ve Ti80Ce20@Al ₂ O ₃ -SG2-10w katalizörleri ile 150 dakika süren reaksiyon sonucu elde edilen H ₂ S dönüşüm, ve elementel kükürt seçicilik değerleri	. 107
Çizelge 4.15.	Tek-kap yöntemleriyle hazırlanan alümina destekli Ti-Ce katalizörlerinin fiziksel özellikleri	. 110
Çizelge 4.16.	Tek-kap yöntemi ile sentezlenen alümina destekli Ti-Ce katalizörlerinin EDS analiz sonuçları	. 111
Çizelge 4.17.	Ti80Ce20-A ₁₂ O ₃ -SG2-10w katalizörünün X-ışını kırınım desenlerinin analizi	. 113
Çizelge 4.18.	Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin H_2S dönüşümü, elementel kükürt seçiciliği, reaksiyon EDS analiz sonuçları (T= 250°C, O ₂ /H ₂ S= 0,5)	. 117
Çizelge 4.19.	Reaksiyon sonrası Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörünün FTIR spektrumlarında gözlenen S=O bağları ve dalga boyları	. 121
Çizelge 4.20.	Farklı besleme bileşimlerinde Ti80Ce20-Al ₂ O ₃ -SG2-10w katalizörü ile elde edilen H ₂ S dönüşümü ve elementel kükürt seçicilikleri (250°C; 150 dakika)	e 123
Çizelge 4.21.	Su buharı varlığında gerçekleştirilen katalitik aktivite testleri sonucu elde edilen H ₂ S dönüşüm ve elementel kükürt seçicilik değerleri	. 124

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklama
Α	TiO_2 'in anatase fazi
Bgerçek	FWHM (Full width at half maximum), radyan
d	Malzemenin örgü düzlemleri arasındaki mesafe, nm
L	Kristalin partikül boyutu, nm
ΔΗ	Reaksiyon entalpisi, kJ/kmol
Р	Adsorpsiyon basıncı, kPa
Po	Adsorbatın yoğunlaşma basıncı, kPa
R	TiO ₂ 'in rutile fazı
T1	Tekrar 1
T _k	Kalsinasyon sıcaklığı
α	Alfa
χ	Ki
η	İta
δ	Delta
θ	Theta
ρ	Ro
γ	Gama
λ	X-ışını dalga boyu, nm
Kısaltmalar	Açıklama
EDS	Elektron dispersive spektroskopisi
FTIR	Fourier transform infrared Spektroskopisi
GHSV	Gas hourly space velocity
MODOP	Mobil Direct Oxidation Process
NMR	Nükleer Manyetik Rezonans
SG1	Sol-Jel 1 yöntemi

Kısaltmalar	Açıklama
SG2	Sol-Jel 2 yöntemi
TEM	Transmission Elektron Mikroskop
TGA-DTA	Termal gravimetrik analiz-Diferansiyel termal analiz
TPD	Sıcaklık programlı desorplama
TPR	Sıcaklık programlı indirgeme
XPS	X-ışını fotoelektron spektroskopisi
XRD	X-ışını kırınımı deseni

1. GİRİŞ

Hidrojen sülfür (H₂S) gazı çürük yumurta kokusunda, renksiz, yanıcı ve havadan daha ağır olan zehirli bir gazdır. Doğal gaz tesisleri, ham petrol rafineri başta olmak üzere kükürtlü bileşiklerin bulunduğu birçok proseste ortaya çıkan H₂S gazı çevre ve insan sağlığını ciddi anlamda tehdit etmektedir. Havada seyreltik olarak bulunduğunda yorgunluk ve baş ağrısı, yoğun olarak bulunduğunda ise koku alma duyusunu köreltmekte ve ölümcül etkilere sebebiyet vermektedir. Solunum yolu ile insan sağlığına, asit yağmurları ile çevreye, korozyon ile de proses ekipmanlarına ciddi zarar veren bu gazın güvenli bir biçimde bulunduğu ortamdan uzaklaştırılması gerekmektedir. Son yıllarda çevre ve insan sağlığı için yönetmeliklere yeniden düzenlenmiş ve bu zehirli gazın salınım değerlerine ciddi kısıtlamalar getirilmiştir. H₂S gazının zararlı yönlerinin yanı sıra elementel kükürt üretimi için hammadde olması, kimya endüstrisine önemli bir ekonomik değer katmaktadır. Kükürt kimya ve tarım endüstrisinde geniş kullanım alanına sahip, çevreye zararsız, taşınması kolay ve depolanma maliyeti düşük olan önemli bir hammaddedir (Othmer, 1992: 117, 120).

H₂S gazından elementel kükürt eldesi için kullanılan en eski ve en temel proseslerden biri 1883 yılında Carl Freidrich Claus tarafından keşfedilmiş olan "Claus" prosesidir. "Claus" prosesinde yaklaşık %98 civarında kükürt geri kazanımı mümkündür (Mohammed, 2015). Ayrıca amonyak ve metan gibi safsızlıkların giderimi de bu proseste gerçekleşebilmektedir.

Proses bundan sonraki aşamaları termal ve katalitik basamak olmak üzere iki basamaktan oluşmaktadır. Bu basamaklar prosesin temel basamaklarıdır. Termal basamakta yaklaşık 1000°C sıcaklıkta oksijen ile tepkimeye giren H₂S gazının üçte biri yanmakta, ürün olarak kükürt dioksit (SO₂) ve su buharı (H₂O) oluşmaktadır (Eş. 1.1). H₂S gazının yanı sıra gaz karışımında bulunması muhtemel hidrokarbonlar ve amonyak da termal basamakta yakılmaktadır.

Termal basamak (~1000°C); H₂S + 3/2 O₂ \longrightarrow SO₂ + H₂O, [Δ H[°]₂₉₈ = -518,1 kJ/mol] (1.1) Atık ısı kazanından çıkan yanma ürünleri yoğuşturucudan geçirilerek sıcaklıkları düşürülür. Yakma ünitesinde oluşan kükürt burada yoğunlaştırılarak karışımdan ayrılır. H_2S 'ün elementel kükürde dönüşümünün % 60-70'i termal basamakta gerçekleşmektedir. Yakma ünitesinde oluşan elementel kükürt gaz karışımından ayrıldıktan sonra geriye kalan kısım katalitik reaktörlere gönderilir. Katalitik basamakta ise yaklaşık 200-350°C sıcaklık aralığında bir katalizör yardımı ile termal basamakta tepkimeye girmeyen H_2S gazı ile SO_2 gazı tepkimeye girmekte ve bu tepkime sonucunda elementel kükürt ve su buharı elde edilmektedir (Eş. 1.2) (Ferguson, 1975).

Katalitik Basamak (200-350 °C);

$$2 H_2S + SO_2 \iff 3/n S_n + 2 H_2O, [n=6; \Delta H^{\circ}_{298} = -94,9 \text{ kJ/mol}]$$
(1.2)

Katalitik basamakta termodinamik denge limitasyonlarından dolayı çok yüksek dönüşümler elde edilememektedir. Son yıllarda çevresel farkındalıklardan dolayı H₂S emisyon değerlerine getirilen kısıtlamalar daha yüksek H₂S dönüşümü elde edilen prosesler geliştirilme gerekliliğini ortaya çıkarmıştır. Bu gereklilik doğrultusunda "SuperClaus", "MODOP", "EuroClaus" ve "BSR/Selectox" gibi prosesler geliştirilmiştir. SuperClaus prosesinde Claus prosesine ek olarak katalitik dönüştürücülerden sonra seçici oksidasyon reaktörü eklenmiştir. Bu reaktöre aynı zamanda hava girişi de olmaktadır. H₂S gazı reaktör içerisinde bir katalizör yardımıyla elementel kükürde dönüştürülmektedir. Seçici katalitik oksidasyon reaktöründe gerçekleşen reaksiyon tek basamakta gerçekleşmekte ve termodinamik denge limitasyonu bulunmamaktadır. Bu sayede H₂S dönüşümü % 99'a kadar çıkarılabilmektedir (Kohl ve Nielsen, 1997) (Eş. 1.3).

Seçici Katalitik Oksidasyon Reaksiyonu;

 $H_2S + 1/2 O_2 \longrightarrow 1/n S_n + H_2O, [n=6, \Delta H^{\circ}_{298} = -204,3 \text{ kJ/kmol}]$ (1.3)

Seçici katalitik oksidasyon reaksiyonu sırasında yan reaksiyonlar oluşabilmektedir. Bu durumda SO₂ gazı oluşmakta ve elementel kükürt seçiciliğinin azalmasına neden olmaktadır. Yan reaksiyonlar iki şekilde oluşabilmektedir. Bunlardan biri kükürdün oksidasyonu (Eş. 1.4) diğeri ise H₂S'ün aşırı yanma (Eş. 1.5) reaksiyonlarıdır. Yan reaksiyonlar;

Kükürdün Oksidasyonu;

$$1/n S_n + O_2 \longrightarrow SO_2, [n=6-8, \Delta H^{\circ}_{298} = -313,8 \text{ kJ/mol}]$$
 (1.4)

H₂S'ün Aşırı Yanma Reaksiyonu;

$$H_2S + 3/2 O_2 \longrightarrow SO_2 + H_2O, [\Delta H^{\circ}_{298} = -518, 1 \text{ kJ/mol}]$$
 (1.5)

Seçici katalitik oksidasyon reaksiyonun verimini etkileyen önemli faktörlerden biri kullanılan katalizördür. Bu reaksiyonda kullanılan katalizörlerin aktif, kararlı ve elementel kükürde seçici olması gibi özelliklerin bulunması beklenmektedir. Araştırmacılar seçici katalitik oksidasyon ile H₂S'den elementel kükürt eldesi konusunda birçok katalizörle çalışma gerçekleştirmişlerdir. Demir esaslı (Claus prosesleri, Eslek, 2009; Li, 1997; Chung, 1997), titanyum esaslı (MODOP; Shin, 2001; Tasdemir, 2015; Bineesh, 2010; Kim, 2006) ve vanadyum esaslı (Yasyerli, 2004; Shin, 2000, 2001; Park, 2002) katalizörler, destek malzemesi olarak da silika, zeolit, kil ve karbon esaslı yapılar literatürde yoğun olarak araştırılmıştır. Demir oksitin aşırı oksijen ihtiyacı ve titanyum dioksitin su buharı varlığında aktivitesinde azalma meydana gelmesi bu katalizörlerin dezavantajı olarak belirtilmektedir (Eslek, 2009). Bu katalizörlerin yanı sıra krom, zirkonyum, bakır esaslı katalizörlerde seçici katalitik oksidasyon reaksiyonunda kullanılmak amacıyla araştırılmıştır (Chung, 1997; Keller, 2000; Uhm, 1999; Pi, 2003).

Bu çalışmada, H₂S'ün elementel kükürde seçici katalitik oksidasyonunda kullanılmak üzere aktif, kararlı ve elementel kükürde seçici gibi katalitik özelliklere sahip katalizörlerin geliştirilmesi hedeflenmiştir. Bu amaç kapsamında yeni alümina destekli Ti ve Ce içeren katalizörlerin hazırlanması ve H₂S'ün seçici katalitik oksidasyon reaksiyonunda test çalışmaları gerçekleştirilmiştir. Son dönemlerde seryum esaslı katalizörler araştırmacıların en çok ilgisini çeken katalizörlerden biri olmuştur. Yapılan çalışmalarda seryumun H₂S'ün katalitik oksidasyon reaksiyonunda yapısındaki oksijen hareketliliğinden dolayı tercih edildiği görülmüştür. TiO₂ esaslı katalizör kükürde karşı yüksek direnç göstermesi sebebiyle araştırmacıların oksidasyon reaksiyon çalışmalarında sıkça kullandıkları katalizörlerdendir. En büyük dezavantajı su buharı varlığında aktivitesinin azalmasıdır. Bu çalışmada su buharı varlığında aktivite kaybının önlenebilmesi için Ti ve Ce'lu katalizörler hazırlanmıştır. Alüminyum oksit (alümina, Al₂O₃) ise termal ve kimyasal kararlılık sergilemesinin yanı sıra yüksek dayanıklılık özelliğinden dolayı birçok mühendislik

uygulaması için dikkat çekici bir malzeme olmuştur. γ -Al₂O₃'nın yüzey alanı, gözenek hacmi, gözenek çap dağılımı ve yüzeyinin asit/baz karakteristiği bu formun katalizör ve/veya katalizör destek malzemesi olarak kullanımında etkili olmuştur (Trueba, 2005).

Bu kapsamda alümina malzemeleri iki farklı sol-jel yöntemi (Sol-Jel-1 ve Sol-Jel-2) ile hazırlanmıştır. Hazırlanan alümina malzemelerinin H₂S'ün seçici katalitik oksidasyonunda aktivitelerinin görülebilmesi amacıyla katalitik aktivite testleri gerçekleştirilmiştir. Yüksek dönüşüm sergileyen alümina malzemeleriyle uzun ömürlülük, farklı sıcaklık (200 °C, 250 °C, 300°C) ve farklı besleme oranlarında (O₂/H₂S: 0; 0,5; 1; 2 ve O₂/H₂S: 0,5; %2-6 su buharı) katalitik aktivite testleri gerçekleştirilmiştir. Çalışmanın devamında yapıda Ti+Ce (kütlesel) oranı %5, %10 ve %20 olacak şekilde SG1 ve SG2 alümina destekli katalizörler hazırlanmıştır. Ayrıca, karşılaştırma amacıyla ticari alümina destekli Ti-Ce ve desteksiz Ti-Ce (Ti/Ce:4/1) katalizörleri ile de aktivite çalışmaları gerçekleştirilmiştir. Yüksek katalitik aktivite elde edilen alümina destekli Ti-Ce katalizörleriyle uzun ömürlülük testleri gerçekleştirilmiştir. SG2 destekli kütlece %10 Ti ve Ce içeren katalizörle farklı sıcaklık (200°C, 250°C, 300°C) ve farklı besleme oranlarında (O₂/H₂S:0, 0.5, 1, 2 ve O₂/H₂S:0.5; %6 su buharı) katalitik aktivite testleri gerçekleştirilmiştir. Çalışmanın son aşamasında katalizör hazırlama yönteminin katalitik aktiviteye etkisinin görülebilmesi amacıyla emdirme yöntemi ile hazırlanan ve yüksek katalitik aktivite elde edilen alümina destekli Ti-Ce katalizörleri tek-kap yöntemiyle hazırlanmıştır. Katalizörlerin yapısal ve fiziksel özellikleri karakterizasyon çalışmaları (N2 adsorpsiyon-desorpsiyon, EDS, FTIR, NMR, TGA-DTA, TPD, TPR, TEM, XRD, XPS) ile belirlenmiştir. Bu katalizörler ile gerçekleştirilen aktivite testleri ve karakterizasyonların sonuçları "Bulgular ve Tartışma" bölümünde detaylı olarak verilmektedir.

2. KAYNAK ARAŞTIRMASI

Çalışma kapsamında H_2S 'ün seçici katalitik oksidasyon reaksiyonu için alümina destekli Ti-Ce katalizörlerinin hazırlanması ve aktivite test çalışmalarının gerçekleştirilmesi amaçlanmıştır. Bu bölümde seryum ve titanyum esaslı katalizörler ve alümina destekli katalizörlerin kullanıldığı çalışmalar alt başlıklar halinde özetlenmektedir. Kaynak araştırmasının son bölümünde farklı metal oksit katalizörleri ile yapılan çalışmalar sunulmaktadır.

2.1. Seryum ve Titanyum Esaslı Katalizörler ile Yapılan Çalışmalar

Seryum oksitin ("ceria", CeO_{2-x}; x: 0 - 0,5) kafes yapısındaki oksijen hareketliliği yüksek olmasından dolayı değerliği +3 ve +4 arasında kolaylıkla değişebilmektedir. Ayrıca oksijen tutma kapasitesi de oldukça yüksektir. Seryum kafes yapısı Şekil 2.1'de verilmektedir.

Şekil 2.1. Farklı değerliklerdeki seryumun kafes yapıları (Skorodumova, 2002)

Oksijen haraketliliği katalizörün redoks özelliğini arttırmakta ve sağladığı oksijen ile seçici katalitik oksidasyon reaksiyonlarında aktiviteyi yükseltme amacıyla tercih edilmektedir. Seryum oksitin oksijeni depolama ve bırakmasıyla ilgili tersinir reaksiyon aşağıda verilmektedir (Matsumuto, 2004, Eş. 2.1):

$$CeO_2 \leftrightarrow CeO_{2(1-x)} + xO_2 \qquad [0 \le x \le 0, 25]$$
(2.1)

Ce₂O₃ yapısındaki seryum oksit için önerilen reaksiyon aşağıda verilmektedir (Eş. 2.2):

$$\operatorname{Ce}_{2}\operatorname{O}_{3} + \frac{1}{2}\operatorname{O}_{2} \leftrightarrow 2\operatorname{CeO}_{2}$$

$$(2.2)$$

H₂S'ün seçici katalitik oksidasyonunda seryum oksit farklı amaçlar için kullanılmıştır. Farklı metal oksitlerle karışık metal oksit katalizörlerini oluşturarak katalitik aktiviteye katkıları incelenmiştir. Çalışma grubumuz, CeO2 ve farklı V/Ce molar oranlarında Ce-V karışık oksit katalizörlerini hazırlayıp, aktivite test çalışmalarını gerçekleştirmişlerdir. Farklı sıcaklık (200-300 °C) ve O₂ konsantrasyonlarında (O₂/H₂S 0-2,7) gerçekleştirilen çalışmalar sonucunda yapısında sadece seryum bulunan +4 değerlikli CeO₂ katalizöründe aktivitenin çok hızlı düştüğü belirtilmiştir. Seryumun +3 değerliğinde (CeVO₄) bulunduğu eşmolar oranda Ce ve V içeren Ce2V2 katalizöründe çok yüksek H2S dönüşümü elde edilmiştir (Yaşyerli, 2006). Literatürde demir oksit katalizörlerinin stokiyometrik besleme gazı bileşiminde çok hızlı bir şekilde aktivitesini kaybettiği, aşırı oksijen bulunduğunda ise düşük kükürt seçiciliği verdiği belirtilmiştir (Chun, 1998). Claus katalizörü olarak bilinen demir oksit katalizörünün katalitik aktivitesini geliştirmek amacıyla katalizör yapısına seryum ilave edilerek aktivite çalışmaları da gerçekleştirilmiştir. Çalışma sonucunda demir esaslı katalizör yapısına seryum ilavesi ile aktivitenin yükseldiği rapor edilmiştir. Eşmolar oranda demir ve seryum içeren Fe2Ce2 katalizörü ile 250°C sıcaklık ve stokiyometrik oranda besleme gazı bileşiminde %100 H₂S dönüşümü ve %99 kükürt seçiciliği elde edilmiştir. Reaksiyon sonrasında yapılan karakterizasyon çalışmaları ile katalizör yapısında biriken kükürt ile oluşan yapı "oxy-sulfide-iron-phase" reaksiyon için aktif faz olarak belirtilmiştir (Eslek ve Yaşyerli, 2009).

Seryum oksitin seçici oksidasyon reaksiyonunda sıklıkla birlikte kullanıldığı maddelerden birisi de zirkonyumdur. Farklı molar oranlarda seryum ve zirkonyum kullanılarak katalizörlerin hazırlandığı bir çalışmada 150–250 °C sıcaklık aralığında katalitik aktivite testleri gerçekleştirilmiştir. En yüksek aktivitenin seryum ve zirkonyumun kompleks bileşiğini içeren Ce_{0.8}Zr_{0.2}O₂ formundaki Ce-Zr katalizörü ile elde edildiği belirtilmiştir. Yapılan çalışmalar sonucunda seryum bazlı katalizörlerin çok iyi redoks özelliği sergilediği ve katalizörün kafes oksijeninin H₂S'ün oksidasyonunda kullanıldığı ifade edilmiştir. Katalizör yapısınadaki ZrO₂'in CeO₂'in kafes oksijeninin hareketliliğini artırdığı ve bunun da katalitik aktiviteyi geliştirdiği rapor edilmiştir (Park, 2007). H_2S' ün seçici katalitik oksidasyonunda seryum oksit destek maddesi olarak da kullanılmıştır. Kütlece %2,55– % 20 aralığında değişen oranlarda V₂O₅ içeren V₂O₅/ CeO₂ katalizörleri hazırlanmıştır. 150–250 °C sıcaklık aralığında ve stokiyometrik besleme oranında (O₂/H₂S: 0,5) gaz bileşiminde reaksiyon çalışmaları yürütülmüştür. Gerçekleştirilen çalışmalarda optimum reaksiyon sıcaklığının 250 °C olduğu belirtilirken, %20'lik V₂O₅ yüklemesiyle katalizörle 150 °C gibi çok düşük bir sıcaklıkta bile %98'den yüksek H₂S dönüşümü elde edildiği rapor edilmiştir (Palma, 2014a). Diğer bir çalışmada seryum oksitin zirkonyum oksitle beraber destek olarak kullanıldığı kütlece %2–19 aralığında V₂O₅ içeren V₂O₅/CeO₂-ZrO₂ katalizörlerinin 150-200°C sıcaklık aralığında H₂S'ün seçici oksidasyon reaksiyonundaki aktivitesi incelenmiştir. Hazırlanan katalizörlerin çalışılan sıcaklık aralığında yüksek katalitik aktivite ve düşük SO₂ seçiciliği sergilediği ifade edilmiştir (Palma, 2014b).

Benzer şekilde, CeO₂-Laponite kil ikili karışımının destek maddesi olarak kullanıldığı bir çalışmada farklı kütlesel oranlarda (%3, %5, %8) V₂O₅/ CeO₂-Laponite katalizörleri hazırlanmıştır. 120–220 °C sıcaklık aralığında ve stokiyometrik besleme oranında (O₂/H₂S: 0,5) yürütülen çalışmalar sonucunda kütlece %5 V₂O₅ yüklenmiş olan katalizörün en yüksek aktiviteyi sergilediği belirlenmiştir. 180 °C sıcaklıkta ve %2 O₂ beslemesi ile 90 dakika boyunca katalizör rejenere edilmiştir. Bu çalışmada katalizör yapısında Ce⁺⁴ ve Ce⁺³ fazlarının beraber var olduğu ve Ce⁺³ fazının katalizörün deaktivitesini önleyici olduğu rapor edilmiştir (Zhang, 2013).

Yapılan çalışmalarda seryumun H₂S'ün katalitik oksidasyon reaksiyonunda yapısındaki oksijen hareketliliğinden dolayı tercih edildiği görülmüştür. Ayrıca seryumun bu reaksiyon için +3 değerliliğinde +4 değerliliğinden daha aktif olduğu yapılan çalışmalarda belirtilen önemli sonuçlardan birisi olarak dikkat çekmiştir.

Titanyum esaslı katalizörler H₂S'ün seçici katalitik oksidasyon reaksiyonlarında endüstriyel boyutta kullanılan ve yüksek dönüşüm elde edilebilen katalizörlerden birisidir. Endüstriyel proseslerden biri olan MODOP'ta (Mobil direct oxidation process) TiO₂ esaslı katalizörler stokiyometrik oranda oksijen kullanarak H₂S'ün elementel kükürde oksidasyonunda kullanılmaktadır. En büyük dezavantajının ise su buharı varlığında deaktive olması rapor edilmektedir. H₂S'ün seçici katalitik oksidasyonunda TiO₂ esaslı katalizörlerin hem farklı metal oksitlerle karışık metal oksit katalizörlerini oluşturarak hem de destek malzemesi olarak katalitik aktiviteye katkıları incelenmiştir. Çalışma grubumuz, titanyumun farklı metallerle oluşturduğu eşmolar bimetalik katalizörleri (Ti-Fe, Ti-Cr ve Ti-Zr) kompleksleştirme yöntemiyle hazırlayıp aktivite test çalışmalarını gerçekleştirmişlerdir. 200-300°C sıcaklık aralığında ve farklı O₂ konsantrasyonlarında (O₂/H₂S 0-2) gerçekleştirilen aktivite testleri sonucunda en aktif katalizörün kristal yapısında Fe2TiO5 fazını içeren eşmolar Ti-Fe olduğunu rapor etmişlerdir. Ti-Fe katalizörünün düşük oksidasyon sıcaklığı olan 200°C'da bile yüksek aktivite ve elementel kükürt seçiciliği gösterdiği belirtilmiştir. Yapısındaki kükürt birikiminde dolayı eşmolar Ti-Zr katalizörünün deaktive olduğunu ifade etmişlerdir (Taşdemir, 2015). Titanyumun farklı metallerle (ZrV₂O₇, MnVO_x, CeVO_x, FeVO_x, CrVO_x, TiVO_x) birlikte oluşturduğu metal oksit katalizörler ile yapılan başka bir çalışmada, su buharı varlığında ve 230°C sıcaklıkta gerçekleştirilen katalitik aktivite testleri sonucu aktivitesini kaybetmeyen tek katalizörün TiVO_x olduğu belirtilmiştir. Bunun yanı sıra TiO₂ destek maddesi (VO_x/ TiO₂ ve V-Fe-Cr-Mo-O_x/ TiO₂) olarak da kullanılmış ve katalitik aktiviteye katkıları incelenmiştir. En iyi katalitik aktiviteyi Fe, Mo ve Cr metallerinin ilave edildiği VO_x/TiO₂ katalizörünün gösterdiği rapor edilmiştir. Ayrıca, TPR/TPO (Sıcaklık programlı indirgeme ve yükseltgeme) ve XPS analizleri sonucunda katalizörlerin katalitik aktivitelerinin redoks özellikleriyle doğrudan ilgili olduğu belirtilmiştir (Shin, 2001). Destek malzemesi üzerine TiO₂ eklentisinin katalitik aktivite üzerine etkisinin incelendiği bir çalışmada gaz karışımındaki O₂ oranı arttıkça elementel kükürt seçiciliğinin düştüğünü, TiO₂ miktarının kütlece %2,5'dan %30'a çıkarıldığında dönüşümün %82'den %94'e çıktığını rapor etmişlerdir. Katalizör yapısındaki TiO2 artışının elementel kükürt seçiciliğini çok fazla etkilemediğini ve seçiciliğin %98-99 civarında sabit kaldığı belirtilmiştir. Katalizör yapısındaki TiO2'in katalizörlerin deaktive olmasına sebep olan sülfatlaşma veya sülfidasyona karşı çok iyi direnç gösterdiği ifade edilmiştir. Asidik sitelerin fazlalığının H₂S dönüşümünü arttırdığı, su buharı varlığının ise dönüşümü düşürdüğü rapor edilmiştir (Shin, 2001).

H₂S'ün elementel kükürde seçici katalitik oksidasyon reaksiyonlarında destek malzemesi olarak sütunlu kil sıklıkla kullanılmaktadır. Sütunlu kil desteği üzerine Ti ve Zr metallerinin katalitik aktiviteye etkisinin incelendiği bir çalışmada Ti/PILC (sütunlu kil) ve Zr/PILC (sütunlu kil) katalizörleri ile 220–300°C sıcaklık aralığında katalitik aktivite testleri gerçekleştirilmiştir. Her iki katalizör için de sıcaklık artışı ile H₂S dönüşümünün

arttığı gözlenirken, Ti/PILC(sütunlu kil) katalizörünün çalışılan bütün sıcaklıklarda daha yüksek dönüşüm sergilediği, yüksek yüzey alanı ve Bronsted-Lewis asit sitelerinin varlığının iyi katalitik dönüşüm sergilenmesinde etkin olduğu belirtilmiştir(Bineesh, 2010). Aynı çalışma grubu, TiO₂'in destek malzemesi olarak kullanıldığı bir başka çalışma daha gerçekleştirmiştir. Ti-PILC(sütunlu kil) katalizörüne vanadyum ilavesi yaparak V/Ti-PILC katalizörünü hazırlamışlardır. Aktivite testlerini 220–300°C sıcaklık aralığında gerçekleştirmişlerdir. Çalışılan sıcaklık aralığında katalizörün iyi bir aktivite sergilediği ve %5 V içeren katalizörlerde aktivite artışı gözlendiği, daha yüksek yüzdelerde V₂O₅ kristal fazının oluşması ve yüzey alanının düşmesi nedeniyle H₂S dönüşümünün düştüğü ifade edilmiştir (Bineesh, 2008).

Park ve diğerlerinin çalışmasında (2002) SiO₂ ve TiO₂ katalizör destek malzemelerini karşılaştırmak amacıyla V₂O₅/TiO₂ (%10 kütlece), V₂O₅/SiO₂ (%10 kütlece) ve mekanik karışım katalizörü adını verdikleri (V2O5+Sb2O4) ve V-Sb-O/TiO2 katalizörleri hazırlanmıştır. NH₃ varlığında, 240-320°C sıcaklık aralığında ve stokiyometrik besleme gazı bileşiminde (O₂/H₂S: 0,5) yürütülen testler sonucunda sıcaklığın artmasıyla V₂O₅/TiO₂ ve V₂O₅/SiO₂ katalizörlerinin H₂S dönüşüm değerlerinin azaldığı ve 280 °C'nin üzerindeki sıcaklıklarda ise SO₂ seçiciliğinin arttığı gözlenmiştir. 280 °C altındaki sıcaklıklarda SO₂ oluşumunun gözlenmediği ifade edilmiştir. V₂O₅/TiO₂ katalizörünün, V₂O₅/SiO₂ katalizörüne oranla katalitik aktivitesinin daha kararlı olduğu ve gerçekleştirilen TPR ve TPO çalışmalarının sonucunda V2O5/TiO2 katalizörünün V2O5/SiO2 katalizörüne göre daha iyi redoks özelliği sergilediği rapor edilmiştir (Park, 2002). TiO2'in destek olarak kullanıldığı başka bir çalışmada çöktürme-biriktirme ve emdirme yöntemleriyle VO_x/TiO₂ katalizörleri sentezlenmiştir. NH₃ ve su buharı varlığında, 260 °C sıcaklıkta gerçekleştirilen test çalışmaları sonucunda sentezlenen tüm katalizörlerin yüksek H₂S dönüşüm değeri sergilediği ve tüm deneyler boyunca SO2 oluşumunun gözlemlenmediği rapor edilmiştir (Kim, 2006).

Yapılan çalışmalar incelendiğinde TiO₂'in H₂S'ün seçici katalitik oksidasyon reaksiyonunda hem aktif metal hem de katalizör desteği olarak kullanıldığı ve yüksek aktivite sergilediği görülmüştür. Kükürt çevrim proseslerinde kullanılan katalizörlerde katalitik deaktivasyonun en önemli sebebi olan kükürt birikimine karşı göstermiş olduğu yüksek direnç ve termal kararlılık TiO₂'in en önemli üstünlüğü olarak ortaya çıkmıştır. Su buharı varlığındaki aktivite kaybı ise en önemli dezavantajı olarak rapor edilmektedir.

Bu çalışmada TiO_2 'in su buharı varlığındaki aktivite kaybının CeO₂ malzemesi ile giderilmesi amaçlanmıştır. Bu nedenle Ti-Ce metal oksit katalizörleri sentezlenmiştir. Çizelge 2.1 ve Çizelge 2.2'de sırasıyla seryum ve titanyum ile yapılan çalışmalar özetlenmiştir

Araştırma Grubu	Katalizör ve Hazırlama Metodu	Katalizör Özellikleri	Reaksiyon Şartları	Sonuçlar
(Yasyerli, 2006)	Ce-V karışık oksitleri ve CeO ₂ Kompleksleştirme Yöntemi	$\frac{V/Ce \text{ molar oranlar}}{Ce3V1:3/1}$ $Ce2V2:1$ $Ce1V3:1/3$ $CeO_2:0$	Sabit yataklı quartz reaktör O ₂ /H ₂ S oranı: 0 – 2,7 Reaksiyon sıcaklığı: 200- 300°C	Eş molar V ve Ce içeren Ce2V2 katalizörü en aktif katalizör olarak belirlenmiştir. Yapıya vanadyum ilavesi katalizörün düşük sıcaklıkta redoks özelliğini geliştirmiştir.
(Eslek ve Yaşyerli, 2009)	Ce-Fe karışık oksitleri ve Fe ₂ O ₃ Kompleksleştirme Yöntemi	<u>Fe/Ce molar oranları</u> : Fe-O : 1/0 Fe3Ce1 : 3/1 Fe2Ce2 : 1/1	Sabit yataklı quartz reaktör O ₂ /H ₂ S oranı: 0,5 Reaksiyon sıcaklığı: 200- 300°C	En yüksek katalitik aktivite Fe2Ce2 katalizörüyle 250°C sıcaklıkta elde edilmiştir. Yapıya seryum ilavesi katalizörün aktivite, kararlılık ve düşük sıcaklıkta redoks özelliğini artırmıştır.
(Park, 2007)	CeO ₂ , ZrO ₂ ve Ce- Zr bazlı katalizörler Kompleksleştirme Yöntemi	3 farklı mol oranları ile hazırlanan Ce _{1-x} Zr _x O ₂ katalizörü (x= 0,8, 0,5, 0,2)	Quartz tüp reaktör Reaksiyon sıcaklığı: 150- 250°C H ₂ S/SO ₂ oranı: 2	Her üç katalizör de 200°C sıcaklıkta yüksek katalitik aktivite göstermiştir. Düşük sıcaklıklarda CeO ₂ ve Ce ₁ . _x Zr _x O ₂ katalizörleri yüksek sıcaklıkta ise ZrO ₂ katalizörü yüksek kükürt verimi göstermiştir.
(Palma, 2014a)	CeO ₂ destekli Vanadyum katalizörleri Emdirme-Çöktürme Metodu	Kütlece %2.55 - % 20 V_2O_5 yüklemesi	Sabit yataklı paslanmaz çelik reaktör Reaksiyon sıcaklığı: 150- 250°C O ₂ /H ₂ S oranı 0.5	%20'lik V ₂ O5 yüklemesiyle katalizörle 150 °C sıcaklıkta yüksek katalitik aktivite sağlanmıştır.
(Palma, 2014b)	CeO ₂ -ZrO ₂ destekli V ₂ O ₅ katalizörü Emdirme metodu	Kütlece %2 - %19 V_2O_5 yüklemesi	Sabit yataklı paslanmaz çelik reaktör Reaksiyon sıcaklığı: 150- 200°C O ₂ /H ₂ S oranı 0.5	V ₂ O ₅ / CeO ₂ -ZrO ₂ katalizörü 150-250°C sıcaklık aralığında yüksek H ₂ S dönüşümü, düşük elementel kükürt seçiciliği göstermiştir.
(Zhang, 2013)	CeO ₂ -laponite kil destekli (Ce-Lap) V ₂ O ₅ katalizörü Emdirme metodu	V₂O₅ yüklemesi kütlece %3 - %8 arasında değişmektedir.	Sabit yataklı reaktör O ₂ /H ₂ S oranı 0.5 Reaksiyon sıcaklığı: 120- 200°C	En yüksek aktiviteyi kütlece %5'lik V ₂ O ₅ yüklü katalizör sergilemiştir. Ce ⁺³ değerliği katalizörün deaktivitesini önlemiştir.

Çizelge 2.1. H₂S'ün katalitik oksidasyonunda seryum ile yapılan çalışmalar

Araştırma Grubu	Katalizör ve Hazırlama Metodu	Katalizör Özellikleri	Reaksiyon Şartları	Sonuçlar
(Chun, 1997)	TiO ₂ /SiO ₂ TiO ₂ K ₂ O/TiO ₂ /SiO ₂ B ₂ O ₃ /TiO ₂ /SiO ₂ Islak emdirme Metodu	SiO ₂ desteği üzerine kütlece %2.5, 5, 10, 30 TiO ₂ yüklemesi TiO ₂ / SiO ₂ katalizörü üzerine K ₂ O ve B ₂ O ₃ yüklemesi	Sabit yataklı reaktör O2/H2S oranı 0.5- 4 Reaksiyon sıcaklığı 275 °C	TiO ₂ yükleme miktarı arttıkça(%2.5'den %30a kadar) H ₂ S dönüşüm değeri %82den %94e kadar arttığı gözlemlenmiştir. H ₂ S dönüşümünün asidik sitelerde gerçekleştiği tespit edilirken, ters Claus reaksiyonunun bazik sitelerde gerçekleştiği ifade edilmiştir
(Tasdemir, 2015)	Ti-Fe, Ti-Cr ve Ti-Zr Kompleksleştirme Yöntemi	Eşmolar Ti-Fe, Ti-Cr, Ti-Zr katalizörleri	Sabit yataklı quartz reaktör O ₂ /H ₂ S oranı: 0-2 Reaksiyon Sıcaklığı: 200-300°C	Kristal yapısında Fe ₂ TiO ₅ bileşiğini sergileyen eşmolar Ti- Fe katalizörü çalışılan bütün şartlarda en yüksek katalitik aktiviteyi sergilemiştir.
(Shin, 2001)	ZrV ₂ O ₇ , MnVO _x , CeVO _x , FeVO _x , CrVO _x , TiVO _x	Eşmolar karışık metal oksit	Sabit yataklı reaktör O ₂ /H ₂ S oranı :0.5 Reaksiyon sıcaklığı: 250 °C altındaki sıcaklıklar	230 °C sıcaklıkta aktivitesini kaybetmeyen tek katalizörün TiVO _x olduğu, en iyi aktiviteyi de Fe, Mo ve Cr metallerinin ilave edildiği VOx/TiO ₂ katalizörünün sergilediği rapor edilmiştir.
(Bineesh,. 2010)	Ti/PILC V/PILC	Katalizör destek malzemesi PILC üzerine Ti ve V yüklenmesi	Sabit yataklı reaktör O ₂ /H ₂ S oranı :0,5 Reaksiyon sıcaklığı: 220-300°C	Ti/PILC(sütunlu kil) katalizörü çalışılan bütün sıcaklıklarda daha yüksek dönüşüm sergilemiştir. Yüksek yüzey alanı ve Bronsted- Lewis asit sitelerinin varlığının iyi katalitik dönüşüm sergilenmesinde etkin olduğu belirtilmiştir.
(Bineesh, 2008)	V/Ti-PILC Islak emdirme Metodu	Ti-PILC desteği üzerine kütlece %1.5, 3, 5, 10 vanadyum yüklemesi	Sabit yataklı reaktör O ₂ /H ₂ S oranı: 0,5 Reaksiyon Sıcaklığı: 220-300°C	Çalışılan sıcaklık aralığında katalizörün iyi bir aktivite sergilemiş ve vanadyum yüklemesini % 5'e kadar olan katalizörlerde aktivite artışı gözlenmiştir.
(Park, 2002)	V-Sb-O/TiO ₂ , V_2O_5 /TiO ₂ , V_2O_5 /SiO ₂ ve V_2O_5 +Sb ₂ O ₄	V ₂ O ₅ /TiO ₂ V ₂ O ₅ /SiO ₂ V-Sb-O/TiO ₂ V ₂ O ₅ +Sb ₂ O ₄	Sabit yataklı reaktör O ₂ /H ₂ S oranı: 0,5 Reaksiyon sıcaklığı: 240-320°C	V ₂ O ₅ /TiO ₂ katalizörü, V ₂ O ₅ /SiO ₂ katalizörüne oranla daha kararlı katalitik aktiviteve daha iyi redoks özelliği sergilemiştir.
(Kim, 2006)	VO _x /TiO ₂ Çöktürme- biriktirme ve emdirme	TiO ₂ destekleri üzerine kütlece %1-10 V ₂ O ₅ yüklemesi	Sabit yataklı reaktör Reaksiyon Sıcaklığı: 260°C	Sentezlenen tüm katalizörlerin yüksek H ₂ S dönüşüm değeri sergilemiş ve gerçekleştirilen tüm deneyler boyunca SO ₂ oluşumu gözlemlenmemiştir.

Çizelge 2.2. H₂S'ün katalitik oksidasyonunda titanyum dioksit ile yapılan çalışmalar

2.2. Alüminyum Oksit Desteği ile Yapılan Çalışmalar

Alüminyum oksit (alümina, Al₂O₃), termal ve kimyasal kararlılık sergilemesinin yanı sıra yüksek dayanıklılık özelliğinden dolayı birçok mühendislik uygulaması için dikkat çekici bir malzeme olmuştur. Alüminanın (Al₂O₃) kristal yapı farklılığından kaynaklanan değişik fazları (α , χ , η , δ , κ , θ , γ , ρ) mevcuttur. Al₂O₃'in bu formları arasında en kararlı olanı α -Al₂O₃ formudur. Farklı sıcaklıklarda meydana gelen bozunmalardan dolayı faz değişikliğine uğrayan alümina yüksek sıcaklıklara gidildikçe daha kararlı bir hal almaktadır (Al(OH)₃ $\rightarrow \gamma$ -AlOOH $\rightarrow \gamma$ -Al₂O₃ $\rightarrow \delta$ -Al₂O₃ $\rightarrow \theta$ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃) (Matori, 2012). Alümina formları arasında γ -Al₂O₃ özellikle otomotiv ve petrol endüstrilerinde katalizör ve/veya katalizör destek malzemesi olarak kullanılması açısından öne çıkmaktadır.

Alümina malzemesi, dizel oksidasyon çalışmaları (Auvray, 2015), NO'nun N_2O_5 'e oksidasyonu (Lin, 2016), dimetil eterin formaldehite seçici oksidasyonu (Peláez, 2016) ve H_2S 'ün elementel kükürde seçici katalitik oksidasyonu gibi bir çok oksidasyon reaksiyonunda katalizör desteği olarak kullanılmıştır (Davydov, 2003).

Literatürde alüminanın farklı metallere destek malzemesi olarak hazırlandığı katalizörlerin yanı sıra farklı destek malzemeleriyle de ikili katalizör desteği olarak kullanıldığı çalışmalar bulunmaktadır. Hazırlanan bu katalizörler seçici oksidasyon reaksiyonunda farklı sıcaklık ve gaz karışımlarında test edilmişlerdir. Gerçekleştirilen bir çalışmada H₂S'ün elementel kükürde seçici katalitik oksidasyon reaksiyonunda kullanılmak üzere alümina destekli CuO/Al₂O₃ (kütlece %17,3) katalizörü sentezlenmiş ve 110 °C sıcaklıkta, su buharı ve aşırı oksijen varlığında (O₂/H₂S: 2,2) katalitik aktivite testleri gerçekleştirilmiştir. 50 saat süreyle gerçekleştirilen testler sonucunda katalizörün ilk 28 saat boyunca %100 H₂S dönüşümü sergilediğini, bu süre içerisinde herhangi SO₂ oluşumu gözlenmediğini rapor etmişlerdir. 28. saatten sonra H₂S dönüşümünde azalma başladığı ve 50. saat sonunda %64'e kadar düştüğü ve dönüşümün düşmesiyle SO2 oluşumunun da gözlendiği belirtilmiştir (Laperdix, 2000). Alüminanın destek malzemesi olarak kullanıldığı diğer bir çalışmada SiC de destek malzemesi olarak kullanılmış ve bu iki destek malzemesinin katalitik performansları karşılaştırılmıştır. Sentezlenen Fe $_2O_3/_{\gamma}$ -Al $_2O_3$ ve Fe₂O₃/SiC katalizörleri ile katalitik aktivite testleri 230-300 °C sıcaklık aralığında ve besleme gazında aşırı oksijen varlığında (O₂/H₂S: 2,5) yürütülmüştür. Fe₂O₃/SiC katalizörünün 230°C sıcaklık dışındaki sıcaklıklarda %100 H₂S dönüşümü ve oldukça yüksek elementel kükürt seçiciliği verdiği belirtilmiş ve her iki katalizörde de sıcaklık artışıyla kükürt seçicilik değeri düşerken, bu düşüş Fe₂O₃/_γ-Al₂O₃ katalizöründe daha fazla olduğu rapor edilmiştir. SiC destek maddesinin mezo ve makrogözenek ağıyla donatılmış yapısıyla yüksek derecede ekzotermik reaksiyonlarda katalizör desteği olarak kullanılabileceği ifade edilmiştir (Nyugen, 2007). Destek maddesi olarak alüminyum sütunlu kilin kullanıldığı bir çalışmada farklı oranlarda vanadyum yüklemesi yapılan katalizörlerle (kütlece %3-12) 220-300 °C sıcaklık aralığında ve stokiyometrik (O₂/H₂S: 0,5) besleme oranında katalitik aktivite testlerini gerçekleştirilmiştir. Aktivite testleri sonucunda saf sütunlu kilin 220-300 °C sıcaklık aralığında H₂S dönüşümü vermediği, vanadyum yüklemesi ile katalitik performansın artırıldığı belirtilmiştir. Hazırlanan tüm katalizörlerde hacimce %20'lik su buharı varlığında hem H₂S dönüşümü hem de elementel kükürt seçicilik değerinde azalma meydana geldiği ifade edilmiştir (Bineesh, 2012). Alüminyumun kil ile etkileşimi üzerine yapılan bir çalışmada destek maddesi olarak alüminyum laponite (Al-Lap) üzerine emdirilmiş demir oksit katalizörleri (Fe/Al-Lap) ile katalitik aktivite testleri gerçekleştirilmiştir. Demir içeriği kütlece % 3-8 arasında değiştirilerek katalizörler hazırlanmış ve elementel kükürde seçici katalitik oksidasyon reaksiyonunda 120-200 °C sıcaklık aralığında denenmiştir. Aktivite testleri sonucunda en kuvvetli Lewis asiditesine sahip olan %7 Fe/Al-Lap katalizörünün 180°C sıcaklıkta en iyi katalitik aktiviteyi gösterdiği belirlenmiştir. Katalizörlerin asidite özelliğinin ve demir oksitin destek üzerine iyi dağılımının katalitik aktiviteyi olumlu olarak etkilediği rapor edilmiştir (Zhang, 2013).

Alüminyumun destek malzemesi olarak kullanılmasının yanı sıra aktif metal olarak kullanıldığı çalışmalar da mevcuttur. Gerçekleştirilen bir çalışmada içlerinde Al₂O₃'nın da bulunduğu birçok metal oksitin H₂S'ün seçici oksidasyonundaki aktivitelerini 250 °C sıcaklık ve stokiyometrik (O₂/H₂S: 0,5) besleme oranında incelemişlerdir. İnceledikleri metal oksitler (TiO₂, ZrO₂, V₂O₅, Cr₂O₃ MoO₃, Mn₂O₃, Fe₂O₃, Al₂O₃, Ga₂O₃, In₂O₃, SiO₂, SnO₂, Sb₆O₁₃, Bi₂O₃) arasında bu reaksiyon için en yüksek aktiviteyi V₂O₅'in verdiğini, Al₂O₃'ün ise en düşük aktivite sergileyen katalizör olduğunu belirtmişlerdir (Davydov, 2003).

Yapılan çalışmalar incelendiğinde alümina H₂S'ün seçici katalitik oksidasyonunda katalizör destek malzemesi olarak çalışılmıştır. Bununla beraber Davydov, 2003 çalışmasında katalizör özelliği araştırılmış ve düşük aktivite verdiği rapor edilmiştir. Bu nedenlerden dolayı Ti-Ce metal oksitlerinin H₂S'ün seçici katalitik oksidasyon reaksiyonunda aktivitenin araştırılması amacıyla destek malzemesi olarak alümina (Al₂O₃) kullanılmıştır. Çizelge 2.3'te Al₂O₃ ile gerçekleştirilen çalışmalar özetlenmiştir.

Araștırma Grubu	Katalizör ve Hazırlama Metodu	Katalizör Özellikleri	Reaksiyon Şartları	Sonuçlar
(Laperdix, 2000)	CuO/Al ₂ O ₃	CuO/Al ₂ O ₃ (kütlece %17.3)	Sabit yataklı mikro reaktör O ₂ /H ₂ S oranı: 2,2 Reaksiyon Sıcaklığı: 110 °C	28 saat boyunca % 100 H ₂ S dönüşümü elde edilmiş, sülfat ve polisülfat oluşumuyla katalizörün deaktive olduğu belirlenmiştir.
(Nguyen, 2007)	Fe ₂ O ₃ /SiC Fe ₂ O ₃ / _γ -Al ₂ O ₃ Islak Emdirme Metodu	γ -Al ₂ O ₃ ve SiC destekleri üzerine kütlece %3 Fe ₂ O ₃ yüklemesi	Borusal Pyrex reaktör O ₂ /H ₂ S oranı: 2,5 Reaksiyon Sıcaklığı: 230-300 °C	Fe ₂ O ₃ /SiC katalizörü ile yüksek H ₂ S dönüşümü ve yüksek elementel kükürt seçiciliği elde edilmiştir. Çalışılan tüm sıcaklıklarda γ -Al ₂ O ₃ 'in H ₂ S dönüşüm ve kükürt seçicilik değerleri SiC'e göre daha düşük olduğu gözlemlenmiştir.
(Bineesh, 2012)	V/Al-PILC Islak Emdirme Metodu	Al-PILC desteği üzerine kütlece %3, 6, 8, 12 vanadyum yüklemesi	Sabit yataklı reaktör O2/H2S oranı: 0,5 Reaksiyon sıcaklığı: 220-300 °C	Saf sütunlu kilin 220-300 °C sıcaklık aralığında H ₂ S dönüşümü vermediği, vanadyum yüklemesi ile katalitik performansın artırıldığı belirtilmiştir. Besleme gaz bileşimindeki su buharı varlığı hem H ₂ S dönüşümü hem de elementel kükürt seçiciliğini azaltmıştır.
(Zhang, 2013)	Fe/Al-Lap Islak Emdirme Metodu	Al-Lap üzerine kütlece %3, 6, 7, 8 Fe yüklemesi	Sabit yataklı reaktör O2/H2S oranı: 0,5 Reaksiyon sıcaklığı: 120-200 °C	% 7 Fe/Al-Lap katalizörü 180°C sıcaklıkta en iyi katalitik aktiviteyi göstermiştir. Katalizörlerin asidite özelliğinin ve demir oksitin destek üzerine iyi dağılımının katalitik aktiviteyi olumlu olarak etkilediği belirtilmiştir.
(Davydov, 2003)	-MgO, CaO,La ₂ O ₃ TiO ₂ ,ZrO ₂ ,V ₂ O ₅ , Cr ₂ O ₃ , MoO ₃ , Mn ₂ O ₃ , Fe ₂ O ₃ CoO, NiO, CuO ZnO Al ₂ O ₃ ,Ga ₂ O ₃ ,In ₂ O ₃ ,Si O ₂ SnO ₂ , Sb ₆ O ₁₃ ,Bi ₂ O ₃	Alüminanın katalizör özelliği araştırılmıştır	Sabit yataklı reaktör O2/H2S oranı: 0,5 Reaksiyon sıcaklığı: 250 °C	-Çalışılan metal oksit katalizörler arasında H ₂ S oksidasyonunda en aktif katalizör olarak V ₂ O ₅ tespit edilmiştir.

Çizelge 2.3. H_2S 'ün katalitik oksidasyonunda alümina ile yapılan çalışmalar

2.3. Diğer Katalizörlerle Yapılan Çalışmalar

Literatürde, H₂S'ün seçici katalitik oksidasyonunda Cu, V, Fe ve Cr esaslı katalizörler ile yapılan çalışmalar yoğunluk kazanmaktadır. Bu geçiş metallerinin yanı sıra SiC destekli NiS₂, Na₂X-WO₃ aktif karbon gibi katalizörlerinde bu reaksiyon için aktiviteleri araştırılmıştır. Bu bölümde bu katalizörler ile gerçekleştirilen H₂S'ün seçici katalitik oksidasyon çalışmaları özetlenmektedir.

Vanadyum ve bakır üzerine yapılan bir çalışmada çalışma grubumuz, kompleksleştirme yöntemi ile eşmolar oranda Cu-V ve Cu-V-Mo karışık oksitleri üzerinde H₂S'ün seçici katalitik oksidasyon reaksiyonunu çalışmışlardır. 300-600 °C sıcaklık aralığında ve O₂/H₂S: 0-3 arasında değişen farklı besleme akımlarında yürütülen katalitik aktivite testlerinde Cu-V katalizörü ile yüksek aktivite ve %98'e varan elementel kükürt dönüşümü elde edilmiştir. Cu-V-Mo katalizörü uzun ömürlülük testinde, Cu-V katalizörüne göre daha yüksek aktivite sergilemiştir. Cu-V katalizörü ile Cu-V-Mo katalizörüne göre daha yüksek kükürt seçiciliği elde edilmiştir. α-Cu₂V₂O₇ formunda olan Cu-V katalizörünün reaksiyonun ilerleyen sürelerinde sırasıyla Cu₃VS₄, CuS ve VOx formlarına dönüştüğü XRD ile belirlenmiştir. V⁺² ve V⁺⁴ formlarını içeren kısmen indirgenmiş katalizörün elementel kükürt üretimi için oldukça seçici olduğu rapor edilmiştir. Ancak V⁺⁵ formundaki vanadyumun SO₂ seçiciliğinin daha yüksek olduğu belirtilmiştir (Yasyerli, 2004). Vanadyum ile gerçekleştirilen başka bir çalışmada mezogözenekli zirkonyum fosfat desteği üzerine V₂O₅ yüklemesi yapılmış ve gerçekleştirilen aktivte testleri 180-260 °C sıcaklık aralığında, O₂/H₂S: 0,9 besleme akımında yürütülmüştür. Aktivite test çalışmaları sonucunda V⁺⁵ türleri ve V₂O₅ kristallerinin gözlendiği düşük vanadyum yüklemesinin yapıldığı V₂O₅/MZP (mezogözenekli zirkonyum fosfat) katalizörlerinin saf V₂O₅'ten daha düşük katalitik aktivite sergilediği rapor edilmiştir (Soriano, 2009).

Literatürde H₂S'ün seçici katalitik oksidasyonunda en çok kullanılan metallerden biri de demirdir. Fe₂O₃ ve farklı oranlarda Fe/Sn ve Fe/Sb katalizörleri ile gerçekleştirilen çalışmada (200–280 °C, O₂/H₂S: 5) en yüksek elementel kükürt seçiciliği ve H₂S dönüşümü Fe/Sb oranı 3/2 olan katalizörde elde edilmiştir. Antimon miktarı arttıkça katalizörlerin H₂S dönüşümünün düştüğü gözlenmiştir. Yüksek dönüşüm veren Fe/Sb oranları 3/2 ve 5/2 olan katalizörün yapılarında FeSbO₄ ve Fe₂O₃ formları, düşük dönüşüm veren Fe/Sb oranları 3/4 ve 1/3 olan katalizörler ise FeSbO₄ ve Sb₂O₄ formları olduğu
gözlenmiştir. Fe₂O₃ formunun H₂S'ün seçici katalitik oksidasyon reaksiyonlarında aktif form olduğu rapor edilmiştir. Fe/Sn katalizörlerinde ise Fe/Sn oranı 1/7 ve 1/9 olan katalizörlerde en yüksek elementel kükürt seçiciliği ve H₂S dönüşüm elde edilmiştir. Tek metalli olan katalizörler karışık oksitlere göre daha düşük aktivite gösterdiğinden demir ile kalay arasındaki etkileşimin (SnO₂-Fe₂O₃ ve SnO₂-Sb₂O₄ formu) aktiviteyi arttırdığı rapor edilmiştir (Li, 1997). Bir başka çalışmada SiO₂ desteği üzerine demir ve vanadyumun yüklemesi yapılmış ve bu iki metalin katalitik aktiviteye etkisi araştırılmıştır. Aktivite testleri 225–300°C sıcaklık aralığında ve O₂/H₂S: 0,4–1 arasında değişen farklı besleme akımlarında yürütülmüş ve her iki katalizör ile yüksek elementel kükürt seçiciliği ve yüksek H₂S dönüşüm değerleri elde edilmiştir. 225°C sıcaklık üzerindeki sıcaklıklarda Fe/SiO₂ katalizörü üzerinde H₂S dönüşüm değerlerinin arttığı, elementel kükürt seçiciliğinin ve H₂S dönüşüm değerlerinin düştüğü rapor edilmiştir (Chung, 1997).

SiC'ün destek olarak kullanıldığı bir çalışmada SiC üzerine Fe₂O₃ yüklemesi yapılmış ve aktivite testleri 210-240°C sıcaklık aralığında ve O₂/H₂S: 2,5 besleme akımında gerçekleştirilmiştir. Çalışma soncunda su buharı varlığında katalizörün aktivitesinin değişmediği, kükürt seçiciliğinin %90'dan %82'ye düştüğü rapor edilmiştir (Keller, 2000). Başka bir çalışmada SiC destekli NiS₂ katalizörü emdirme yöntemi ile sentezlemiş ve sabit yataklı reaktörde Claus reaksiyonu (2 H₂S + SO₂ \longrightarrow 3/n S_n + 2 H₂O) ile H₂S'ün seçici oksidasyon reaksiyon (H₂S + 1/2 O₂ \longrightarrow 1/n S_n + H₂O) çalışmaları yürütülmüştür. Aktivite test çalışmaları 40–60 °C sıcaklık aralığında ve O₂/H₂S: 1,6 besleme gaz bileşiminde yürütülmüş, düşük sıcaklıklarda SiC/ NiS₂ katalizörünün seçici ve kararlı olduğu en uygun sıcaklığın 60°C olduğu tespit edilmiştir. Katalizörün, yüzeyindeki kükürt birikimine rağmen deaktive olmadığı ifade edilirken, oluşan "oxy-sulfide nickel-phase" in reaksiyon için aktif faz olduğu rapor edilmiştir (Ledoux, 2000).

SiO₂'in destek olarak kullanıldığı bir çalışmada, Cr_2O_3 ve SiO₂ desteği üzerine kütlece % 2,5–30 Cr_2O_3 yüklemesi yaparak hazırlanan Cr/SiO_2 katalizörleri üzerinde H₂S'ün seçici oksidasyon çalışmaları (225–325 °C ve O₂/H₂S: 0,4-0,7) yürütülmüştür. En yüksek kükürt veriminin stokiyometrik besleme oranındaki katalizörde elde edildiği ve amorf yapıdaki Cr_2O_3 katalizörüyle özellikle düşük sıcaklıklarda Cr_2O_3/SiO_2 katalizörüne göre su buharına karşı yüksek direnç ve yüksek kükürt verimi sağlandığı ifade edilmiştir. Yüksek katalitik aktivitenin katalizör yapısındaki kolay yer değiştirebilen kafes oksijeninden kaynaklanabileceği belirtilmiştir (Uhm, 1999).

NaX-WO₃ katalizörleri üzerinde yapılan çalışmada gaz bileşiminde %10 su buharı varlığında (200–300°C ve O_2/H_2S : 0,5) yürütülen aktivite testlerinde su buharı adsorplanmasından dolayı düşük aktivite elde edildiği rapor edilmiştir (Pi, 2003).Düşük sıcaklıkta hidrojen sülfürün elementel kükürde katalitik oksidasyon çalışmasında su buharının etkisini görmek için ticari aktif karbon üzerinde bir çalışma gerçekleştirilmiştir. Stokiyometrik ve aşırı oksijen varlığında, 25-70°C reaksiyon sıcaklık aralığında yürütülen aktivite testleri sonucunda aktif karbonun düşük konsantrasyonlarda (%1-3) bulunan H_2S 'ün giderilmesi için etkili olduğu, su buharı varlığının katalizörün aktivitesini olumlu yönde etkilediği rapor edilmiştir (Primavera, 1998).

Literatürde gerçekleştirilen çalışmalar incelendiğinde redoks özelliğinin, kükürde karşı yüksek direncin ve termal kararlılığın H₂S'ün seçici katalitik oksidasyon reaksiyonunda katalitik aktiviteyi etkilediği gözlenmiştir. Seçici oksidasyon reaksiyonunda farklı metaller bir araya getirilerek geliştirilen katalizörlerde bir metalin sergilemiş olduğu olumsuz özellik diğeriyle geliştirilmeye çalışılmıştır. Çizelge 2.4'te farklı metallerle H₂S'ün seçici oksidasyon gerçekleştirilen çalışmaları özetlenmiştir.

Araştırma Grubu	Katalizör ve Hazırlama Metodu	Katalizör Özellikleri	Reaksiyon Şartları	Sonuçlar
(Yasyerli, 2004)	Cu-V Cu-V-Mo Kompleksleştirme Metodu	Molar oranlar Cu-V: 1/1 Cu-V-Mo: 1/1/1	Sabit yataklı quartz reaktör O ₂ /H ₂ S oranı: 0- 3 Reaksiyon sıcaklığı: 300-600 °C	Cu-V-Mo katalizörü, Cu-V katalizörüne göre daha yüksek aktivite sergilemeştir. V ⁺² ve V ⁺⁴ formlarını içeren kısmen indirgenmiş katalizörü elementel kükürt üretimi için oldukça seçicicidir.
(Soriano, 2009)	V ₂ O ₅ / mezogözenekli zirkonyum fosfat (MZP) Islak Emdirme	MZP desteği üzerine kütlece %0-16 arası değişen V ₂ O ₅ yüklemesi	Sabit yataklı reaktör O ₂ /H ₂ S oranı: 0,9 Reaksiyon Sıcaklığı: 180-260 °C	Katalizörün aktivitesinin vanadyum yüklemesine bağlı olarak değiştiği belirtilmiştir. V ₂ O ₅ /MZP katalizörü H ₂ S'ün elementel kükürte kısmi oksidasyonunda aktif ve seçici bulunmuştur.
(Li, 1997)	Fe ₂ O ₃ , Fe/Sn ve Fe/Sb Çöktürme- Biriktirme Metodu	Molar oranlar Fe/Sn: 1/0, 7/2, 1/1, 2/9, 1/7, 0/1 Fe/Sb: 1/0, 5/2, 3/2, 3/4, 1/3, 0/1	Sabit yataklı reaktör O ₂ /H ₂ S oranı: 5 Reaksiyon sıcaklığı: 200-280 °C	Fe/Sb: 3/2 molar oranında hazırlanan Fe/Sb katalizörü çalışılan tüm sıcaklıklarda (200 °C sıcalık haricinde) %100 H ₂ S dönüşümü ve %100 kükürt seçicilik değeri verdiği gözlemlenmiştir.

Çizelge 2.4. H₂S'ün katalitik oksidasyonunda farklı metaller ile yapılan çalışmalar

Araștırma	Katalizör ve	Katalizör	Reaksiyon Şartları	Sonuçlar
Grubu	Hazırlama Metodu	Özellikleri		
(Chung, 1997)	Fe/SiO ₂ ve V/SiO ₂ Emdirme Metodu	SiO ₂ desteği üzerine kütlece %30 vandayum yüklemesi	Sabit yataklı reaktör O ₂ /H ₂ S: 0,4-1 Reaksiyon sıcaklığı: 225-300 °C	Sentezlenen her iki katalizörle yüksek elementel kükürt seçiciliği ve H ₂ S dönüşümü elde edilirken, 225°C sıcaklık üzerindeki sıcaklıklarda Fe/ SiO ₂ katalizöründe H ₂ S dönüşümü artmış, V/ SiO ₂ katalizöründe bu değer azalmıştır.
(Keller, 2000)	Fe ₂ O ₃ /SiC Islak Emdirme	SiC desteği üzerine Fe ₂ O ₃ yüklemesi	Sabit Yataklı reaktör O ₂ /H ₂ S: 2,5 Reaksiyon sıcaklığı 210-240 °C Hacmen %20 su buharı	Fe ₂ O ₃ / SiC katalizörünün 240°C reaksiyon sıcaklığında su buharı varlığında aktivitesi incelenmiştir. Su buharı varlığında katalizörün aktivitesi değişmemiştir. Ancak kükürt seçiciliği %90'dan %82'ye düşmüştür.
(Ledoux, 2000)	SiC/ NiS ₂ Islak Emdirme Metodu	NiS ₂ desteği üzerine kütlece %5 SiC yüklemesi	Sabit yataklı reaktör O ₂ /H ₂ S oranı: 1,6 Reaksiyon sıcaklığı: 40-60 °C	Düşük sıcaklıklarda SiC/ NiS ₂ katalizörü seçici ve kararlı bulunmuştur. Katalizör, yüzeyindeki kükürt birikimine rağmen H ₂ S dönüşümünde azalma tespit edilmemiştir.
(Uhm, 1999)	Cr ₂ O ₃ ve Cr ₂ O ₃ /SiO ₂ Emdirme Metodu	SiO ₂ üzerine kütlece %2.5, %5, %10, %15, %30 CrO _x yüklemesi	Dolgulu yatak reaktör O ₂ /H ₂ S oranı: 0,4- 0,7 Reaksiyon Sıcaklığı: 225-325 °C	Kütlece %10 CrO _x yüklenmiş CrO _x /SiO ₂ katalizörü O ₂ /H ₂ S oranı 0,5 olduğunda en yüksek kükürt verimini verdiği gözlemlenmiştir. Cr ₂ O ₃ katalizörü Cr ₂ O ₃ /SiO ₂ katalizörüne göre düşük sıcaklıklarda suya karşı yüksek direnç ve yüksek kükürt verimi verdiği gözlemlenmiştir.
(Pi, 2003)	N _a X-WO ₃ Mekanik Karıştırma Metodu	Kütlece oranı N _a X-WO ₃ : 1-20	Sabit Yataklı reaktör O ₂ /H ₂ S: 0,5 Reaksiyon sıcaklığı 200-300 °C Hacmen %10 su buharı	Katalitik aktivite testleri sonucu optimum N _a X/WO ₃ oranı (kütlece):9/1 olarak bulunmuştur. Su buharı varlığında NaX zeolitinin aktivitesi katalizör yüzeyinde su buharının güçlü adsorplanmasından dolayı düşük çıktığı belirtilmiştir
(Primavera, 1998)	Ticari Aktif Karbon	-	Sabit Yataklı Mikroreaktör %1-3 H ₂ S, aşırı veya stokiyometrik O ₂ Reaksiyon sıcaklığı 25-70 °C %0-90 bağıl nem içeren su	Su buharı varlığı katalizör performansını iyi yönde etkilemiştir. Su varlığı karbonun yapısındaki boşluklarda sıvı bir tabaka oluşturmuştur ve bu da katalitik reaksiyon için önemli bir gereksinimdir.

Çizelge 2.4.(devam) H₂S'ün katalitik oksidasyonunda farklı metaller ile yapılan çalışmalar

Gerçekleştirilen literatür araştırması sonucunda birçok metal ve metal oksit bileşiklerinin H₂S'ün elementel kükürte seçici katalitik oksidasyon çalışmalarında denendiği görülüştür. Bu çalışmada literatürde daha önce bulunmayan alümina destekli Ti-Ce katalizörlerinin sentezlenmesi, karakterizasyonu ve katalitik aktivite testleri gerçekleştirilmiştir. Seryumun kafes yapısındaki oksijen hareketliliği titanyumun su buharı varlığındaki aktivite kaybını önleyebileceği düşünülmektedir. Ayrıca titanyumun kükürte karşı yüksek direnci ve alümina malzemesinin yüksek yüzey alanı, gözenekliliği, termal ve mekanik dayanıklılığı bu maddelerin seçilmesinde önemli faktörler olmuştur.

3. DENEYSEL ÇALIŞMA

Yüksek lisans çalışması kapsamında alümina malzemeleri iki farklı sol-jel yöntemi (Sol-jel 1 ve sol-jel 2) ile sentezlenmiş ve bu malzemelerin aktiviteleri ticari olarak bulunan alümina malzemesi ile karşılaştırılmıştır. Alümina destekli Ti-Ce katalizörleri ise sentez yönteminin katalitik aktiviteye etkisinin incelenmesi için iki farklı sentez metodu (ıslak emdirme ve tek-kap yöntemleri) ile sentezlenmiştir. Ayrıca alümina desteğinin katalitik aktivite üzerine etkisinin incelenmesi için Ti-Ce katalizörü komplekleştirme metodu ile sentezlenmiş ve bu katalizör ile aktivite testi gerçekleştirilmiştir. Gerçekleştirilen sentez ve katalitik aktivite testlerinden sonra karakterizasyon (N₂ adsorpsiyon-desorpsiyon, XRD, XPS, EDS, FT-IR, TPR, TGA, TEM, NMR) çalışmaları yürütülmüştür. Çalışmada uygulanan deneysel yöntemin ayrıntıları devam eden bölümde alt başlıklar halinde verilmektedir.

3.1. Katalizör Sentezi

Çalışma boyunca Ti-Ce, alümina, alümina desteli Ti-Ce katalizörlerinin sentezi için beş (5) farklı metot kullanılmıştır. Bu metotlar kullanılan kimyasal maddelerle beraber aşağıda başlıklar halinde sunulmaktadır.

3.1.1. Kompleksleştirme yöntemi

Alümina desteğinin katalitik aktiviteye etkisinin incelenmesi amacıyla sentezlenen desteksiz Ti-Ce katalizörü (Ti/Ce: 4/1) komplekleştirme yöntemi kullanarak sentezlenmiştir (Yasyerli, 2004; Marcilly, 1970). Bu yöntem için kullanılan kimyasallar ve sentez yöntemi aşağıda ayrıntılı olarak açıklanmaktadır.

Kullanılan kimyasallar;

- Titanyum İzopropoksit (C₁₂H₂₈O₄Ti), (%98), Merck
- Cerium (III) Nitrat hexahidrat (Ce (NO₃)₃.6H₂O), (%98,5), Merck
- Sitrik Asit Monohidrat (C₆H₈O₇.H₂O), (%99,5), Merck
- Etanol (C₂H₅OH), (% 99,5), Merck

Kompleksleştirme metodu, yapısında en az bir hidroksil veya karboksil grubu bulunduran organik asit çözeltisiyle metal tuz çözeltisinden belirli basamaklar sonrasında metal oksit veya karışık metal oksit yapılarının elde edildiği bir sentez yöntemidir. Kompleksleştirme yöntemi viskoz çözelti eldesi, katı köpük oluşumu ve kalsinasyon işlemi olmak üzere temel olarak üç (3) basamaktan oluşmaktadır.

I. basamak;

Eşmolar oranda seryum ve/veya titanyum tuzu ve sitrik asit çözeltileri hazırlanır. Sitrik asit çözeltisi metal tuzu çözeltisinin üzerine yavaş yavaş eklenir. Elde edilen çözelti 65°C sıcaklıkta ısıtıcılı manyetik karıştırıcıda karıştırılır. Çözelti viskoz bir hal alıncıya kadar karıştırma işlemi sürdürülür. Bu basamak sonucunda homojen viskoz bir çözelti elde edilir.

II. basamak;

Birinci basamak sonrasında elde edilen viskoz çözelti saat camlarına ince tabakalar halinde yayılır ve 65°C sıcaklıkta tutulan etüve yerleştirilir. Viskoz çözelti, katı köpük oluşuncaya kadar etüvde tutulur (Yaklaşık 18 saat).

III. basamak;

İkinci basamak sonrasında elde edilen katı köpük malzeme kırılarak toz haline getirilir. Porselen krozelere alınan toz numune kül fırınında 550 °C sıcaklık ve 8 saat boyunca kalsine edilir. Bu basamak sonucunda metal oksit yapının oluşması beklenmektedir. Şekil 3.1'de kompleksleştirme yönteminin şematik gösterimi verilmektedir.

Şekil 3.1. Kompleksleştirme yönteminin şematik gösterimi

3.1.2. Sol-jel 1 (SG1) yöntemi

Çalışma boyunca destek alümina malzemesinin sentezi için kullanılan yöntemlerden biri sol-jel 1 yöntemidir. Daha önce literatürde Şeker, 2002'in kullandığı yöntemin detaylı açıklaması ve kullanılan kimyasal maddeler aşağıda verilmektedir.

Kullanılan kimyasallar;

- Alüminyum İzopropoksit (C₉H₂₁AlO₃), (%98), Merck
- 1,3 Bütandiol (C₄H₁₀O₂), (%99), Merck
- Nitrik Asit (HNO₃),(%65), Merck

Sol-Jel 1 sentezinin basamakları şu şekildedir;

- Deiyonize su 85°C'a kadar ısıtılır.
- Alüminyum izopropoksit (AIP) (Su/AIP: 10 ml/1 g) 85°C'daki suya kuvvetli bir karıştırma altında ilave edilir.
- Bu sırada buharlaşmadan doğacak su kaybını engellemek için kullanılan geri soğutucu kapatılır ve çözelti 85°C sıcaklıkta 1 saat boyunca karıştırmaya bırakılır.
- Nitrik Asit (HNO₃) asit (HNO₃/AIP: 0.195 mol/ 1 mol) bu çözeltiye ilave edilir ve çözelti 85°C'da 1 saat boyunca karıştırmaya bırakılır.
- 1,3 Bütandiol 85°C sıcaklıkta tutulan çözeltiye ilave edilir ve 1 saat boyunca karıştırmaya bırakılır.
- Isıtıcı kapatılır, çözelti 24 saat boyunca orta şiddette karıştırmaya tabii tutulur.
- 24 saatin sonunda çözelti geniş bir behere alınır ve karıştırma yapılmaksızın düşük sıcaklıkta çözücünün buharlaştırılması işlemine başlanır.
- Jel oluştuğunda, çözelti zamanla viskoz bir hal alır ve ısıtıcı kapatılır.
- Bu noktadan sonra jel 100°C sıcaklıkta bir gece boyunca kurutma işlemine tabii tutulur.
- Kurutulan jel 600 °C sıcaklıkta 24 saat boyunca kalsine edilir.

Şekil 3.2'de sol-jel-1 (SG1) yöntemi ile alüminanın hazırlanmasının şematik gösterimi verilmiştir.

Şekil 3.2. Sol-jel 1 (SG1) yönteminin şematik gösterimi

3.1.3. Sol-jel 2 (SG2) yöntemi

Alümina malzemesinin sentezlendiği ikinci yöntem SG2 kısaltmasıyla verilmiş olan sol-jel 2 yöntemidir. SG2 yöntemi ile malzeme sentezi, azot ortam odacığında (Glove Box) gerçekleştirilmiştir. Kullanılan kimyasal maddeler ve yöntem aşağıda ayrıntılı bir şekilde verilmiştir.

Kullanılan kimyasallar;

- Alüminyum tri-sekonder bütoksit (C₁₂H₂₇AlO₃), (% 97), Merck
- Etil asetoasetat ($C_8H_{10}O_3$), (%98), Merck
- Etanol (C₂H₅OH), (% 99,5), Merck
- Etilen Diamin (C₂H₈N₂), (%99), Merck

SG2 yönteminin basamakları ise şu şekildedir;

- Alüminyum tri-sekonder bütoksit ve etil asetoasetat oda sıcaklığında bir saat boyunca karıştırılır.
- Çözeltiye etanol ilavesi gerçekleştirilerek 1 saat süreyle karıştırılmaya devam edilir.

- Başka bir beherde hazırlanan etanol-su karışımı başlangıç çözeltisine ilave edilir ve karıştırma işlemine oda sıcaklığında 2 saat süreyle devam edilir.
- Bu çözelti üzerine etilen diamin-su çözeltisi ilave edilir ve jel oluşumu gözlenir.
- Jel oluşumundan sonra çözelti bir hafta süreyle yaşlandırmaya bırakılır. Bir haftanın sonunda çözelti (sol) ve jel (gel) kısmı beher içerisinde ayrı ayrı gözlenir.
- Çözelti kısmı tamamen uzaklaştırılıncaya kadar 100°C sıcaklıkta kurutma işlemi gerçekleştirilir. Kurutulan jel 600 °C sıcaklıkta 24 saat boyunca kalsine edilir.

Şekil 3.3'te sol-jel-2 (SG2) yöntemi ile alüminanın hazırlanmasının şematik gösterimi verilmiştir.

Şekil 3.3. Sol-jel 2 (SG2) yönteminin şematik gösterimi

3.1.4. Islak emdirme yöntemi

Çalışma boyunca ıslak emdirme yöntemiyle alümina destekli Ti-Ce katalizörleri (Ti-Ce@Al₂O₃) sentezlenmiştir. Kullanılan kimyasal maddeler ve sentez yöntemi aşağıda ayrıntılı bir şekilde verilmiştir.

Kullanılan kimyasallar;

- Titanyum İzopropoksit (C₁₂H₂₈O₄Ti), (%98), Merck
- Cerium (III) Nitrat hexahidrat (Ce (NO₃)₃.6H₂O), (%98,5), Merck
- Etanol (C₂H₅OH), (% 99,5), Merck

Islak emdirme yönteminin sentez basamakları aşağıda özetlenmektedir:

- Ti ve Ce tuzlarının 0,1 M'lık çözeltisi oda koşullarında hazırlanır.
- Bir başka beher içerisinde destek malzemesi süspansiyonu hazırlanır.
- Metal tuz çözeltisi, destek malzemesi süspansiyonu üzerine damla damla ilave edilir ve 48 saat boyunca oda sıcaklığında karıştırılır.
- Elde edilen süspansiyon, çözücüsü tamamen uçuruluncaya kadar 70-75°C sıcaklıkta karıştırılır.
- Çözücüsü uçurulan malzeme 550°C sıcaklıkta 8 saat kalsine edilir.

Şekil 3.4'te ıslak emdirme yönteminin şematik gösterimi verilmiştir

Şekil 3.4. Islak emdirme yönteminin şematik gösterimi

3.1.5. Tek-kap yöntemi

Tek-kap yöntemi ile alümina destekli Ti-Ce (Ti-Ce-Al₂O₃) katalizörleri iki farklı şekilde sentezlenmiştir. SG1 alümina destekli Ti-Ce katalizör sentezinin basamakları bölüm 3.1.2'de verilen SG1 alümina sentezliyle aynıdır. Tek-kap yöntemiyle SG1-alümina destekli katalizörün hazırlanmasında Şekil 3.2'de verilen şematik gösterimde 1,3 bütandiol ilavesiyle beraber Ti ve Ce tuzu çözeltileri de senteze dahil edilmiştir. Bu yöntemde kullanılan kimyasal maddeler aşağıda verilmektedir.

Kullanılan kimyasallar;

- Titanyum İzopropoksit (C₁₂H₂₈O₄Ti), (%98), Merck
- Cerium (III) Nitrat hexahidrat (Ce (NO₃)₃.6H₂O), (%98,5), Merck
- Alüminyum İzopropoksit (C₉H₂₁AlO₃), (%98), Merck
- 1,3 Bütandiol (C₄H₁₀O₂), (%99), Merck
- Nitrik Asit (HNO₃),(%65), Merck

Tek-kap yöntemi ile SG2 alümina destekli Ti-Ce katalizör sentezinin basamakları bölüm 3.1.3'de verilen SG2 alümina senteziyle aynıdır. Tek-kap yönteminde Şekil 3.3'de verilen şematik gösterimde etilen diamin ve su karışımının ilavesiyle beraber Ti ve Ce tuzu çözeltileri de senteze dahil edilmiştir. Bu yöntemde kullanılan kimyasal maddeler aşağıda verilmektedir.

Kullanılan kimyasallar;

- Alüminyum tri-sekonder bütoksit (C₁₂H₂₇AlO₃), (% 97), Merck
- Etil asetoasetat ($C_8H_{10}O_3$), (%98), Merck
- Etanol (C₂H₅OH), (% 99,5), Merck
- Etilen Diamin (C₂H₈N₂), (%99), Merck
- Titanyum İzopropoksit (C₁₂H₂₈O₄Ti), (%98), Merck
- Cerium (III) Nitrat hexahidrat (Ce (NO₃)₃.6H₂O), (%98,5), Merck

Çalışma kapsamında emdirme ve tek-kap yöntemleri ile hazırlanan alümina destekli katalizörler farklı kütlesel oranlarda Ti-Ce içerecek şekilde hazırlanmıştır. Farklı kütlesel oranlarda sentezlenen alümina destekli katalizörlerin adlandırılmasına ilişkin örnek Şekil 3.5'de verilmiştir.

Şekil 3.5. Alümina destekli Ti-Ce katalizörlerinin adlandırılması

Yüksek lisans tez çalışması kapsamında H_2 S'ün elementel kükürde seçici katalitik oksidasyonu için sentezlenen katalizör Çizelge 3.1'de verilmiştir.

Katalizör Sentez hazırlama yöntemi		Ti/Ce molar oranı	% Ti+Ce kütlesel oran
Ti80Ce20	Kompleksleştirme Yöntemi	4/1	
Ticari Alümina			
SG1 Alümina	Sol-jel 1 yöntemi		
SG2 Alümina	Sol-jel 2 yöntemi		
Ti80Ce20@Al ₂ O ₃ -20w	Islak emdirme yöntemi	4/1	20
Ti80Ce20@Al ₂ O ₃ -SG1-20w	Islak emdirme yöntemi	4/1	20
Ti80Ce20@Al ₂ O ₃ -SG2-20w	Islak emdirme yöntemi	4/1	20
Ti80Ce20@Al ₂ O ₃ -SG1-10w	Islak emdirme yöntemi	4/1	10
Ti80Ce20@Al ₂ O ₃ -SG2-10w	Islak emdirme yöntemi	4/1	10
Ti80Ce20@Al ₂ O ₃ -SG1-5w	Islak emdirme yöntemi	4/1	5
Ti80Ce20@Al ₂ O ₃ -SG2-5w	Islak emdirme yöntemi	4/1	5
Ti80Ce20-Al ₂ O ₃ -SG1-10w	Tek-kap yöntemi	4/1	10
Ti80Ce20-Al ₂ O ₃ -SG2-10w	Tek-kap yöntemi	4/1	10

Çizelge 3.1.Çalışma kapsamında sentezlenen katalizörler

3.2. Karakterizasyon Çalışmaları

Çalışma boyunca sentezlenen ve katalitik aktivite test çalışmalarında kullanılan katalizörlerin reaksiyon öncesi ve sonrası yapısal, fiziksel ve kimyasal özelliklerinin belirlenebilmesi amacıyla N₂ adsorpsiyon-desorpsiyon, X-ışını kırınım desenleri (XRD), X-ışını fotoelektron spektroskopisi (XPS), enerji dispersif X-Işını (EDS), sıcaklık programlı indirgeme (TPR), termal gravimetrik analiz (TGA/DTA), Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), nükleer manyetik rezonans (NMR) ve geçirimli elektron mikroskopu (TEM) analizleri gerçekleştirilmiştir. Gerçekleştirilen analizlerin detaylı anlatımı bu bölümde alt başlıklar halinde verilmektedir.

3.2.1. N₂ adsorpsiyon-desorpsiyon analizleri

Sentezlenen katalizörlerin gözenek hacminin, yüzey alanının, gözenek boyut ve dağılımının belirlenmesi için azot adsorpsiyon-desorpsiyon analizi yapılmıştır. Azot adsorpsiyon-desorpsiyon analizleri Gazi Üniversitesi Kimya Mühendisliği Bölümünde ve Orta Doğu Teknik Üniversitesi Merkez Laboratuvarında bulunan QuantoChrome-Autosorb-1C cihazları kullanılarak gerçekleştirilmiştir. Analize başlamadan önce, vakum ortamında helyum gaz akımıyla 120°C sıcaklıkta numunenin gözeneklerinin boşaltılması işlemi gerçekleştirilir. Bu işlemden sonra tartımı alınan numune cihazın analiz kısmına yerleştirilir. Analiz başlamadan önce cihazdaki her iki sıvı azot kabı sıvı azot ile doldurulur. Bilgisayardaki "autosorb" programına numune ile ilgili bilgiler (Numune adı, miktarı vb.) girilerek analiz başlatılır.

3.2.2. X-Işını kırınım deseni (XRD) analizi

X-Işını Kırınım deseni (XRD), her bir kristalin fazın kendine özgü atomik dizilimlerine bağlı olarak X-ışınlarını karakteristik bir düzen içerisinde kırması esasına dayanır. Her bir kristal faz için bu kırınım profilleri parmak izi gibi o kristali tanımlar.

W. L. Bragg tarafından geliştirilen teori, X-ışınları kırınım teorileri içinde en yaygın olarak kullanılanıdır. Aralarında 'd' kadar mesafe bulunan kristal düzlemlerinden saçılan ' λ ' dalga boylu X-ışınları, θ açısını oluştururlar. Deneysel parametre olan 2 θ değeri ise saçılan ve geldiği doğrultusunda devam eden X-ışınları demeti arasındaki açıdır. Yansıma açısı ile

maddenin örgü düzlemleri arasındaki uzaklık (d) Bragg Yasası ile ifade edilir (Brundle ve Evans, 1996).

$$N\lambda = 2dsin(\theta) \tag{3.1}$$

Burada;

 λ : Dalga boyu

- N: Düzlem numarası
- θ: Kırınım açısı (Gelen ışının düzlemin normali arasındaki açı)
- d: Malzemenin örgü düzlemleri arasındaki mesafe

Hazırlanan malzemenin kristal boyutu Scherrer yasası (Brundle ve Evans, 1996) ile (Eş. 3.2) belirlenmiştir.

$$L = \frac{n\lambda}{B_{gerçek}\cos\theta}$$
(3.2)

Burada;

L: Kristal boyutu (nm)

- λ : Dalga boyu (1,5406 A, Cu $K_{\alpha})$
- θ : Kırınım açısı
- n: Analizde kullanılan cihazlara ve çalışılan numuneye bağlı olan birimsiz şekil faktörü (Hesaplamalarda 0,89 olarak alınmıştır)
- B_{gerçek}: XRD desenindeki metale ait en yüksek pik uzunluğunun yarısının genişliği ("Full width at half maximum", FWHM)

Katalizörlerin XRD analizleri Orta Doğu Teknik Üniversitesi Merkez Laboratuvarında bulunan Rigaku marka D/MAX 2200 cihazı kullanılarak gerçekleştirilmiştir. Analizler 1-90° tarama aralığı ve 2°/dakika tarama hızında gerçekleştirilmiştir.

3.2.3. X-Işını fotoelektron spektroskopisi (XPS) analizi

X-ışını fotoelektron spektroskopisi (XPS) malzemenin yüzeyi ile ilgili olarak atomik ve moleküler düzeyde bilgi sağlanması amacıyla kullanılan analiz tekniğidir. Bu analiz ile katalizör yüzeyinden 5-10 nm derinliğe inilerek yüzey özellikleri ile ilgili bilgiler alınmaktadır. Analizler, Al monokromatik x-ışını anodu kullanılarak 0-1200 eV bağlanma enerjisi aralığında Orta Doğu Teknik Üniversitesi Merkez laboratuvarında bulunan SPECS marka cihazda gerçekleştirilmiştir.

3.2.4. Enerji dispersif X-ışını spektroskopisi (EDS) analizi

Herhangi bir örnek veya örnek üzerindeki ilgili küçük bir alanda elementel derişimi tanımlamak için kullanılan bir tekniktir. Elektron mikroskobunda (SEM) bulunan EDS analizi, örnek üzerine taramalı bir elektron demeti düşürülerek gerçekleştirilir. Bu elektronların bazıları numune içindeki elektronlar ile çarpışarak elektronların yörüngelerinden çıkması sağlanır. Boşalan pozisyonlar x-ışınları yayan yüksek enerjili elektron tarafından doldurulur. Yayılan x-ışınları analiz edilerek, numunenin elementel derişimi tespit edilebilmektedir. Bu analiz ile katalizör yüzeyinden 1-2 mikron derinliğe inilerek yığın faz ile ilgili bilgiler alınmaktadır. EDS analizleri, Orta Doğu Teknik Üniversitesi Merkez laboratuvarında QUANTA 400F Field Emission SEM cihazı ile gerçekleştirilmiştir.

3.2.5. Sıcaklık programlı indirgeme (TPR) analizi

Katalizör yapısındaki metallerin indirgenme sıcaklıklarının belirlenmesi amacıyla yapılmıştır. Katalizörler indirgenmeden önce He ile 10°C/dakika sıcaklık artışıyla oda sıcaklığından 150°C' a kadar ısıtılır ve bu sıcaklıkta 1 saat He ortamında bekletilir. Numuneler 10°C/dakika sıcaklık artışıyla oda sıcaklığından 700°C' a kadar %5 H₂ - %95 N₂ gaz karışımı ile indirgenir. TPR analizleri Gazi Üniversitesi Kimya Mühendisliği Bölümünde bulunan Chembet 3000 cihazı ile yapılmıştır.

3.2.6. Termal gravimetrik analizi (TGA-DTA)

Katalizörlerin sıcaklık ile yapısal değişimin görülebilmesi amacıyla termal gravitmetrik analizleri (TGA) yapılmıştır. Katalizörlerin TGA analizleri, 25^oC-800^oC sıcaklık aralığında, 10 ^oC/dakika ısıtma hızında ve hava ortamında gerçekleştirilmiştir. TGA analizleri Orta Doğu Teknik Üniversitesi, Merkez laboratuvarında bulunan Perkin Elmer Pyris 1 Termogravimetrik Analiz cihazı ile yapılmıştır.

3.2.7. Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizi

FTIR spektrometre cihazları ile aynı anda geniş bir spektrum aralığında spektral veriler almak mümkündür. Katı, sıvı ve gaz numunelerin kızılötesi (infrared) spektrumu elde edilebilir. Infrared spektrumu numunenin özelliğine bağlı olarak her numune için karakteristiktir. Bu teknik ile organik veya inorganik yapıdaki katı, sıvı ve gaz örneklerin, IR aktif molekül özellikleri kullanılarak kalitatif ve kantitatif analizlerini çok hızlı bir şekilde yapılabilmektedir. Katalizörlerin FTIR analizleri Orta Doğu Teknik Üniversitesi, Merkez laboratuvarında bulunan Perkin Elmer Spectrum One FTIR cihazıyla 4000-450 cm⁻¹ dalga boyu aralığında gerçekleştirilmiştir.

3.2.8. Pridin adsorplanmış katalizörlerin fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizi

Bazı katalizörlerin yüzey asitliğinin belirlenmesi amacıyla piridin adsorplanmış numunelerin FT-IR analizleri gerçekleştirilmiştir. Analizi yapılacak olan numune 110°C sıcaklıkta 12 saat boyunca kurutulur. Daha sonra bu numuneler üzerine piridin damlatılır ve 2 saat süreyle 40°C sıcaklıkta tutulur. Piridin adsorplanmış numunelerin FT-IR spektrumları alınır. Piridin adsorplanmış numunelerin FT-IR analizleri, Orta Doğu Teknik Üniversitesi Kimya Mühendisliği Bölümü Kinetik laboratuvarında ve Orta Doğu Teknik Üniversitesi merkez laboratuvarında bulunan Perkin Elmer Spectrum One FT-IR cihazları ile gerçekleştirilmiştir.

3.2.9. Nükleer manyetik rezonans (NMR)

Manyetik alan içinde tutulan ve spini olan bir çekirdeğin uygun frekans değerinde bir radyo dalgası fotonu ile rezonansa gelmesi ilkesine dayanan spektroskopik yönteme Nükleer Manyetik Rezonans (NMR) spektrometresi denir. NMR kullanarak bileşiğin yapı şekli, bağlanma özellikleri, molekül formülü ve ağırlığı, moleküler hareketleri, ve polimerlerin yapısal düzeni hakkında bilgiler edinilebilir. Analizler, Orta Doğu Teknik Üniversitesi Merkez laboratuvarında bulunan Bruker Biospin marka cihazda gerçekleştirilmiştir.

3.2.10. Geçirimli elektron mikroskopu (TEM)

Katalizörün morfolojisinin ve gözenek yapısının belirlenebilmesi için kullanılmaktadır. Malzemenin içinden geçirilen yüksek enerjili elektronların görüntülenmesi prensibine dayanır. TEM analizleri Orta Doğu Teknik Üniversitesi Merkez laboratuvarında bulunan FEI marka Tecnai G2 Spirit Biotwin cihazı ile gerçekleştirilmiştir.

Çalışma kapsamında katalizörler ile gerçekleştirilen karakterizasyon çalışmaları Çizelge 3.2'de verilmiştir.

	Reaksiyon Öncesi								Reaks	iyon Sonr	ası							
Katalizör	N ₂ Ads-Des	EDS	FTIR	NMR	FTIR (Piridin)	TGA- DTA	TPD	TPR	XRD	TEM	XPS	EDS	FTIR	FTIR (Piridin)	TPD	XRD	XPS	TEM
Ticari Alümina	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
SG1	\checkmark				\checkmark			\checkmark	\checkmark		\checkmark	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	√*	
SG2		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	√*	
Ti80Ce20	\checkmark	\checkmark	\checkmark						\checkmark		\checkmark	\checkmark				\checkmark		
Ti80Ce20@ Al ₂ O ₃ -20w					\checkmark				\checkmark			\checkmark				\checkmark		
Ti80Ce20@ Al ₂ O ₃ -SG1- 20w	\checkmark	\checkmark			\checkmark				\checkmark			\checkmark				\checkmark		
Ti80Ce20@ Al ₂ O ₃ -SG2- 20w		\checkmark			\checkmark				\checkmark			\checkmark				\checkmark		
Ti80Ce20@ Al ₂ O ₃ -SG1- 10w	\checkmark	\checkmark	V		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	$\sqrt{*}$			\checkmark		$\sqrt{*}$
Ti80Ce20@ Al ₂ O ₃ -SG2- 10w	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		$\sqrt{*}$	$\sqrt{*}$			$\sqrt{*}$		$\sqrt{*}$
Ti80Ce20@ Al ₂ O ₃ -SG1- 5w		\checkmark							\checkmark			\checkmark				\checkmark		
Ti80Ce20@ Al ₂ O ₃ -SG2- 5w		\checkmark							\checkmark			\checkmark				\checkmark		
Ti80Ce20- Al ₂ O ₃ -SG1- 10w	\checkmark	\checkmark	\checkmark						\checkmark			\checkmark	\checkmark			\checkmark		
Ti80Ce20- Al ₂ O ₃ - SG2- 10w	\checkmark	\checkmark										\checkmark	$\sqrt{*}$			$\sqrt{*}$	$\sqrt{*}$	

*Uzun ömürlülük testi

3.3. Reaksiyon Çalışmaları

Çalışma kapsamında H_2S' ün elementel kükürde seçici katalitik oksidasyon reaksiyonları Gazi üniversitesi kinetik laboratuvarında bulunan dolgulu kolon reaktör sisteminde yürütülmüştür. Katalitik aktivite test çalışmaları farklı reaksiyon sıcaklıklarında (200-300°C) ve farklı besleme gazı bileşimlerinde (O₂/H₂S: 0-2) gerçekleştirilmiştir. Bu çalışmalardan sonra su buharı varlığının katalitik aktivite üzerine etkisinin incelenmesi için sistem revize edilmiştir. Su buharı varlığında gerçekleştirilen sistemin detaylı açıklaması bölüm 3.3.1'de verilmiştir.

3.3.1. Aktivite test çalışmaları

Bu bölümde hazırlanan Ti-Ce, alümina ve destekli Ti-Ce katalizörleriyle 200, 250 ve 300°C sıcaklıklarda farklı O₂ konsantrasyonlarında gerçekleştirilen çalışma şartları özetlenmektedir. Aktivite test çalışmalarında, besleme gazı bileşimi kütle akış ölçerler ile ayarlanmıştır. Deneylerde reaktör olarak 6 mm iç çaplı ve yüksek sıcaklıklara karşı dayanıklı quartz cam boru kullanılmıştır. Besleme gazı bileşiminin ayarlanması ve olası bir problem esnasında gazların güvenli bir şekilde sistemden uzaklaştırılması amacıyla sistemde yan-geçiş hatları mevcuttur. Sıcaklık kontrollü tüp fırın ile reaksiyon sıcaklıkları ayarlanmaktadır. Reaksiyon sonucu oluşacak kükürdün kükürt yoğunlaştırıcısında toplanması için reaktör çıkışı ve kükürt yoğunlaştırıcı arasındaki boru hattı ısıtıcı bant yardımıyla yaklaşık 200°C sıcaklıkta tutulmuştur. Reaksiyon sonucu ürün olarak oluşabilecek su buharının yoğunlaşmasını önlemek amacıyla FTIR girişi ve kükürt yoğunlaştırıcı arasındaki boru hattı varyak yardımıyla yaklaşık 100°C civarında tutulmuştur. Reaktör çıkışı gaz analizleri, reaktör çıkışına "on-line" bağlı bulunan Perkin-Elmer marka Fourier Transform Infrared Spektrometresi (FT-IR) ile yapılmıştır. H₂S'ün seçici katalitik oksidasyon reaksiyon deneylerinin yapılışı sırasında uygulanan yöntem aşağıda basamaklar halinde özetlenmektedir.

- Bilgisayar açıldıktan sonra on-line FTIR cihazının programı "spectrum one" çalıştırılır.
- Programda enerji düzeyi denetlenir ve FTIR hücresinin spektrumlarına bakılır.
- Hücrede kalan artıkların temizlenmesi amacıyla gaz hücresinin sıcaklığı 40 °C'ye ayarlanır ve hücreden bir süre inert gaz (He) geçirilir.

- Gaz hücresinin temizliğinden emin olmak için referans spektrum alınır.
- Katalitik aktivitede kullanılacak katalizörden 0,2 gram tartılır ve cam reaktöre yerleştirilir. Cam reaktörde malzeme yüksek sıcaklığı dayanıklı cam pamukları ile her iki taraftan desteklenir.
- Hazırlanan dolgulu kolon reaktör tüp fırına yerleştirilir ve sıcaklık kontrollü tüp fırın ile reaksiyon sıcaklığı ayarlanır.
- Reaksiyon sıcaklığına ulaşıldığında dolgulu kolon üzerinden bir süre daha inert gaz (He) geçirilir ve gözeneklerin temizlenmesi sağlanır.
- Besleme gazlarının akış hızları by-pass hattında kütle akış ölçerler yardımıyla ayarlanarak gaz karışımı hazırlanır.
- Gözeneklerin temiz olduğuna emin olduktan sonra hazırlanan karışım sisteme gönderilir ve zamana karşı spektrumlar alınır.
- Gaz hücresindeki nem ve kirliliğin giderilmesi için hücre 150°C sıcaklığa ayarlanır ve sistemden bir süre daha inert gaz (He) geçirilir.

Aktivite test sisteminin şematik gösterimi şekil 3.6'da verilmektedir.

Yapılan tüm deneyler 100 cm³/dakika (GHSV: 30000 h⁻¹) toplam akış hızında ve H₂S gaz oranı %1'de sabit tutularak gerçekleştirilmiştir. Deneysel sonuçları reaktör çıkışında gaz akımında bulunan H₂S, SO₂ ve H₂O'nun zamana karşı değişimleri ile değerlendirilmiştir. Oksidasyon reaksiyonunda H₂S dönüşümü (Eş. 3.3) ve elementel kükürt seçiciliği (Eş. 3.4) aşağıda verilen eşitlikler ile tanımlanmıştır. Ürün gaz akımında bulunması muhtemel gazların piklerinin görüleceği dalga boyları Çizelge 3.3'de verilmektedir.

H₂S dönüşüm =
$$\frac{[H_2S]_{giren} - [H_2S]_{cikan}}{[H_2S]_{giren}}$$
(3.3)

Kükürt Seçiciliği=
$$\frac{[H_2S]_{giren} - [H_2S]_{\varsigma_l kan} - [SO_2]_{\varsigma_l kan}}{[H_2S]_{giren} - [H_2S]_{\varsigma_l kan}}$$
(3.4)

Çizelge 3.3.Reaktör çıkışındaki gaz akımı analizi için dalga boyları

Bileşen	Dalga Boyları, cm ⁻¹		
H_2S	2614-2772		
SO_2	1050-1230		
H ₂ O	1414-1972		

Reaksiyon sonrası FTIR analizinde gözlenen H₂S, SO₂ ve H₂O bileşiklerine ait örnek FTIR spektrumları ile SO₂ ve H₂S'ün kalibrasyon grafikleri EK-1'de verilmiştir.

Çizelge 3.4, Çizelge 3.5 ve Çizelge 3.6'da alümina, Ti-Ce, emdirme yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörleri ve tek-kap yöntemi hazırlanan alümina destekli Ti-Ce katalizörleri ile yürütülen aktivite test şartları verilmiştir.

Katalizör	O ₂ /H ₂ S oranı	Reaksiyon sıcaklığı (°C)	Reaksiyon Süresi (dakika)
Ticari Alümina	0,5	250	150
SG1 Alümina	0,5	250	150
SG1 Alümina	0,5	250	630
SG1 Alümina	0,5	200	150
SG1 Alümina	0,5	300	150
SG1 Alümina	0,0	250	90
SG2 Alümina	0,5	250	150
SG2 Alümina	0,5	250	630
SG2 Alümina	0,5	200	150
SG2 Alümina	0,5	300	150
SG2 Alümina	0,0	250	90
SG2 Alümina	1,0	250	150
SG2 Alümina	2,0	250	150
SG2 Alümina	0	600	90

Çizelge 3.4. Alümina malzemeleri ile gerçekleştirilen reaksiyon deneyleri

Çizelge 3.5. Ti-Ce ve Emdirme metodu ile hazırlanan alümina destekli Ti-Ce katalizörleri ile gerçekleştirilen reaksiyon deneyleri

Katalizör	Katalizör Destek Malzemesi		Reaksiyon Sıcaklığı (°C)	Reaksiyon Süresi (dakika)
Ti80Ce20		0,5	250	150
Ti80Ce20@ Al ₂ O ₃ -20w	Ticari Alümina	0,5	250	150
Ti80Ce20@Al ₂ O ₃ -SG1-20w	SG1 Alümina	0,5	250	150
Ti80Ce20@Al ₂ O ₃ -SG2-20w	SG2 Alümina	0,5	250	150
Ti80Ce20@Al ₂ O ₃ -SG1-10w	SG1 Alümina	0,5	250	150
Ti80Ce20@Al ₂ O ₃ -SG1-10w	SG1 Alümina	0,5	250	510
Ti80Ce20@Al ₂ O ₃ -SG1-10w	SG1 Alümina	0,5	200	150
Ti80Ce20@Al ₂ O ₃ -SG1-10w	SG1 Alümina	0,5	300	150
Ti80Ce20@Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,5	250	150
Ti80Ce20@Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,5	250	510
Ti80Ce20@Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,5	200	150
Ti80Ce20@Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,5	300	150
Ti80Ce20@Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,0	250	150
Ti80Ce20@Al ₂ O ₃ -SG2-10w	SG2 Alümina	1,0	250	150
Ti80Ce20@Al ₂ O ₃ -SG2-10w	SG2 Alümina	2,0	250	150
Ti80Ce20@Al ₂ O ₃ -SG1-5w	SG1 Alümina	0,5	250	150
Ti80Ce20@Al ₂ O ₃ -SG2-5w	SG2 Alümina	0,5	250	150

Katalizör	Destek Malzemesi	O ₂ /H ₂ S oranı	Reaksiyon Sıcaklığı (°C)	Reaksiyon Süresi (dakika)
Ti80Ce20-Al ₂ O ₃ -SG1-10w	SG1 Alümina	0,5	250	150
Ti80Ce20-Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,5	250	150
Ti80Ce20-Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,5	250	510
Ti80Ce20-Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,5	200	150
Ti80Ce20-Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,5	300	150
Ti80Ce20-Al ₂ O ₃ -SG2-10w	SG2 Alümina	0,0	250	150
Ti80Ce20-Al ₂ O ₃ -SG2-10w	SG2 Alümina	1,0	250	150
Ti80Ce20-Al ₂ O ₃ -SG2-10w	SG2 Alümina	2,0	250	150

Çizelge 3.6. Tek-kap metodu ile hazırlanan alümina destekli Ti-Ce katalizörleri ile gerçekleştirilen reaksiyon deneyleri

3.3.2. Su buharı varlığında aktivite test çalışmaları

Çalışmanın son aşamasında yüksek aktivite gösteren katalizörler ile su buharı varlığında katalitik aktivite test çalışması gerçekleştirilmiştir. Bu amaç doğrultusunda sistemde revizyon gerçekleştirilmiştir. Suyun sisteme iletilmesi için şırınga pompa ve bu suyun sisteme buhar halinde gitmesini sağlayacak etüv, etüvün önüne sistemde gerçeklesecek tehlikeli durumu önleme amacıyla bypass hattı ilave edilmiştir. Şırınga pompadan sisteme gönderilen su, 150°C sıcaklığa ayarlanan etüvde buharlaştırılmış ve etüvün içinde bulunan dolgulu kolondan taşıyıcı He gazı yardımıyla sisteme taşınmıştır. Suyun yoğunlaşmasını önlemek amacıyla tüp firin ile etüv arasındaki botu hattına ısıtıcı bant sarılmış ve varyak yardımıyla buradaki sıcaklık 200°C'ye ayarlanmıştır. Reaksiyon sonucu oluşacak kükürdün ve suyun yoğunlaşmasını engellemek amacıyla çıkış hattı ısıtıcı bant ile 200°C sıcaklığa ısıtılmıştır. Su buharının FTIR cihazına gitmesini önlemek amacıyla reaktör çıkışında sırasıyla buz banyosu ve nem tutucu ile hazırlanmış dolgulu kolon yerleştirilmiştir. Su buharı varlığında gerçekleştirilen deneyler stokiyometrik besleme şartlarında (O₂/H₂S: 0,5), toplam akış hızı 100 cm³/dakika (GHSV: 30000 h⁻¹) olacak şekilde gerçekleştirilmiştir. Reaktör çıkışı gaz analizleri, reaktör çıkışına "on-line" bağlı bulunan Perkin-Elmer marka Fourier Transform Infrared Spektrometresi (FT-IR) ile yapılmıştır. Su buharlı deneylerin gerçekleştirildiği modifiye edilmiş reaksiyon sisteminin şematik gösterimi Şekil 3.7'de verilmiştir.

Su buharı varlığında H_2S 'ün elementel kükürde seçici katalitik oksidasyon reaksiyonlarında kullanılan katalizörler Çizelge 3.7'de verilmektedir.

Katalizör	O ₂ /H ₂ S oranı	Reaksiyon sıcaklığı (°C)	Reaksiyon Süresi (dakika)	Su buharı (%)
Ti80Ce20	0,5	250	150	6
SG1 Alümina	0,5	250	150	6
SG2 Alümina	0,5	250	150	2
SG2 Alümina	0,5	250	150	6
Ti80Ce20@Al ₂ O ₃ - SG2-10w	0,5	250	150	6
Ti80Ce20-Al ₂ O ₃ - SG2-10w	0,5	250	150	6

Çizelge 3.7. Su buharı varlığında gerçekleştirilen reaksiyon deneyleri

4. BULGULAR VE TARTIŞMA

Yüksek lisans tez çalışmasının amacı H₂S'ün elementel kükürte seçici katalitik oksidasyonunda kullanılabilecek yeni, kararlı, aktif katalizörlerin sentezlenmesi, aktivite sentezlenen katalizörlerin özelliklerinin belirlenmesi ve testlerinin gerçekleştirilmesidir. Bu amaç kapsamında iki farklı sol-jel metodu (sol-jel 1 ve sol-jel 2) ile alümina malzemeleri sentezlenmiş ve katalitik oksidasyon reaksiyonunda aktivitesi incelenmiştir. Çalışmanın ikinci aşamasında sol-jel-1 ve sol-jel-2 yöntemleri ile hazırlanan alümina malzemelerine emdirme yöntemi ile Ti ve Ce (%20, %10, %5) yüklenerek Ti-Ce@Al₂O₃ katalizörleri hazırlanmıştır. Katalitik aktivite test sonuçlarında en yüksek H₂S dönüşüm ve elementel kükürt seçicilik değerini sergileyen oranda tek-kap yöntemi ile alümina destekli Ti-Ce (Ti-Ce-Al₂O₃) katalizörleri sentezlenmiştir. 150 dakika reaksiyon süresi boyunca yüksek aktivite ve seçicilik gösteren katalizörler ile uzun ömürlülük, farklı sıcaklık ve besleme gazı bileşiminde katalitik aktivite testleri tekrarlanmıştır. Çalışmanın son aşamasında, yüksek H2S dönüşümü ve elementel kükürt seçiciliği gösteren katalizörlerle su buharı varlığında aktivite testleri gerçekleştirilmiştir. Bu amaçla sisteme revizyon yapılmış ve reaksiyon test çalışmaları, 250°C sıcaklık ve %1 H2S - %0,5 O2 - %2 ve 6 H₂O - He besleme bileşimiyle sabit yatak reaktör sisteminde gerçekleştirilmiştir.

Sentezlenen katalizörlerin reaksiyon öncesi ve sonrası fiziksel ve yapısal özelliklerinin belirlenebilmesi amacıyla karakterizasyon (N₂ adsorpsiyon-desorpsiyon, X-ışını Kırınım Deseni (XRD), Fourier Transform Kızılötesi Spektroskopisi (FTIR), X-ışını Fotoelektron Spektroskopisi (XPS), Enerji Dispersif X-ışını Spektroskopisi (EDS), Sıcaklık Programlı İndirgeme (TPR), Termal Gravimetrik Analiz (TGA-DTA), Nükleer Manyetik Rezonans (NMR) ve Geçirimli Elektron Mikroskobu (TEM)) çalışmaları gerçekleştirilmiştir.

Bu bölümde çalışma boyunca hazırlanan katalizörler ile elde edilen deneysel sonuçlar üç ana başlık altında incelenmiştir. İlk bölümde alümina malzemelerinin, ikinci bölümde emdirme yöntemiyle sentezlenen alümina destekli Ti-Ce (Ti-Ce@Al₂O₃) katalizörlerinin, son bölümde ise tek-kap yöntemiyle sentezlenen alümina destekli Ti-Ce (Ti-Ce-Al₂O₃) katalizörlerinin karakterizasyonu ve aktive test sonuçları verilmiştir.

4.1. Alümina Malzemeleri ile Gerçekleştirilen Karakterizasyonlar ve Aktivite Test Çalışmaları

Çalışma kapsamında alümina malzemeler, sol-jel 1 (SG1) olarak adlandırılan klasik sol-jel ve sol-jel 2 (SG2) olarak adlandırılan modifiye sol-jel yöntemleri ile hazırlanmıştır. Sol-jel 1 (klasik) yönteminde karıştırma, jel oluşumu, kurutma ve kalsinasyon basamakları uygulanmaktadır. Sol-Jel-2 (modifiye) yöntemi ise karıştırma, jel oluşumu, yaşlandırma, kurutma ve kalsinasyon basamaklarından oluşmaktadır. Malzemelerin H₂S'ün seçici katalitik oksidasyon reaksiyonundaki aktivite testleri gerçekleştirilmiştir. Ayrıca karşılaştırma amaçlı piyasada ticari olarak bulunan alümina malzemesiyle de karakterizasyon çalışmaları ve aktivite testleri yapılmıştır. Bu testler sonucunda yüksek H₂S dönüşümü sergileyen SG1 ve SG2 alümina malzemeleri ile farklı sıcaklık (200, 250, 300° C) ve farklı besleme (O₂/H₂S: 0; 0,5; 1; 2; %2-6 su buharı) oranlarında aktivite testleri gerçekleştirilmiştir.

4.1.1. Alümina malzemeleri ile gerçekleştirilen karakterizasyon çalışmaları

Alümina malzemelerine ait N₂ adsorpsiyon-desorpsiyon ve gözenek çap dağılım eğrileri Şekil 4.1'de verilmiştir. SG1 ve SG2 alümina malzemelerinin N₂ adsorpsiyon-desorpsiyon davranışının (Şekil 4.1a,c) tip IV adsorpsiyon izotermi ile uyumlu olduğu görülmüştür. Her iki malzemenin yaklaşık P/P₀: 0,6 relatif basıncında bir histerisis sergilemeye başladığı gözlemlenmiştir. Malzemelerin histerisis davranışı düzenli mezogözenek yapısını sergileyen H1 tipi histerisise benzemektedir (Lowell ve Shield, 1984). SG1 ve SG2 alüminaların BJH (Barret-Joiner-Halenda) ile ortalama gözenek çapı sırasıyla 6,9 ve 8,2 nm (Şekil 4.1b,d) olarak belirlenmiştir. Ticari alümina malzemesinin N₂ adsorpsiyondesorpsiyon davranışı (Şekil 4.1e) mezogözeneklilik ile uyumludur. Yaklaşık 0,4 relatif basıncında görülen histerisis davranışının H3 tipi olduğu düşünülmektedir. H3 tipi histerisislerin genelde dar aralıklı, düzensiz gözenek yapısına sahip olan malzemelerde gözlendiği ifade edilmiştir (Lowell ve Shield, 1984). Ticari alümina malzemesinin ortalama gözenek çap dağılımı (Şekil 4.1f) SG1 ve SG2 alümina malzemelerine göre daha düşük (4,7 nm) olduğu belirlenmiştir.

Şekil 4.1. Alümina malzemelerinin N₂ adsorpsiyon-desorpsiyon izotermleri ve gözenek boyutu dağılım grafikleri a-b) Sol-Jel-1 yöntemi ile hazırlanan, c-d) Sol-Jel-2 yöntemiyle hazırlanan, e-f) Ticari Alümina

Sentez yönteminde tekrarlanabilirliliğin incelenebilmesi için sol-jel 2 yöntemiyle alümina malzemeleri tekrar sentezlenmiş ve bu malzemeler ile azot adsorpsiyon desorpsiyon analizleri tekrarlanmıştır. Şekil 4.2a ve Şekil 4.2b'de izotermlerin birbirleriyle benzer olduğu ve sentezin tekrarlanabilir olduğu belirlenmiştir.

Şekil 4.2. Sol-Jel-2 yönteminin tekrar edilmesiyle hazırlanan alümina malzemelerinin N₂ adsorpsiyon-desorpsiyon izotermi ve gözenek boyutu dağılımı grafiği

Çalışma kapsamında hazırlanan alümina malzemeleri, ticari alümina ve Sol-Jel-2 yöntemi ile tekrar sentezi gerçekleştirilen alüminaların bazı fiziksel özellikleri Çizelge 4.1'de verilmektedir. Ticari alümina malzemesinin yüzey alanı, gözenek hacmi ve ortalama gözenek çapı çalışma boyunca sol-jel 1 ve sol-jel 2 yöntemleriyle hazırlanan alümina malzemelerine göre daha düşük olduğu belirlenmiştir.

Katalizör	BET yüzey alanı, m²/g	Gözenek Hacmi, cm ³ /g	Mikrogözenek hacmi, cm ³ /g	Ortalama Gözenek çapı, nm	Kristal Boyutu, nm*
Ticari Alümina	139	0,290	0,057	4,7	5,4
SG1 Alümina	277	0,611	0,116	6,9	3,4
SG2 Alümina	300	0,743	0,127	8,2	3,3
SG2 Alümina-T1	315	0,790	0,132	8,2	3,3
SG2 Alümina-T2	290				3,1

Çizelge 4.1.Alümina malzemelerinin bazı fiziksel özellikleri

Sentezlenen alümina malzemelerinin katı fazlarının belirlenebilmesi için X-ışını kırınım deseni (XRD) analizleri gerçekleştirilmiştir. Alümina malzemeleri ile gerçekleştirilen XRD analiz sonuçları Şekil 4.3'de verilmektedir. Alümina malzemelerin XRD desenlerinde amorf yapının yanında γ -Alüminaya ait karakteristik pikler (2 θ = 66,76₁₀₀, 45,79₈₀, 37,60₆₅) gözlenmiştir (Smith, 1974). Çizelge 4.2'de SG1 alümina malzemesine ait literatür verileri ile deneysel verileri ayrıntılı olarak karşılaştırılmıştır. EK-2'de ticari ve SG2 alümina malzemelerinin X-ışını kırınım desenlerinin ayrıntılı analizi verilmiştir.

Şekil 4.3. Alümina malzemelerinin X-Işını Kırınım Desenleri (y: y-Alümina)

Numune: SG1 Alümina			γ-Alümina Literatür (Smith, 1974) (File No: 29-63)		
2 theta	d	I/I ₀	d	I/I ₀	
			4,530	35	
			2,800	45	
37,54	2,390	72	2,390	65	
			2,280	40	
45,92	1,970	90	1,980	80	
			1,530	10	
66,80	1,400	100	1,400	100	

Çizelge 4.2. SG1 Alümina malzemesinin X-ışını kırınım deseni analizi

Sol-Jel-2 yöntemiyle aynı şartlarda tekrar sentezi gerçekleştirilen alümina malzemelerinin XRD desenleri Şekil 4.4'de verilmektedir. Malzemelerin XRD desenlerinde beklenildiği gibi γ-Alüminaya ait karakteristik pikler tespit edilmiştir. N₂ adsorpsiyon-desorpsiyon ve XRD analiz sonuçları Sol-Jel-2 yönteminin tekrarlanabilirliğini göstermiştir.

Şekil 4.4. Sol-Jel-2 yönteminin tekrar edilmesiyle hazırlanan alümina malzemelerinin X-Işını kırınım desenleri (γ: γ-Alümina)

Yapıda sıcaklıkla gerçekleşen değişimlerin belirlenebilmesi amacıyla kalsınasyon öncesi SG1 ve SG2 alümina malzemeleri ile hava ortamında TGA-DTA çalışmaları yürütülmüştür. Gerçekleştirilen TGA-DTA analiz sonuçları Şekil 4.5'de verilmektedir.

Şekil 4.5. Kalsine edilmemiş alümina malzemelerinin TGA/DTA profilleri (Isıtma Hızı: 10°C/dakika, Ortam: Hava)

SG1 alüminanın DTA profilinde yaklaşık 110°C, 245 °C ve 445 °C sıcaklıklarda küçük endotermik pikler bulunmaktadır. SG2 alüminanın DTA profilinde ise 95 °C ve 120 °C sıcaklıklarda iki küçük endotermik pik ve yaklaşık 450 °C sıcaklıkta geniş bir endotermik pik gözlenmektedir. Düşük sıcaklıklarda (90-110°C) görülen endotermik piklerin yapıdaki adsorplanmış su ve alkollerden kaynaklandığı (Kim, 2007) literatürde belirtilmektedir. 245 °C ve 445 °C gibi daha yüksek sıcaklıklarda görülen endotermik pik yapıdaki suyun

uzaklaşmasını göstermektedir (Kim, 2007; Zangouei, 2010). Bu sıcaklıklarda beklenen reaksiyonlar aşağıda verildiği gibi "boehmite" bozunması ve γ -Al₂O₃ yapısının oluşması ile ifade edilebilir.

$$AlO(OH).nH_2O \longrightarrow AlO(OH) + nH_2O$$
(4.1)

$$2 \operatorname{AlO}(OH) \longrightarrow \gamma \operatorname{-Al}_2O_3 + H_2O \tag{4.2}$$

Yaklaşık 275°C sıcaklıkta gözlenen ekzotermik pik ise uzaklaştırılamayan organik grupların yanması ile oluşmaktadır (Pineda, 1999). SG2 alüminada SG1 alüminaya göre daha yüksek sıcaklıkta görülen (370°C) ekzotermik pik hidrokarbonların yanması ile oluşmaktadır (Pineda, 1999). TGA çalışması sonunda SG1 ve SG2 alümina malzemelerinde gözlemlenen toplam kütle kaybı sırasıyla %38 ve %68 değerinde bulunmuştur. 600 °C sıcaklıktan sonra her iki malzemenin ağırlık kaybında ciddi bir değişim gözlenmemiştir. Şekil 4.6'da kalsine edilmiş ticari, SG1 ve SG2 alümina malzemelerinin TGA/DTA profilleri verilmiştir.

Şekil 4.6. Kalsine edilmiş alümina malzemelerinin ve ticari (Merck) alüminanın TGA/DTA profilleri (Isıtma Hızı: 10°C/dakika, Ortam: Hava)

Her üç malzemenin de yaklaşık 110°C sıcaklıkta bir endotermik pik verdiği gözlenmektedir. Bu endotermik pikin adsorplanmış organik çözücülerin ve fiziksel adsorplanmış suyun yapıdan uzaklaşmasından kaynaklandığı düşünülmektedir (Zangouei, 2010). Ticari alümina malzemesinde 1000°C sıcaklık sonucunda yaklaşık %7'lik bir kütle kaybı gerçekleşirken SG1 ve SG2 alümina malzemelerinde bu kayıp sırasıyla %15 ve %17 civarlarında gerçekleşmiştir. Şekil 4.7'de alümina malzemelerine ait TPR çalışmasında elde edilen H₂ tüketim eğrileri verilmiştir.

Şekil 4.7. Alümina malzemelerinin TPR profilleri (Isıtma Hızı: 10°C/dakika, Gaz Karışımı:% 5 H₂+%95 N₂)

Her üç alümina malzemesi de beklenildiği zayıf redoks özelliği sergilemişlerdir. Ticari alümina malzemesi 200-450°C sıcaklık aralığında, SG1 alümina malzemesi 250-650°C sıcaklık aralığında ve SG2 alümina malzemesi 150-450°C sıcaklık aralığında çok az H₂ tüketimi göstermişlerdir. Literatürde alümina malzemesinin oksit yapısını koruma konusunda kararlı olduğu belirtilmiştir (Zangouei, 2010).
Alümina malzemelerinin yüzey asidik özellikleri piridin adsorplanmış numulerin FTIR analizleri ile belirlenmiştir. Şekil 4.8'de alümina malzemelerinin Pridin adsorplanmış FTIR spektrumları verilmektedir. Literatürde, piridin adsorplanmış numunelerin FTIR spektrumunda Lewis asit sitelerinin 1445–1450 ve 1596 cm⁻¹ dalga boylarında, Bronsted asit sitelerinin ise 1540 ve 1640 cm⁻¹ dalga boylarında pik verdiği belirtilmiştir. 1490 cm⁻¹ dalga boyunda gözlenen pik ise her iki asit sitesini de ifade etmektedir (Yasyerli ve Aktas, 2012).

Şekil 4.8. Piridin adsorplanmış alümina malzemelerinin FTIR spektrumu

Her üç alümina malzemesinde de Lewis asiditesini ifade eden 1445, 1595 ve 1616 cm⁻¹ dalga boylarında pikler testpit edilmiştir. Ayrıca SG1 ve ticari alümina malzemelerinde bunlara ek olarak 1487 cm⁻¹ dalga boyunda Lewis-Bronsted asiditesini belirten pikin olduğu belirlenmiştir. Pik şiddetleri dikkate alındığında yüzey asitliği en yüksek olan malzemenin Sol-Jel-1 yöntemiyle sentezlenen SG1 alümina malzemesinin olduğu görülmüştür.

Alüminaların yapısal özelliklerinin belirlenebilmesi amacıyla ayrıca FTIR analizleri gerçekleştirilmiştir. Alüminaların 3950-3150 cm⁻¹ ve 1000-450 cm⁻¹ dalga boyu aralıklarında elde edilen IR spektrumları Şekil 4.9'da verilmektedir. Literatürde 3200–3800 cm⁻¹ dalga boyu aralığında yüzeydeki OH gerilim titreşimlerinden kaynaklanan

piklerin bulunduğu belirtilmektedir. Literatürde yaklaşık 3791 cm⁻¹ bandındaki pikin OH gruplarının tetrahedral koordinasyonlu Al⁺³, 3768 cm⁻¹ bandındaki pikin oktahedral koordinasyonlu Al⁺³ iyonuna bağlanmasından kaynaklandığı ifade edilmiştir. Aynı dalga boyu aralığı bölgesinde 3731 cm⁻¹ dalga boyundaki pikin OH gruplarının oktahedral koordinasyonlu iki Al⁺³ iyonuna bağlanmasından (II66) kaynaklandığı rapor edilmiştir. 3750 cm⁻¹ bandındaki pikin ise tip II OH grupları ile oluştuğu belirtilmiştir (Liu ve Truitt, 1997; Huang, 2000, Ryczkowski, 2001). Ticari alüminanın IR spektrumunda hidroksil bölgesinde 3730, 3750 ve 3764 cm⁻¹ dalga boylarında pikler OH gruplarının varlığını ve yapının esas olarak oktahedral olduğunu göstermektedir. SG1 alümina ile aynı dalga boylarında daha şiddetli pikler elde edilmiştir. OH bölgesindeki FT-IR pikleri en çok hidroksil grubunun SG1 alüminada olduğunu göstermektedir.

Şekil 4.9. Ticari, SG1 ve SG2 alümina malzemelerinin FTIR spektrumları (a) Ticari Alümina, b) SG1 Alümina, c) SG2 Alümina)

Alüminaların 450–1000 cm⁻¹ dalga boyu aralığında FT-IR spektrumlarında yaklaşık 830 ve 525 cm⁻¹ dalga boyu merkezli iki geniş pik gözlenmektedir (Şekil 4.9). Literatürde yapılan çalışmalarda 528 cm⁻¹ dalga boyundaki pikin γ -Al₂O₃ yapısında oktahedral (AlO₆) koordinasyonun, 761 cm⁻¹'de gözlemlenen pikin ise tetrahedral koordinasyondan (AlO₄) kaynaklandığı belirtilmektedir (Asencios, 2012; Vascancelos, 2012). FTIR spektrumları her üç alüminanın da yapısında AlO₆ ve AlO₄ koordinasyonlarının bulunduğunu

göstermektedir. FTIR analizleri sonucu alüminaların büyük oranda oktahedral yapıda olduklarını ve hidroksil gruplarını bulundurduğunu göstermektedir. Alümina malzemelerinin bağlanma özelliklerinin belirlenmesi amacıyla NMR analizleri gerçekleştirilerek belirlenmeye çalışılmıştır. Şekil 4.10'da alümina malzemelerine ait ²⁷Al MAS NMR spektrumu verilmiştir.

Şekil 4.10. Alümina malzemelerine ait ²⁷Al MAS NMR spektrumu(Manyetik Alan: 7,05 T)

Literatürde NMR spektrumunda 1,2-5 ppm, 25-30 ppm ve 50-70 ppm bölgelerindeki sinyallerin alüminyum atomlarının sırasıyla 6,5 ve 4'lü koordinasyonlara [Al(VI), Al(V), Al(IV)] sahip olduğunu gösterdiği rapor edilmiştir (Pardal, 2012; Zhang, 2015). Ticari alüminanın NMR spektrumunda -4 ve 4 ppm aralığında geniş ve keskin pik ve yaklaşık 55 ppm merkezli küçük geniş pik gözlenmektedir. Bu bölgelerdeki pikler ticari alüminadaki Al⁺³ iyonunun büyük bir kısmının oktahedral Al(VI) ve küçük bir kısmını tetrahedral Al(IV) bağlara sahip olduğunu göstermektedir. Benzer pikler (-4 ve +4 ppm ve 50-60 ppm bölgeleri) SG1 alümina için de elde edilmiştir. SG1 alüminada Al⁺³ çoğunluk olarak Al(VI) koordinasyonuna sahip iken az da olsa Al(IV) koordinasyonu da bulunmaktadır.

SG2 alüminanın NMR spektrumunda yaklaşık aynı ppm bölgelerinde pikler elde edilmiştir. Her üç numunede alüminyum Al(V) koordinasyonu için (25 ppm) pik NMR spektrumlarında gözlenmemektedir. FTIR ve NMR sonuçları alümina malzemelerinin esas olarak oktahedral (Al VI) koordinasyona sahip olduklarını göstermektedir. SG1 ve SG2 alümina malzemelerinin morfolojisinin gözlenebilmesi amacıyla geçirimli elektron mikroskobu (TEM) analizleri gerçekleştirilmiştir. Şekil 4.11'de alümina malzemelerine ait TEM fotoğrafları verilmektedir.

Şekil 4.11. Alümina malzemelerine ait TEM fotoğrafları

Her iki malzemenin de TEM fotoğraflarında alüminanın çok küçük partiküllerin bir araya gelmesinden oluştuğu gözlenmektedir. SG1 malzemesinin TEM fotoğrafında silindirik partiküller ve SG2 malzemesinin ise küresel partiküller gözlenmektedir. Her iki malzeme için TEM görüntüleri incelendiğinde birbirlerine benzerlik gösterdiği ve alüminyumun mikrotanecikler halinde bulunduğu ifade edilebilir.

4.1.2. Alümina malzemelerinin aktivite test çalışmaları

Alümina malzemelerinin H₂S'ün seçici katalitik oksidasyon reaksiyonunda aktivitesinin belirlenebilmesi amacıyla reaksiyon test çalışmaları gerçekleştirilmiştir. SG1 ve SG2 alümina malzemeleri ile %100 H₂S dönüşümü ve yüksek kükürt seçiciliği (\geq %97) elde edilmiştir. SG1 ve SG2 alümina ile uzun ömürlülük testi, farklı sıcaklık (200-300°C) ve farklı besleme bileşimlerinde (O₂/H₂S: 0-2; %2-6 su buharı) aktivite testleri gerçekleştirilmiştir. Şekil 4.12'de SG1 alümina malzemesinin katalitik aktivite testinde reaktör çıkışındaki H₂S, SO₂ ve H₂O derişimlerinin zamana karşı değişimleri verilmektedir.

Şekil 4.12. SG1 alümina malzemesi ile elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250° C, O₂/H₂S=0,5, %1 H₂S)

Deney süresi boyunca az miktarda SO₂ tespit edilmiş ve 150 dakika sonunda %98 elementel kükürt seçicilik değeri elde edilmiştir. Aynı reaksiyon şartlarında gerçekleştirilen SG2 ve ticari alümina malzemelerinin reaktör çıkış bileşenlerinin zamana karşı değişimleri EK-3'de verilmektedir. Şekil 4.13'de 150 dakika reaksiyon süresi sonunda alümina malzemeleriyle elde edilen H₂S dönüşümü ve elementel kükürt seçicilikleri verilmiştir.

Şekil 4.13. Alümina malzemeleriyle elde edilen H₂S dönüşüm ve elementel kükürt seçicilik değerleri

SG1 alümina malzemesi ile %98, SG2 alümina malzemesiyle de %97 elementel kükürt seçicilik değeri elde edilmiştir. Ticari alüminanın reaksiyon süresi boyunca aktivitesinde azalma gözlenmiş ve 150 dakika sonunda %62 H₂S dönüşüm ve %100 elementel kükürt seçicilik değerleri sergilemiştir. Bu sonuç H₂S'ün seçici oksidasyon reaksiyonunda kükürt verimini azaltan yan reaksiyonların (Kükürdün oksidasyonu (Eş. 1.4); H₂S'ün aşırı yanması (Eş. 1.5)) oluşumunun önlenebildiğini göstermektedir. Uzun ömürlülük testleri sonucunda elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri Şekil 4.14'de verilmektedir.

Uzun ömürlülük testlerinde SG1 ve SG2 malzemelerinin her ikisi de 390 dakika reaksiyon süresince aktifliğini korumuş, ilk olarak bu dakikadan itibaren reaktör çıkışında H₂S gözlenmeye başlamıştır. 630 dakika sonunda SG1 alümina malzemesi ile % 65 H₂S dönüşüm ve %100 elementel kükürt seçicilik değeri, SG2 alümina malzemesi ile de %59 H₂S dönüşüm ve %100 elementel kükürt seçicilik değeri elde edilmiştir. Uzun ömürlülük testinde SG1 ve SG2 malzemeleriyle elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimleri EK-4'de verilmiştir.

Şekil 4.14. SG1 ve SG2 alümina malzemesiyle 150. ve 630. dakikalarda elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri (T= 250°C, O₂/H₂S= 0,5, %1 H₂S)

Alüminanın H₂S'ün seçici katalitik oksidasyonundaki aktivitesinin açıklanabilmesi amacıyla reaksiyon sonrasında karakterizasyon çalışmaları gerçekleştirilmiştir. Reaksiyon sırasında katalizörde kükürt birikiminin belirlenebilmesi için XPS, EDS, yapısal değişim için XRD ve yüzey alan ölçümleri gerçekleştirilmiştir. Ayrıca yüzey asit/bazlığının belirlenebilmesi amacıyla piridin adsorpsiyon ve FTIR analizleri yapılmıştır.

Katalizör yüzeyindeki kükürt birikiminin belirlenmesi için gerçekleştirilen SG1 ve SG2 alüminaların XPS analizleri sırasıyla Şekil 4.15'de verilmektedir.

Şekil 4.15. SG1 ve SG2 malzemesinin reaksiyon öncesi ve sonrası XPS analizi a) SG1 Alümina b) SG2 Alümina

SG1 alüminanın XPS sonuçları incelendiğinde 150. ve 630. dakika sonunda kükürt pikleri tespit edilmiştir. Ancak SG2 alüminada kükürt piki yanlızca 630. dakikada tespit edilebilmiştir. Her iki alümina malzemesinde reaksiyon öncesi ve sonrasında 119 ve 74 eV bağlanma enerjilerinde bulunan pikler alüminyumun reaksiyon öncesinde olduğu gibi +3 değerliğinde (Al₂O₃) olduğunu göstermektedir. XPS analizi ile belirlenen S/Al oranları Çizelge 4.3'de verilmektedir.

Çizelge 4.3. Alümina malzemelerinin katalitik aktivite ve karakterizasyon çalışmalarının sonuçları (O₂/H₂S: 0,5; 250°C, %1 H₂S, Reaksiyon süresi: 150 dakika)

Katalizör	Reaksiyon Süresi (dakika)	H ₂ S dönüşümü	Elementel kükürt seçiciliği	XPS S/Al molar oran
Ticari Alümina (MERCK)	150	62	100	
SG1	150	100	98	0,02
SG1	630	65	100	0,03
SG2	150	100	97	0,00
SG2	630	59	100	0,01

Reaksiyon sonrası alümina malzemelerinin katı fazında gerçekleşen değişikliklerin belirlenmesi için reaksiyon sonrası XRD analizleri gerçekleştirilmiştir. SG1, SG2 ve ticari alüminaların reaksiyon öncesi ve sonrası XRD desenleri Şekil 4.16'da verilmektedir.

Şekil 4.16. Alümina malzemelerinin reaksiyon öncesi ve sonrası X-ışını kırınım desenleri (γ: γ-Alümina)

SG1, SG2 ve ticari (Merck) alümina malzemelerinin yapısal analizleri için FTIR spektrumları alınmıştı. Literatürde 3200-3800 cm⁻¹ bant aralıklarında hidroksil gruplarından ve daha düşük frekanslı bölgedeki geniş piklerin alüminanın karakteristik absorpsiyonundan (Al-O-Al gerilim titresimi: ~800 cm⁻¹ ve ~500 cm⁻¹) kaynaklandığı belirtilmektedir (Liu ve Truitt, 1997, Huang, 2000, Costa, 1999, Rcyzkowski, 2001). FTIR spektrumlarında yaklaşık 528 cm⁻¹ bandındaki pikin γ -Al₂O₃ yapısında oktahedral koordinasyondan (AlO₆), 761 cm⁻¹ bandındaki pikin tetrahedral (AlO₄) koordinasyondan kaynaklandığı rapor edilmiştir (Asencios, 2012, Vascancelos, 2012). Her üç alüminanın FTIR spektrumlarında ~830 ve 525 cm⁻¹ bantlarında geniş pikler bulunması bu malzemelerin oktahedral ve tetrahedral koordinasyonlara sahip olduğunu göstermişti. 525 cm-1 bandındaki pik şiddetinin biraz daha yüksek olması oktahedral sitelerin varlığının daha çok olduğunu göstermektedir. Ayrıca, bu bölgedeki pik genişliği oktahedral ve tetrahedral siteler arasındaki boşluk dağılımından kaynaklanmaktadır. (Costa, 1999). Malzemelerin FTIR spektrumlarında hidroksil gruplarının bulunduğu bölgede 3730 (Tip II66 OH), 3750 (Tip II OH) ve 3764 (Tip I6 OH) cm⁻¹ bantlarındaki coğunlukla oktahedral koordinasyonlu alüminyuma bağlı OH gruplarının varlığını göstermekteydi. Alüminaların FTIR spektrumlarında OH bölgesinde en yüksek pik şiddetlerine sahip malzeme SG1 alümina olarak belirlenmisti.

Ticari alümina malzemesinin reaksiyon öncesi ve sonrası FTIR spektrumları karşılaştırmalı olarak Şekil 4.17'de verilmektedir. Hidroksil gruplarının bulunduğu (3450-3850 cm⁻¹) ve Al-O-Al gerilim titreşimlerine (400-1000 cm⁻¹) ait bölgelerde belirgin bir değişim gözlenmemektedir. Ticari alümina reaksiyon öncesinde olduğu gibi sonrasında da hidroksil gruplarını yapısında bulundurmaktadır.

Şekil 4.17. Ticari alüminanın reaksiyon öncesi ve reaksiyon sonrası FTIR spektrumları (a) reaksiyon öncesi, (b) reaksiyon sonrası (150 dakika)

SG1 alüminanın reaksiyon öncesi ve sonrasında (150 dakika ve 630 dakika) FTIR spektrumları Şekil 4.18'de verilmektedir. 150 dakika reaksiyon süresi sonunda hidroksil pik şiddetlerinde azalma gözlenmiş ve 630 dakika sonunda alınan spektrumda bu durum devam etmiştir. Bununla beraber, SG1 alümina 630 dakika reaksiyon çalışması sonunda düşük pik şiddetleriyle yapısında hala hidroksil gruplarını (3750 cm⁻¹) bulundurmaktadır. Reaksiyon süresince Al-O-Al bölgesinde oktahedral koordinasyona ait yaklaşık 525 cm⁻¹ bandındaki pikte değişim gözlenmemiştir. Tetrahedral koordinasyona ait yaklaşık 830 cm⁻¹

Şekil 4.18. SG1 alüminanın reaksiyon öncesi ve reaksiyon sonrası FTIR spektrumları, (a) reaksiyon öncesi, reaksiyon sonrası (b) 150 dakika, (c) 630 dakika.

SG2 alüminanın reaksiyon öncesi ve sonrasında (150 dakika ve 630 dakika) alınan FTIR spektrumları karşılaştırmalı olarak Şekil 4.19'da verilmektedir. SG2 alüminanın FTIR spektrumunda yaklaşık 3700 cm⁻¹ bandındaki hidroksil gruplarına ait pikler şiddetlerini reaksiyon süresince kaybetmiş ve 630 dakika sonunda yapıda hidroksil grubu gözlenmemektedir. Al-O-Al bağlarına ait bölgede ise reaksiyon süresince tetrahedral yapılara ait pikler SG1 alüminaya benzer bir davranış göstermiş ve pik şiddetleri azalmıştır. Bununla beraber, SG2 alümina 630 dakika süren reaksiyon sonrasında oktahedral yapısını korumaktadır.

Şekil 4.19. SG2 alüminanın reaksiyon öncesi ve reaksiyon sonrası FTIR spektrumları, (a) reaksiyon öncesi, reaksiyon sonrası (b) 150 dakika, (c) 630 dakika.

Reaksiyon çalışması sonrasında alüminalar üzerinde biriken kükürt oranı XPS analizi ile belirlenmişti (Çizelge 4.3). Biriken kükürdün yapısal analizinin gerçekleştirilebilmesi amacıyla SG1, SG2 ve ticari alüminanın FTIR analizleri yapılmıştır. 900-1400 cm⁻¹ bant aralıklarındaki FTIR spektrumları Şekil 4.20'de verilmektedir. Ticari alüminanın FTIR spektrumunda yaklaşık 1053 cm⁻¹, 1068 cm⁻¹, 1230 cm⁻¹, 1257 cm⁻¹ dalga boylarında geniş ve keskin pikler gözlenmektedir. Literatürde sülfoksit fonksiyonel grup yapısındaki S=O geriliminin 1030-1070 cm⁻¹ bant aralığında pik verdiği (Nist Chemistry webbook, 2016; Smith, 1999) belirtilmiştir. Yaklaşık 1240 cm⁻¹ bandında sülfit fonksiyonel grup yapısındaki S=O geriliminden ve yaklaşık 1255 cm⁻¹ bandında alüminyuma kimyasal bağlanmış kükürtten kaynaklanan pik olduğu rapor edilmektedir (Şentürk, 2012). Sülfoksit fonksiyonel grupları keton yapılar ile benzeşim göstermekte ve iki hidrokarbon yapısının kükürde bağlanmasıyla oluşmaktadırlar (Smith, 1999).

Şekil 4.20. Alümina malzemelerinin reaksiyon sonrası FTIR spektrumları (a) Ticari Alümina, b) SG1 Alümina, c) SG2 Alümina

FTIR analizleri reaksiyon sonrasında ticari alümina malzemesinde kükürdün büyük bir kısmının alüminyuma bağlandığını göstermektedir. Reaksiyon sonrasındaki hidroksil gruplarının piklerinde değişim olmaması bu durumu desteklemektedir. SG1 alümina malzemesinin FTIR spektrumunda yaklaşık 993 cm⁻¹, 1130 cm⁻¹ ve 1325 cm⁻¹ bantlarında geniş pikler gözlenmektedir. Literatürde, 1165–1135 cm⁻¹ (simetrik SO₂ gerilimi) ve 1340-1310 cm⁻¹ (asimetrik SO₂ gerilimi) bantlarında sülfon fonksiyonel yapısındaki S=O bağından kaynaklanan pikler olduğu rapor edilmiştir (Smith, 1999). Ayrıca Şentürk vd. 2012'de yaptıkları çalışmada kükürdün alüminyuma bağlı oksijene bağlandığında 1140 cm⁻¹ ve 1320-1326 cm⁻¹ bantlarında pik verdiğini rapor etmişlerdir. FTIR analizleri SG1 alüminada kükürdün alüminaya bağlı oksijen ile bağ yaparak kaldığını göstermektedir. SG2 alüminanın reaksiyon sonrası FTIR spektrumunda yaklaşık 960 cm⁻¹, 1000 cm⁻¹ ve 1235 cm⁻¹ bantlarında küçük, yaklaşık 1140 cm⁻¹ ve 1325 cm⁻¹ merkezli büyük ve geniş pikler gözlenmektedir. FTIR spektrumunda gözlenen 1140 cm⁻¹ merkezli büvük ve genis ve 1325 cm⁻¹ merkezli pikler sülfon fonksiyonel yapısındaki S=O geriliminden kaynaklanmaktadır. Bunun yanı sıra, 1235 cm⁻¹ bandındaki pik sülfit fonksiyonel grupların ve 900 cm⁻¹ ile 1000 cm⁻¹ bantlarındaki pikler ise oksijene bağlı kükürtlerin varlığını göstermektedir. FTIR analizleri ile SG2 alüminada kükürdün esas olarak oksijenlere bağlandığı gözlenmektedir.

Şekil 4.21'de uzun ömürlülük testleri sonrasında (630 dakika) SG1 ve SG2 alüminaların kükürt bölgesi için (900-1400 cm-1) FTIR spektrumları verilmektedir. SG1 ve SG2 alümina malzemeleri 630 dakika reaksiyon testi sonunda benzer spektrumlar vermiştir. S=O titreșim frekanslarına ait 1000, 1032, 1059, 1135, 1235 ve 1325 cm⁻¹ merkezli geniș pikler FTIR spektrumlarında gözlenmektedir. 1135 ve 1235 cm⁻¹ merkezli genis pikler alüminada kükürdün halen oksijenlere bağlandığının göstergesidir. Bununla beraber ilerleyen reaksiyon süresinde oluşan 1059 ve 1032 cm⁻¹ bantlarındaki pikler (çok küçük) kükürdün alüminyum ile bağ yaptığını göstermektedir. 150 dakikalık reaksiyon sonunda SG1 ve SG2 alüminalar yüksek aktivite (%100 H₂S dönüşümü, ≥97 S seçiciliği) göstermişti. Aynı reaksiyon süresi sonunda alüminaların FTIR spektrumlarında sülfon fonksiyonel gruplarındaki S=O titreşimleri bulunmaktaydı (1130 ve 1325 cm⁻¹). İlerleyen reaksiyon süresinde kükürdün alüminyuma bağlanmasıyla ilgili pikler oluşmuştur (1059 cm⁻¹). FTIR analizleri sonucunda seçici katalitik oksidasyonda alüminanın aktivitesindeki azalmanın kükürdün alümina bağ ile yapmaya başlamasından kaynaklandığı düşünülmektedir.

Şekil 4.21. Alümina malzemelerinin uzun ömürlülük testi sonrası FTIR spektrumları (a) SG1 Alümina, b) SG2 Alümina)

Ticari alüminanın 150 dakika reaksiyon süresi sonunda düşük aktivite (%62 H₂S dönüşümü) göstermesi kükürdün direkt olarak alüminyuma bağlanması ile açıklanabilir. Literatürde S-H esneme titreşimlerinin 2550-2600 cm-1 dalga sayısı aralığında olduğu belirtilmektedir (Smith, 1999). Alüminaların FTIR spektrumlarında S-H gerilim titreşiminden kaynaklanan bir pik gözlenmemiştir. SG1, SG2 ve ticari alüminanın FTIR spektrumlarının analizleri kükürt bölgesi için ayrıntılı olarak Çizelge 4.4'de verilmektedir.

	Ticari Alümina	SG1 Alümina		SG2 Alümina	
	150 dak.	150 dak.	630 dak	150 dak.	630 dak
5° 5° 0° 0° 1°		993 cm ⁻¹	1000 ve 920 cm ⁻¹	1000 ve 960 cm ⁻¹	998 ve 915 cm ⁻¹
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1257 cm ⁻¹				
$\begin{array}{c} 0 & 0 \\ & &$		1325 ve 1130 cm ⁻¹	1325 ve 1135 cm ⁻¹	1315 ve 1145 cm ⁻¹	1325 ve 1135 cm ⁻¹
$ \begin{array}{c} 0 \\ 8 \\ 8 \\ (1070-1030 \text{ cm}^{-1}) \\ ** \end{array} $	1068 ve 1053 cm ⁻¹		1059 ve 1032 cm ⁻¹		1059 ve 1030 cm ⁻¹

Çizelge 4.4. Reaksiyon sonrası SG1, SG2 ve ticari alüminaların FTIR spektrumlarında gözlenen S=O bağları ve dalga boyları

* Senturk, 2012

** Smith, 1999

Alümina malzemelerinin reaksiyon sonrası yüzey asitliği Pridin adsorplanmış FTIR analizleri ile gerçekleştirilmiş ve reaksiyon öncesi ile karşılaştırılmıştır. Literatürde birçok araştırmacı H₂S'ün elementel kükürde seçici katalitik oksidasyon reaksiyonu için H₂S'ün katalizörün asidik sitelerinde adsorplandığı ve katalizör yüzeyindeki bu sitelerin katalitik aktiviteyi olumlu yönde etkilediği belirtilmiştir (Chun, 1998; Zhang, 2013; Tasdemir, 2015). Özellikle hidroksil gruplarının Lewis asiditesiyle bağlantılı olduğu, hidroksil gruplarının Lewis asitliğini arttırdığı ve bununda reaktivite için önemli olduğu rapor edilmiştir (Zhang, 2013; Liu, 1997). Şekil 4.22'de ticari alümina malzemesinin reaksiyon öncesi ve sonrası Pridin adsorplanmış FTIR analiz sonucu karşılaştırmalı olarak verilmiştir.

Şekil 4.22. Reaksiyon öncesi ve sonrası piridin adsorplanmış Ticari Alüminanın FTIR spektrumları

Ticari alümina malzemesinin reaksiyon sonrası (150 dakika) Pridin adsorplanmış FTIR spektrumunda reaksiyon öncesine göre Lewis asiditesini temsil eden 1595 cm⁻¹ dalga boyundaki pik şiddetinin azaldığı, bunun dışında spektrumlarda ciddi bir değişim olmadığı gözlemlenmiştir. Şekil 4.23'de SG1 alümina malzemesine ait reaksiyon öncesi ve sonrası Pridin adsorplanmış FTIR spektrumları verilmiştir.

Şekil 4.23. Reaksiyon öncesi ve sonrası piridin adsorplanmış SG1 alüminanın FTIR spektrumları

Reaksiyon öncesi yüzey asiditeleri karşılaştırılırken en asidik malzemenin SG1 alümina olduğu belirlenmişti. Bu malzemenin reaksiyon sonrası yüzey asiditesinde ise önemli bir değişimin olmadığı, Lewis asitliğine ait 1615 cm⁻¹ dalga boyundaki pik şiddetinin reaksiyon sonrasında zamanla azaldığı gözlemlenmiştir. Şekil 4.24'de piridin adsorplanmış SG2 alüminanın reaksiyon öncesi ve sonrası FTIR spektrumları verilmiştir.

Şekil 4.24. Reaksiyon öncesi ve sonrası piridin adsorplanmış SG2 alüminanın FTIR spektrumları

SG2 alüminanın FTIR spektrumlarında Lewis asit sitelerine ait dalga boylarındaki piklerde önemli ölçüde azalma gözlenmiştir. Sentezlenen SG1 ve SG2 alüminalardaki hidroksil gruplarının varlığının H₂S'ün seçici katalitik oksidasyonunda aktivitede önemli olduğu düşünülmektedir. I6 OH (3764 cm⁻¹) gruplarını diğer alüminalara göre daha fazla içeren SG1 alüminada XPS analiziyle 150. dakikada yüzeyde kükürt belirlenmiştir. SG2 alüminada aynı reaksiyon süresinde yüzeyde kükürt bulunmamaktadır. XPS analizleri 630 dakika reaksiyon süresi sonunda SG1 alümina yüzeyindeki kükürdün SG2 alüminaya göre fazla olduğunu göstermektedir. Bunun nedenini Lewis asit sitelerinin yakınında bulunan hidroksil gruplarının kükürdün tutunmasına olanak sağlanması ile açıklanabilmektedir.

4.1.3. Alümina malzemeleriyle farklı reaksiyon şartları altında aktivite testleri

250°C sıcaklık ve stokiyometrik besleme şartları altında SG1 ve SG2 alümina malzemesi 390 dakika %100 H₂S dönüşüm değeri sergilemişti. Yüksek H₂S dönüşümü gösteren bu alümina malzemeleri ile farklı sıcaklıklarda (200 ve 300°C) aktivite test çalışmaları gerçekleştirilmiştir. SG1 ve SG2 alümina malzemesi ile 200 ve 300°C sıcaklıklarda gerçekleştirilen katalitik aktivite deneyleri sonucunda elde edilen H₂S ve SO₂ derişimlerinin zaman ile değişimleri Şekil 4.25'de verilmiştir. Şekil 4.25a ve Şekil 4.25b'de SG1 alümina ile gerçekleştirilen aktivite testlerinde ilk 30 dakika sonunda H₂S gözlenmiş ve 150 dakika sonunda sırasıyla %58 ve %72 H₂S dönüşümü elde edilmiştir. SG2 alümina malzemesi ile 200°C sıcaklıkta gerçekleştirilen aktivite testinde diğerlerinden farklı olarak yaklaşık 45. dakikada H₂S gözlenmeye başlamıştır. SG1 alümina malzemesine benzer olarak SG2 alümina malzemesi ile 200 ve 300°C reaksiyon sıcaklıklarında sırasıyla %75 ve %69 H₂S dönüşümü elde edilmiştir.

Şekil 4.25. SG1(a,b) ve SG2(c,d) alümina malzemeleri ile farklı reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H₂S ve SO₂ derişimlerinin zaman ile değişimi (O₂/H₂S=0,5, %1 H₂S)

Şekil 4.26'da SG1 ve SG2 alümina ile gerçekleştirilen aktivite testleri sonucunda elde edilen H_2S dönüşüm ve elementel kükürt seçicilik değerleri verilmektedir.

Şekil 4.26. SG1 ve SG2 alümina malzemeleriyle elde edilen farklı reaksiyon sıcaklıklarındaki H₂S dönüşümü ve elementel kükürt seçicilikleri (O₂/H₂S=0,5, %1 H₂S, 150. dakika)

Her iki alümina malzemesiyle farklı reaksiyon sıcaklıklarında (200, 250, 300°C) yüksek elementel kükürt seçicilikleri elde edilmiştir. Sonuçlar seçici katalitik oksidasyonu reaksiyonu ile beraber gerçekleşmesi muhtemel yan reaksiyonların (Kükürdün oksidasyonu; H₂S'ün aşırı oksidasyonu) önlenebildiğini göstermektedir. Çizelge 4.5'de alümina malzemeleriyle farklı sıcaklıklarda gerçekleştirilen reaksiyon testleri sonucu EDS analizleri verilmiştir.

Çizelge 4.5. Alümina malzemeleri ile farklı sıcaklıklarda gerçekleştirilen aktivite testleri sonrasında EDS analizleri

	Reaksiyon Sıcaklığı	EDS Molar oran (S/Al)
SG1	200°C	0,24
	300 °C	0,02
SG2	200 °C	0,14
	300 °C	0,02

SG1 ve SG2 alümina ile 200°C sıcaklıkta gerçekleştirilen reaksiyonlardan sonra alınan EDS analizlerinde oldukça yüksek kükürt içeriği tespit edilmiştir (Eslek ve Yaşyerli, 2009). Ayrıca katalizörün reaksiyon sonrası numunesinde ciddi renk değişimi gözlenmiştir. Bu sonuçlar göz önüne alındığında 200°C sıcaklıkta gerçekleştirilen aktivite testlerinde kükürt birikiminden kaynaklı aktivite kaybı gerçekleştiği düşünülmektedir.

SG1 ve SG2 alümina malzemelerinin katalitik aktivitesini açıklamak için desülfürizasyon deneyleri gerçekleştirilmiştir. Desülfürizasyon deneyleri 250°C sıcaklıkta, oksijensiz ortamda gerçekleştirilmiştir. Oksijensiz şartlarda alümina malzemeleri ile elde dilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimleri EK-5'de verlmektedir. Her üç alümina malzemesinde de deneyin başlangıç anından itibaren H₂S gazı çıkışı gözlenmiş olup, 30 dakika sonunda sisteme gönderilen H₂S'ün tamamı reaktör çıkışında tespit edilmiştir. Bununla birlikte, bütün alümina malzemelerinde az miktarda H₂O oluşumu reaksiyonun ilk 10 dakikasında gözlenmiştir.

200 ve 300°C sıcaklıklar altında gerçekleştirilen aktivite testlerinin ardından düşük sıcaklıkta daha yüksek dönüşüm değeri sergileyen SG2 alümina malzemesi ile farklı oksijen konsantrasyonlarında aktivite testleri gerçekleştirilmiştir. SG2 alümina malzemesiyle 250°C sıcaklık ve farklı O₂ konsantrasyonlarında gerçekleştirilen aktivite testleri sonrası elde edilen H₂S dönüşüm ve elementel kükürt seçicilik değerleri Çizelge 4.6'da verilmektedir.

Çizelge 4.6. Farklı besleme koşullarında SG2 alümina malzemesi ile elde edilen H₂S dönüşümü ve elementel kükürt seçicilikleri (T=250°C)

O ₂ /H ₂ S oranı	H ₂ S dönüşümü	Elementel kükürt seçiciliği
0		
0,5	100	98
1	100	95
2	100	99

Besleme akımında aşırı oksijen (%1 ve %2) varlığında, SG2 alümina malzemesi ile %100 H_2S dönüşümü ve yüksek elementel kükürt seçicilik değerleri elde edilmiştir. Bununla beraber reaksiyon testinin ilk zamanlarında O₂ konsantrasyonunun artması ile beraber artan SO₂ konsantrasyonu gözlenmiştir. Besleme akımdaki O₂ oranının artmasına rağmen oluşması muhtemel yan reaksiyonların (Eş. 1.4; Eş. 1.5) büyük oranda engellendiği

belirlenmiştir. SG2 alümina malzemesi ile 250° C sıcaklıkta farklı besleme oranlarında (O₂/H₂S: 1, 2) gerçekleştirilen katalitik aktivite deneyleri sonucunda elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimleri EK-6'da verilmektedir.

Bu bölümün son çalışması SG1 ve SG2 alümina malzemeleriyle su buharı varlığında aktivite testlerinin gerçekleştirilmesidir. Şekil 4.27'de SG2 alümina malzemesiyle %6 (hacim) su buharı varlığında gerçekleştirilen aktivite testinde H_2S ve SO₂ konsantrasyonlarının zaman ile değişimleri verilmektedir.

Şekil 4.27. SG2 alümina malzemesiyle elde edilen H₂S ve SO₂ derişimlerinin zaman ile değişimi (T=250°C, O₂/H₂S=0,5, %6 su buharı)

Besleme akımda %6 su buharının bulunduğu aktivite testi sonrasında SG2 alümina malzemesi ile % 52 H₂S dönüşümü ve %100 elementel kükürt seçicilik değerleri elde edilmiştir. Su buharı varlığında SG2 alümina malzemesinde aktivite kaybı gözlemlenmiştir. Bununla beraber oldukça yüksek kükürt seçiciliği elde edilmiştir. Besleme gazı bileşiminde su buharı varlığında SG1 ve SG2 alüminalar ile gerçekleştirilen aktivite testleri sonucu elde edilen H₂S dönüşüm, elementel kükürt seçicilik değerleri ve EDS sonuçları Çizelge 4.7'de verilmektedir.

Çizelge 4.7. Su buharı varlığında alümina malzemelerinin H₂S dönüşüm, elementel kükürt seçicilik değerleri ve EDS sonuçları (150 dakika O₂/H₂S=0,5, %1 H₂S)

Katalizör	Besleme akımındaki % Su buharı	H ₂ S dönüşümü	Elementel kükürt seçiciliği	EDS molar oran (S/Al)
SG1 Alümina		100	98	
SG1 Alümina	6	63	100	0,02
SG2 Alümina		100	97	
SG2 Alümina	2	62	100	0,02
SG2 Alümina	6	54	100	0,02

Su buharı varlığında SG1 ve SG2 alümina malzemeleri ile gerçekleştirilen katalitik aktivite testleri sonrasında XRD ve FTIR analiz çalışmaları yapılmıştır. Şekil 4.28'da XRD desenleri reaksiyon öncesi ve sonrası olarak karşılaştırmalı verilmiştir.

Şekil 4.28. Su buharı varlığında gerçekleştirilen deneyler sonucu alümina malzemelerinin reaksiyon öncesi ve sonrası XRD desenleri (γ: γ-Al₂O₃)

Alümina malzemelerinin reaksiyon öncesi ve sonrası XRD desenleri incelendiğinde su buharının katı fazı etkilemediği ve γ-Al₂O₃ kristal fazının reaksiyon sonrasında varlığını koruduğu tespit edilmiştir. Su buharı varlığında gerçekleştirilen katalitik aktivite testleri sonrası yapısal değişikliklerin belirlenmesi için FTIR analizi gerçekleştirilmiştir. %6 su buharı varlığında yapılan aktivite testi sonucu gerçekleştirilen FTIR analiz sonuçları SG1 ve SG2 alümina için sırasıyla Şekil 4.29 ve Şekil 4.30'da, SG2 alümina ile %2 su buharı varlığında gerçekleştirilen aktivite testi sonucu elde edilen FTIR analizi sonucu Şekil 4.31'de verilmektedir.

Şekil 4.29. Su buharı varlığında katalitik aktivite testi gerçekleştirilen SG1 Alümina malzemesinin reaksiyon öncesi ve sonrası FTIR spektrumu (%6 su buharı)

Reaksiyon öncesi SG1 ve SG2 alüminaların yapılarında hidroksil gruplarının (3200-3800 cm⁻¹) bulunduğu, oktahedral (~525 cm⁻¹) ve tetrahedral (~830 cm⁻¹) koordinasyonlara sahip oldukları belirlenmişti. %6 su buharı varlığında gerçekleştirilen aktivite testi sonucunda sonrasında her iki alüminada var olan hidroksil gruplarına ait piklerin kaybolduğu gözlenmektedir. Yaklaşık 3450 cm⁻¹ merkezli geniş pikin oluşması alüminada H₂O adsorpsiyonunun gerçekleştiğini göstermektedir. Al-OH koordinasyonuna ait 450-1000 cm⁻¹ aralığında ise ciddi bir değişim gözlenmektedir.

Şekil 4.30. Su buharı varlığında katalitik aktivite testi gerçekleştirilen SG2 Alümina malzemesinin reaksiyon öncesi ve sonrası FTIR spektrumu (%6 su buharı)

Şekil 4.31. Su buharı varlığında katalitik aktivite testi gerçekleştirilen SG2 Alümina malzemesinin reaksiyon öncesi ve sonrası FTIR spektrumu (%2 su buharı)

SG2 alümina ile %2 su buharı varlığında yürütülen reaksiyon testi sonrasında diğerlerine benzer bir FTIR spektrum elde edilmiştir. Aktivite testi sonrasında hidroksil gruplarına ait pikler kaybolmuş ve Al-OH koordinasyonuna ait piklerde belirgin bir değişiklik gözlenmemiştir. Hidroksil gruplarının yok olması asiditenin azalmasını göstermektedir. Bu da katalizörün aktivitesinde azalma meydana getirdiği düşünülmektedir.

4.2. Emdirme Yöntemiyle Sentezlenen Katalizörlerle (Ti-Ce@Al₂O₃) Gerçekleştirilen Karakterizayonlar ve Aktivite Test Çalışmaları

Yüksek lisans çalışmasınında alümina destekli Ti-Ce (Ti-Ce@Al₂O₃, Ti/Ce molar oranı 4/1) katalizörleri olacak şekilde emdirme ve tek-kap yöntemleri ile sentezlenmiştir. Emdirme yöntemi ile Ti-Ce kütlesel oranı %20, %10 ve %5 olacak şekilde SG1 ve SG2 alümina destekli katalizörler hazırlanmış ve aktivite testleri gerçekleştirilmiştir. Alümina desteğinin etkisini incelemek için Ti-Ce katalizörüyle, karşılaştırma için ise ticari alümina destekli Ti-Ce katalizörüyle aktivite test çalışmaları gerçekleştirilmiştir. 150 dakika reaksiyon süresi sonucunda yüksek aktivite sergileyen alümina destekli Ti-Ce katalizörleriyle uzun ömürlülük testleri gerçekleştirilmiştir. Ayrıca SG2 destekli kütlece % 10 Ti ve Ce içeren katalizörle farklı sıcaklık (200°C, 250°C, 300°C) ve farklı besleme oranlarında (O₂/H₂S: 0; 0,5; 1; 2 ve O₂/H₂S: 0,5; %6 su buharı) katalitik aktivite testleri gerçekleştirilmiştir. Bu bölümde emdirme yöntemiyle hazırlanmış alümina destekli Ti-Ce katalizörleriyle (Ti-Ce@Al₂O₃) gerçekleştirilen karakterizasyon ve reaksiyon çalışmaları detaylı olarak alt başlıklar halinde sunulmuştur.

4.2.1. Emdirme yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin (Ti-Ce@Al₂O₃) karakterizasyon çalışmaları

Emdirme yöntemiyle sentezlenen alümina destekli Ti-Ce katalizörlerinin katı faz tayini, yüzey alanını, gözenek çapı ve gözenek hacminin belirlenmesi amacıyla azot adsorpsiyondesorpsiyon analizleri gerçekleştirilmiş ve bu sonuçlar Ti-Ce katalizörü ile karşılaştırılmıştır. Şekil 4.32 ve Şekil 4.33'de sırasıyla SG1 ve SG2 alümina destekli/desteksiz Ti-Ce katalizörlerinin azot adsorpsiyon desorpsiyon izotermleri ve gözenek çap dağılım eğrileri verilmektedir. %10 ve %20 Ti+Ce içeren SG1 ve SG2 destekli katalizörlerin N₂ adsorpsiyon-desorpsiyon izotermlerinin 0,5 P/Po relatif basıncında histerisis sergilemeye başladığı ve Tip IV ile uyumlu olduğu görülmektedir (Şekil 4.32a,c ve Şekil 4.33a,c). Ti80Ce20 katalizörünün N₂ adsorpsiyon-desorpsiyon izoterminde ise yaklaşık 0,4 P/Po relatif basıncında histerisis sergilemeye başladığı ve destekli katalizörlerle benzer olarak Tip IV izotermi ile uyumlu olduğu belirlenmiştir. Ortalama gözenek çapları SG1 alümina destekli %10 ve %20 Ti+Ce içeren katalizörler için 6,9 nm olarak belirlenirken SG2 alümina destekli %10 ve %20 Ti+Ce içeren katalizörler için için sırasıyla 8,0 ve 9,0 nm olarak bulunmuştur. Ti80Ce20 katalizörünün ortalama gözenek çapı destekli katalizörlere oranla daha düşük (3,5 nm) bulunmuştur. Tüm katalizörlerin mezogözenek yapısına sahip olduğu belirlenmiştir

Şekil 4.32. SG1 alümina destekli/desteksiz Ti-Ce katalizörlerinin a,c,e) N₂ adsorpsiyondesorpsiyon izotermi b,d,f) Gözenek çap dağılım grafiği

Şekil 4.33. SG2 alümina destekli/desteksiz Ti-Ce katalizörlerinin a,c) N₂ adsorpsiyondesorpsiyon izotermi b,d) Gözenek çap dağılım grafiği

Alümina destekli/desteksiz Ti-Ce katalizörlerinin N₂ adsorpsiyon-desorpsiyon analizleri ile elde edilen yüzey alanı, gözenek çapı ve hacmi değerleri Çizelge 4.8'de özetlenmektedir. SG1 ve SG2 alümina malzemelerinin yüzey alan değerleri emdirme öncesi sırasıyla 277 m²/g ve 300 m²/g olarak belirlenmişti. Alümina destek üzerine yüklenen Ti ve Ce'un kütlesel oranının artmasıyla yüzey alanı değerleri düşmektedir. Ayrıca SG1 ve SG2 alümina destekli katalizörlerin yüzey alanı, gözenek hacmi ve ortalama gözenek çaplarının Ti80Ce20 katalizörüne göre oldukça yüksek olduğu belirlenmiştir.

Katalizör	Alümina Hazırlama Yöntemi	% Kütlesel (Ti+Ce)	BET yüzey alanı, m ² /g	Gözenek Hacmi, cm ³ /g	Ortalama Gözenek çapı, nm
Ti80Ce20@ Al ₂ O ₃ - SG1-10w	Sol-Jel-1	10	253	0,49	6,9
Ti80Ce20@ Al ₂ O ₃ - SG1-20w	Sol-Jel-1	20	196	0,38	6,9
Ti80Ce20@ Al ₂ O ₃ - SG2-10w	Sol-Jel-2	10	266	0,66	9,0
Ti80Ce20@ Al ₂ O ₃ - SG2-20w	Sol-Jel-2	20	201	0,40	8,0
Ti80Ce20			64	0,066	3,5

Çizelge 4.8. Alümina destekli/desteksiz Ti-Ce katalizörlerinin fiziksel özellikleri

Sentezlenen katalizörlerin yapısında bulunan Ti-Ce metallerinin molar ve kütlesel konsantrasyonlarının belirlenmesi amacıyla EDS analizi gerçekleştirilmiştir. Çizelge 4.9'de farklı kütlesel yüzdelerde sentezlenen Ti-Ce@Al₂O₃ katalizörlerinin EDS analiz sonuçları verilmektedir.

Çizelge 4.9. Alümina destekli Ti-Ce katalizörlerinin EDS analiz sonuçları

Katalizör	Ti/Ce Molar oranı Sentez çözeltisi	Ti/Ce Molar oranı EDS	(Ti+Ce) Kütlesel oran % Sentez çözeltisi	(Ti+Ce) Kütlesel oran % EDS
Ti80Ce20@ Al ₂ O ₃ -20w	4/1	3,5/1	20	21
Ti80Ce20@ Al ₂ O ₃ -SG1-20w	4/1	4/1	20	20
Ti80Ce20@ Al ₂ O ₃ -SG2-20w	4/1	4,6/1	20	20
Ti80Ce20@ Al ₂ O ₃ -SG1-10w	4/1	3,1/1	10	9,6
Ti80Ce20@ Al ₂ O ₃ -SG2-10w	4/1	4,3/1	10	15,9
Ti80Ce20@ Al ₂ O ₃ -SG1-5w	4/1	4,8/1	5	5,7
Ti80Ce20@ Al ₂ O ₃ -SG2-5w	4/1	4,2/1	5	4,8

Sentezlenen katalizörlerdeki istenilen molar ve kütlesel oranların yapıya başarıyla yerleştirildiği Çizelge 4.9'da görülmektedir. EK-7'de alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporlarının ayrıntıları verilmektedir.

Sentezlenen katalizörlerin katı fazlarını belirlemek amacıyla XRD analizleri gerçekleştirilmiştir. Şekil 4.34'de ticari alümina destekli Ti-Ce ve Ti80Ce20 katalizörlerinin XRD desenleri verilmiştir. Ti/Ce: 4/1 molar oranına sahip Ti-Ce katalizörünün X-ışını kırınım deseni incelendiğinde yapının esas olarak amorf olduğu ancak 2θ = 28,8 açısında CeO₂'in kristal yapısına ait karakteristik pikin bulunduğu gözlenmektedir. Şekil 4.35'da SG1 alümina destekli katalizörlerin ve Şekil 4.36'de SG2 almümina destekli katalizörlerin XRD desenleri verilmiştir.

Şekil 4.34. Ticari alümina destekli Ti-Ce ve Ti80Ce20 katalizörlerinin X-ışını kırınım desenleri (γ: γ-Alümina)

Şekil 4.35. SG1 Alümina destekli Ti-Ce katalizörlerinin X-ışını kırınım desenleri (γ: γ-Alümina)

Şekil 4.36. SG2 Alümina destekli Ti-Ce katalizörlerinin X-ışını kırınım desenleri (γ: γ-Alümina)

SG1 ve SG2 alümina destekli Ti-Ce katalizörlerinin XRD desenleri, Ti80Ce20 katalizörünün XRD deseninden farklı olduğu belirlenmiştir. Destekli katalizörlerde yapıyı amorf ve beraberinde γ -Alümina piklerinin oluşturduğu görülmüştür. XRD desenlerinde titanyum ya da seryum bileşiklerine ait pik gözlenmediği belirlenmiştir. Alümina malzemelerinin XRD desenlerinde de amorf ve beraberinde γ -Alümina yapısına ait karakteristik pikler (2 θ = 66,76₁₀₀, 45,79₈₀, 37,60₆₅) gözlenmişti. Ti ve Ce emdirilmesiyle üç farklı destek malzemeli (SG1, SG2, ticari alümina) katalizörlerin XRD analizleri, yapının değişmediğini ancak pik şiddetlerinin azaldığını göstermektedir. Ti ve Ce'a ait XRD desenlerinde pik gözlenmemesi Ti ve Ce'un yapıya iyi dağıldığını, amorf ve/veya XRD ile analiz edilemeyecek kadar küçük kristal boyutlarına sahip olduğunu göstermektedir.

Yüzey asitliğinin belirlenebilmesi için alümina destekli Ti-Ce katalizörleriyle piridin adsorplanmış FTIR analizleri gerçekleştirilmiştir. FTIR spektrumu 1400-1690 cm⁻¹ dalga boyu aralığında Bronsted ve Lewis asit siteleri için değerlendirilmiştir. Şekil 4.37'de ticari ve farklı sol-jel yöntemleriyle (SG1 ve SG2) sentezlenmiş alümina malzemesinin üzerine kütlece %20'lik yükleme yapılmış Ti-Ce katalizörlerinin FTIR spektrumları birlikte verilmiştir.

Şekil 4.37. Piridin adsorplanmış alümina destekli kütlece %20'lik Ti-Ce katalizörlerinin FTIR analizleri

Her üç katalizörde de 1445,1595 cm⁻¹ dalga boylarında Lewis asiditesine, 1490 cm⁻¹ dalga boyunda Lewis-Bronsted asiditesine ait küçük pikler gözlenmektedir. Kütlece %20 Ti+Ce içeren ticari,SG1 ve SG2 alümina destekli katalizörlerin Lewis asiditesine sahip olduğu belirlenmiştir.

Yapıya ilave edilen titanyum ve seryumun katalizörün yüzey asitliğine etkisini görebilmek amacıyla destek malzemesi ve katalizörlerin Pridin adsorpsiyonu sonrasında alınan FTIR spektrumları Şekil 4.38, Şekil 4.39 ve Şekil 4.40'de sırasıyla ticari, SG1 ve SG2 için verilmiştir.

Şekil 4.38. Piridin adsorplanmış ticari alümina ve Ti80Ce20@Al₂O₃-20w katalizörlerinin FTIR analizleri

Pridin adsorplanmış alümina ve alümina destekli Ti-Ce katalizörlerinin FTIR spektrumları incelendiğinde alümina destekli Ti-Ce katalizörlerinin pik şiddetlerinin alüminaya göre yüksek olduğu ve Ti-Ce ilavesinin katalizörlerinin asiditesini arttırdığı belirlenmiştir.

Şekil 4.39. Piridin adsorplanmış SG1 alümina ve Ti80Ce20@Al₂O₃-SG1-20w katalizörlerinin FTIR analizleri

Şekil 4.40. Piridin adsorplanmış SG2 alümina ve Ti80Ce20@Al₂O₃-SG2-20w katalizörlerinin FTIR analizleri.

Alümina destekli Ti-Ce katalizörlerinin yapısal özelliklerinin belirlenmesi amacıyla FTIR analizleri gerçekleştirilmiştir.

Şekil 4.41'de alümina destekli Ti-Ce katalizörlerinin reaksiyon öncesi FTIR spektrumları verilmiştir.

Şekil 4.41. Alümina destekli Ti-Ce katalizörlerinin reaksiyon öncesi FTIR spektrumları (a) Ti80Ce20@Al₂O₃-SG1-10w, b) Ti80Ce20@Al₂O₃-SG2-10w)

Her iki katalizörde 3200-3800 cm⁻¹ dalga boylarında OH gerilim titreşimlerinden kaynaklanan piklerin bulunduğu tespit edilmiştir. Bunun yanı sıra 525 ve 850 cm⁻¹ dalga boyu merkezli iki geniş pik alümina yapısının sırasıyla oktahedral (AlO₆) ve tetrahedral (AlO₄) koordinasyonlarına ait olduğu belirlenmiştir. FTIR analizleri sonucu destekli katalizörlerin büyük oranda oktahedral yapıda olduklarını ve hidroksil gruplarını bulundurduğu tespit edilmiştir. Benzer FTIR spektrumları SG1 ve SG2 alüminalarda da elde edilmişti.

4.2.2. Emdirme yöntemi ile sentezlenen alümina destekli Ti-Ce (Ti-Ce@Al₂O₃) katalizörleri ile gerçekleştirilen aktivite testleri

Alümina destekli Ti-Ce katalizörlerinin aktivitesinin belirlenebilmesi amacıyla reaksiyon test çalışmaları gerçekleştirilmiştir. Ti $80Ce20@Al_2O_3$ -SG2-20w katalizörüyle elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi Şekil 4.42'de örnek olarak sunulmaktadır. Ti $80Ce20@Al_2O_3$ -SG2-20w katalizörüyle 150 dakika boyunca gerçekleştirilen aktivite test çalışması sonunda %100 H₂S dönüşümü elde edilmiştir. Reaksiyon boyunca düşük konsantrasyonda SO₂ tespit edilmiştir.

Şekil 4.42. Ti80Ce20@Al₂O₃-SG2-20w katalizörüyle elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250° C, O₂/H₂S=0,5, %1 H₂S)

Kütlece %20 Ti+Ce içeren ticari, SG1 ve SG2 alümina destekli katalizörlerin zamana karşı H₂S dönüşüm eğrileri Şekil 4.43'de verilmektedir. 20. dakikadan sonra Ticari alümina destekli Ti-Ce (kütlece %20 Ti+Ce) katalizörünün, 60. dakikadan sonra ise SG1 alümina destekli Ti-Ce (kütlece %20 Ti+Ce) katalizörünün aktivitelerinde azalma gözlemlenmiş ve 150 dakika reaksiyon süresi sonunda sırasıyla %65 ve %69 H₂S dönüşümü elde edilmiştir. SG2 alümina destekli Ti-Ce (kütlece %20 Ti+Ce) katalizörünün sergilemiştir.

Şekil 4.43. Farklı alümina malzemelerine kütlece %20 oranında yüklenen Ti-Ce katalizörleriyle elde edilen H_2S dönüşümlerinin zaman ile değişimi (T= 250°C, O₂/H₂S=0,5, %1 H₂S)

Farklı alümina malzemelerine kütlece %20 oranında yüklenen Ti-Ce katalizörleriyle elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri Şekil 4.44'de verilmektedir.

Şekil 4.44. Farklı alümina malzemelerine kütlece %20 oranında yüklenen Ti-Ce katalizörleriyle elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri (T= 250°C, O₂/H₂S=0,5, %1 H₂S, 150 dakika)

Ticari ve SG1 alümina destekli katalizörlerle yapılan aktivite testleri boyunca reaktör çıkış akımında SO₂ gözlenmemiştir. SG2 destekli Ti-Ce (kütlece %20 Ti+Ce) katalizörü ile gerçekleştirilen aktivite çalışmalarında ise düşük konsantrasyonlarda SO₂ çıkışı tespit edilmiştir. Bu sonuçlar oluşması muhtemel yan reaksiyonların (Kükürdün oksidasyonu, H₂S'ün aşırı oksidasyonu) büyük oranda önlenebildiğini göstermektedir.

Kütlece %20 Ti+Ce içeren alümina destekli katalizörden sonra kütlece %10 ve %5 Ti+Ce içeren katalizörlerle aktivite testleri gerçekleştirilmiştir. Ticari alümina destekli Ti-Ce (kütlece %20) katalizörü düşük H₂S dönüşümü sergilediğinden kütlece %10 ve %5 Ti+Ce içeren katalizörde destek olarak malzemesi olarak SG1 ve SG2 alümina kullanılmıştır. Şekil 4.45'da Ti80Ce20@Al₂O₃-SG1-10w ve Ti80Ce20@Al₂O₃-SG2-10w katalizörleriyle elde edilen H₂S dönüşümlerinin ve kükürt seçiciliklerinin zaman ile değişimi verilmiştir

Şekil 4.45. Ti80Ce20@Al₂O₃-SG1-10w ve Ti80Ce20@Al₂O₃-SG2-10w katalizörleriyle elde edilen a) H₂S dönüşümleri b) elementel kükürt seçicilikleri (T= 250°C, O₂/H₂S=0,5, %1 H₂S)

Kütlece %10 Ti+Ce içeren SG1 ve SG2 alümina destekli katalizörler ile 150 dakika boyunca gerçekleştirilen aktivite test çalışmalarında %100 H₂S dönüşüm değeri elde edilmiştir. Ayrıca her iki katalizörde oldukça yüksek elementel kükürt seçiciliği (\geq %99) sergilemişlerdir. Şekil 4.46'de kütlece %5 Ti+Ce içeren Ti80Ce20@SG1-Al₂O₃-5w ve Ti80Ce20@Al₂O₃-SG2-5w katalizörleriyle elde edilen H₂S dönüşümlerinin ve kükürt seçiciliklerinin zaman ile değişimi verilmiştir.

Şekil 4.46. Ti80Ce20@Al₂O₃-SG1-5w ve Ti80Ce20@Al₂O₃-SG2-5w katalizörleriyle elde edilen a) H₂S dönüşümleri b) elementel kükürt seçicilikleri (T= 250°C, O₂/H₂S=0,5, %1 H₂S)

Kütlece %5 Ti+Ce içeren katalizörlerle gerçekleştirilen aktivite testinin 35. dakikasından itibaren her iki katalizörün aktivitesinde azalma meydana gelmiştir. 150 dakika sonunda Ti80Ce20@Al₂O₃-SG1-5w katalizörüyle %79, Ti80Ce20@Al₂O₃-SG2-5w katalizörüyle

ise %62 H_2S dönüşümü elde edilmiştir. İki katalizörde aktivite testi sonucunda %100 elementel kükürt seçicilik değeri sergilemişlerdir.

Katalizör desteği olarak alüminanın katalitik aktivite üzerine etkisinin belirlenebilmesi için Ti/Ce molar oranı 4/1 olan Ti-Ce katalizörü ile aktivite testi gerçekleştirilmiştir. Ti80Ce20 katalizörüyle elde edilen reaktör çıkışındaki H₂S, SO₂ ve H₂O konsantrasyonlarının zamana karşı değişimleri Şekil 4.47'de verilmektedir.

Şekil 4.47. Ti80Ce20 katalizörüyle elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250° C, O₂/H₂S=0,5, %1 H₂S)

Ti80Ce20 katalizörü ile gerçekleştirilen aktivite testinin 40. dakikasından sonra H₂S reaktör çıkışında tespit edilmiştir. Başlangıçta oluşmaya başlayan SO₂ ise H₂S'ün görülmeye başladığı andan itibaren (40. dakika) reaktör çıkışında gözlenmemeye başlamıştır. 150. dakikada Ti80Ce20 katalizörü ile %73 H₂S dönüşümü ve %100 elementel kükürt seçiciliği elde edilmiştir. Bu sonuç özellikle kütlece %10 Ti+Ce içeren alümina destekli katalizörlerde, SG1 ve SG2 alüminanın katalitik aktiviteye olumlu yönde etkilediğini göstermektedir.

Farklı kütlesel Ti+Ce oranlarında hazırlanan alümina destekli Ti-Ce ve Ti80Ce20 katalizörlerinin gerçekleştirilen aktivite testleri (150. Dakika) sonucunda elde edilen H₂S dönüşüm ve kükürt seçicilik değerleri Şekil 4.48'de karşılaştırmalı olarak verilmiştir.

Şekil 4.48. Farklı kütlesel oranlarda emdirme yöntemiyle ile hazırlanan Ti-Ce ve Ti80Ce20 katalizörlerinin 150.dakika sonundaki H₂S dönüşüm ve kükürt seçicilik değerleri (T=250° C, O₂/H₂S=0,5, %1 H₂S)

Gerçekleştirilen reaksiyon çalışmaları sonucunda SG2 alümina destekli kütlece %20 ve %10 Ti-Ce içeren, SG1 alümina destekli kütle %10 Ti-Ce içeren katalizörler ile %100 H₂S dönüşümü elde edilmiştir. Ayrıca katalitik aktivite testleri gerçekleştirilen tüm katalizörler yüksek elementel kükürt seçiciliği sergilemişlerdir.

Çizelge 4.11'de farklı kütlesel yüzdelerde sırasıyla SG1 ve SG2 alümina destekli Ti-Ce katalizörlerinin H₂S dönüşüm, elementel kükürt seçiciliği değerleri, reaksiyon öncesi ve sonrası gerçekleştirilen karakterizasyon (EDS, XRD, XPS) sonuçları verilmiştir. Yığın fazında biriken kükürt miktarlarının yaklaşık aynı değerlerde olduğu EDS analizleri ile belirlenmiştir.

Çizelge 4.10. SG1 alümina destekli Ti-Ce katalizörlerinin H₂S dönüşümü, elementel kükürt seçiciliği, reaksiyon öncesi ve sonrası yüzey alanı ve EDS analiz sonuçları (T= 250°C, O₂/H₂S= 0,5, %1 H₂S, 150 dakia)

Katalizör	H ₂ S Dönüşümü %	Elementel Kükürt Seçiciliği %	BET Yüzey Alanı (m²/g)	Mol Oranları (EDS), S/(Ti+Ce+Al)
Ti80Ce20@SG1- 20w	69	100	196	0,03
Ti80Ce20@SG1- 10w	100	99	253	0,02
Ti80Ce20@SG1- 5w	79	100		0,02

Çizelge 4.11. SG2 alümina destekli Ti-Ce katalizörlerinin H₂S dönüşümü, elementel kükürt seçiciliği, reaksiyon öncesi ve sonrası BET ve EDS analiz sonuçları (T= 250°C, O₂/H₂S= 0,5, %1 H₂S, 150 dakia)

Katalizör	H ₂ S Dönüşümü %	Elementel Kükürt Seçiciliği %	BET Yüzey Alanı (m²/g)	Mol Oranları (EDS), S/(Ti+Ce+Al)
Ti80Ce20@SG2- 20w	100	99	201	0,03
Ti80Ce20@SG2- 10w	100	100	266	0,02
Ti80Ce20@SG2- 5w	62	100		0,01

SG1 ve SG2 alümina destekli farklı kütlesel oranlardaki Ti-Ce katalizörleri ile gerçekleştirilen EDS analizleri sonucunda katalizör yüzeyinde yüksek kükürt oranlarına rastlanmamıştır. Ti80Ce20 katalizörde kükürt birikimi EDS analiziyle S/Al: 0,04 (molar oran) olarak belirlenmiştir.

Ti $80Ce20@Al_2O_3$ -SG1-10w ve Ti $80Ce20@Al_2O_3$ -SG2-10w katalizörleri ile uzun ömürlülük testleri gerçekleştirilmiştir ve elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimleri Şekil 4.49'da verilmektedir.

Şekil 4.49. a)Ti80Ce20@Al₂O₃-SG1-10w ve b)Ti80Ce20@Al₂O₃-SG2-10w katalizörleri ile uzun ömürlülük testi sonucu elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250°C, O₂/H₂S: 0,5, %1 H₂S).

Ti $80Ce20@Al_2O_3$ -SG1-10w katalizörü ile gerçekleştirilen uzun ömürlülük testinin 180. dakikasından itibaren, Ti $80Ce20@Al_2O_3$ -SG2-10w katalizörü ile de 330.dakikadan itibaren reaktör çıkış akımında H₂S tespit edilmiştir. Uzun ömürlülük testi sonunda her iki katalizör ile %59 H₂S dönüşümü ve %100 elementel kükürt seçicilik değeri elde edilmiştir.

Şekil 4.50'de Ti80Ce20@Al₂O₃-SG2-10w katalizörüne ait reaksiyon öncesi ve reaksiyon sonrası (150 ve 510 dakika) XPS analizi verilmiştir. Reaksiyon öncesinde ve sonrasında katalizördeki titanyum +4 değerliğine sahiptir (Ti $2p_{1/2}$ için 459 eV ve Ti $2p_{3/2}$ için 464 eV). Benzer şekilde Al için de bir değişim gözlenmemiş ve 74, 119 eV'lerde Al⁺³ değerliğine ait pikler gözlenmiştir.

Şekil 4.50. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün a) Titanyum bölgesi b) Alümina bölgesi XPS analizleri

XPS analizi ile % 100 H₂S dönüşümü elde edilen 150 dakika sonunda katalizör yüzeyinde kükürt birikimi tespit edilmemiştir. %59 H₂S dönüşümünün elde edildiği 510 dakika reaksiyon süresi sonunda yaklaşık 169 eV bağlanma enerjisinde kükürde ait pik gözlenmiştir. Malzeme yüzeyinde biriken kükürt miktarının % 1,34 (S/Al: 0,05) olduğu belirlenmiştir. Katalizör yüzeyindeki bu kükürt birikiminin katalizörün aktivitede azalmasına neden olduğu düşünülmektedir.

Katalitik aktivite sonrası yapısal değişimin belirlenebilmesi amacıyla XRD analizleri gerçekleştirilmiştir. Şekil 4.51'de Ti80Ce20, Ti80Ce20@Al₂O₃-SG1-10w ve Ti80Ce20@Al₂O₃-SG2-10w katalizörlerine ait reaksiyon öncesi ve sonrası XRD desenleri verilmiştir. SG1 ve SG2 alümina destekli Ti-Ce katalizörlerinin reaksiyon sonrasında kristal yapısında herhangi bir değişiklik olmadığı ve amorf yapının yanı sıra γ -Alümina'nın karakteristik (20= 66,76 d₁₀₀, 45,79 d₈₀, 37,60 d₆₅) piklerinin bulunduğu XRD desenlerinde gözlenmektedir. Aynı şekilde Ti80Ce20 katalizörünün reaksiyon sonrası XRD analizinde de reaksiyon öncesi belirlenen amorf ve CeO₂'in ana karakteristik piki gözlenmiştir. Ticari alümina, Sol-jel-1 ve sol-jel-2 yöntemi ile hazırlanan farklı kütlesel yüzdelerdeki Ti-Ce katalizörlerinin reaksiyon öncesi ve sonrası XRD desenleri EK-8'de verilmektedir.

96

Şekil 4.51. Ti80Ce20, Ti80Ce20@Al₂O₃-SG1-10w ve Ti80Ce20@Al₂O₃-SG2-10w katalizörlerine ait reaksiyon öncesi ve sonrası XRD desenleri

Şekil 4.52'de Ti80Ce20@Al₂O₃-SG1-10w katalizörünün reaksiyon sonrası yapısında meydana gelen değişikliklerin belirlenebilmesi amacıyla reaksiyon öncesi ve sonrası (510 dakika) FTIR spektrumları karşılaştırmalı olarak verilmiştir.

Şekil 4.52. Ti80Ce20@Al₂O₃-SG1-10w katalizörünün reaksiyon (a) öncesi ve (b) sonrası FTIR spektrumları

Ti80Ce20@Al₂O₃-SG1-10w katalizörünün 3200-3800 cm⁻¹ dalga boylarında OH gerilim titreşimlerinden kaynaklanan ve 525 ve 850 cm⁻¹ dalga boylarında γ -Al₂O₃ yapısının oktahedral (AlO₆) ve tetrahedral (AlO₄) koordinasyonlarına ait piklerin olduğu belirtilmişti (Şekil 4.41).

Ti80Ce20@Al₂O₃-SG1-10w katalizörünün reaksiyon sonrası (510 dakika) FTIR spektrumunda reaksiyon öncesine göre belirgin bir değişiklik gözlenmemiş, yalnızca pik şiddetlerinde azalma gözlemlenmiştir.

Şekil 4.53'de Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve sonrası (150 ve 510 dakika) FTIR spektrumları verilmiştir. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve reaksiyon sonrası (150 ve 510 dakika) FTIR spektrumlarına bakıldığında herhangi bir değişimin olmadığı belirlenmiştir. 3150-3950 cm⁻¹ dalga boylarında OH gerilim titreşimlerinden kaynaklanan 525 ve 850 cm⁻¹ dalga boylarında γ -Al₂O₃ yapısının oktahedral (AlO₆) ve tetrahedral (AlO₄) koordinasyonlarına ait piklerin reaksiyon sonrasında değişmediği gözlemlenmiştir.

Şekil 4.53. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon (a) öncesi ve (b,c) sonrası (150 ve 510 dakika) FTIR spektrumları

Reaksiyon çalışması sonrasında kütlece %10 destekli katalizörler üzerinde biriken kükürt oranı EDS ve XPS analizleriyle belirlenmişti. Biriken kükürdün yapısal analizinin gerçekleştirilebilmesi amacıyla FTIR analizleri yapılmıştır. 900-1400 cm⁻¹ bant aralıklarındaki FTIR spektrumları Şekil 4.54'de verilmektedir. Ti80Ce20@Al2O3-SG1-10w ve Ti80Ce20@Al₂O₃-SG2-10w katalizörüne ait reaksiyon sonrası (150 dakika) FTIR spektrumları birbirine benzerlik göstermekte olup vaklasık 925 cm⁻¹, 1000 cm⁻¹, 1130 cm⁻¹, 1315-1325 cm⁻¹ dalga boylarında pikler gözlenmektedir. Literatürde sülfoksit fonksiyonel grup yapısındaki S=O geriliminin 1030-1070 cm⁻¹ bant aralığında pik verdiği (Nist Chemistry webbook, 2016; Smith, 1999) daha önce belirtilmişti. 1165–1135 cm⁻¹ (simetrik SO₂ gerilimi) ve 1340-1310 cm⁻¹ (asimetrik SO₂ gerilimi) bantlarında sülfon fonksiyonel yapısındaki S=O bağından kaynaklanan pikler olduğu belirtilmektedir (Smith, 1999). Ayrıca, kükürdün alüminyuma bağlı oksijene bağlandığında 1140 cm⁻¹ ve 1320-1326 cm⁻¹ bantlarında pik verdiği belirtilmişti (Şentürk, 2012). FTIR analizleri incelendiğinde 150 dakika süreyle gerçekleştirilen reaksiyon testi sonrasında Ti80Ce20@Al₂O₃-SG1-10w ve Ti80Ce20@Al₂O₃-SG2-10w katalizörlerinde kükürdün alüminyuma bağlı oksijen ile bağ yaparak kaldığını göstermektedir. Şekil 4.54'de uzun ömürlülük testleri sonrasında (510 dakika) SG1 ve SG2 alümina destekli Ti-Ce katalizörlerinin (kütlece %10) kükürt bölgesi için (900-1400 cm⁻¹) FTIR spektrumları verilmektedir.

Şekil 4.54. a) SG1 ve b) SG2 alümina destekli Ti-Ce (kütlece % 10) katalizörlerin reaksiyon sonrası FTIR spektrumları S=O titreşim bölgesi

Her iki katalizör de 510 dakika reaksiyon testi sonunda 920, 985-997, 1130 ve 1315-1325 cm⁻¹ dalga boylarında pikler tespit edilmiştir. Bu da yapıdaki kükürdün oksijenlerle bağ yaptığını göstermektedir. Reaksiyon sonrasında, 2550-2600 cm-1 dalga boyunda S-H titreşimine ait pikler gözlenmemiştir. Ti80Ce20@Al₂O₃-SG1-10w ve Ti80Ce20@Al₂O₃-SG2-10w katalizörlerinin FTIR spektrumlarının analizleri kükürt bölgesi için ayrıntılı olarak Çizelge 4.12'de verilmektedir.

Çizelge 4.12. Reaksiyon sonrası SG1 ve SG2 alümina destekli Ti-Ce (kütlece %10) katalizörlerinin FTIR spektrumlarında gözlenen S=O bağları ve dalga boyları

	Ti80Ce	e20@	Ti80Ce20@		
	Al ₂ O ₃ -Se	G1-10w	Al ₂ O ₃ -SG2-10w		
	150 dakika	510 dakika	150 dakika	510 dakika	
(960-1000 cm ⁻¹ ;~910 cm ⁻¹)	1000 ve 925	997 ve 920	1000 ve 925	1315 ve	
*	cm ⁻¹	cm ⁻¹	cm ⁻¹	1130 cm ⁻¹	
$(1160-1140 \text{ cm}^{-1}; 1350-1300 \text{ cm}^{-1}) *$	1325 ve 1130	1325 ve	985 ve 920	1315 ve	
	cm ⁻¹	1130 cm ⁻¹	cm ⁻¹	1130 cm ⁻¹	

* Senturk, 2012; ** Smith, 1999

Reaksiyon sonrası yüzey asitliğindeki değişimin belirlenebilmesi için kütlece %10 Ti+Ce içeren alümina destekli Ti-Ce katalizörleriyle piridin adsorplanmış FTIR analizleri gerçekleştirilmiştir. Şekil 4.55'de piridin adsorplanmış Ti80Ce20@Al₂O₃-SG1-10w katalizörünün reaksiyon öncesi ve reaksiyon sonrası (150 ve 510 dakika) FTIR spektrumları verilmiştir.

Şekil 4.55. Ti80Ce20@Al₂O₃-SG1-10w katalizörünün reaksiyon öncesi ve sonrası (150 ve 510 dakika) piridin adsorplanmış FTIR spektrumları reaksiyon (a) öncesi ve sonrası b) (150 dakika), c) (510 dakika)

Ti80Ce20@Al2O3-SG1-10w katalizörünün Pridin adsorplanmış FTIR spektrumları incelendiğinde Lewis asiditesini temsil eden piklerin, %100 H₂S dönüşümü elde edilen reaksiyon sonrası (150 dakika) FTIR spektrumunda varlığını koruduğu gözlenmiştir. Aktivitesinde azalma görülen uzun ömürlülük testi (510 dakika) sonrası alınan FTIR spektrumunda ise Lewis asit sitelerini temsil eden piklerin şiddetlerinde azalma olduğu belirlenmiştir. Bu katalizörün FTIR spektrumunda (Şekil 4.52). Lewis asitliği ile ilgili olan OH bölgesindeki piklerde azalma meydana geldiği belirlenmişti. Bu sonuçlar uzun testi sonucunda katalizörün asitliğinde azalma meydana ömürlülük geldiğini Ti80Ce20@Al₂O₃-SG2-10w göstermektedir. Şekil 4.56'da piridin adsorplanmış katalizörünün reaksiyon öncesi ve reaksiyon sonrası (150 ve 510 dakika) FTIR spektrumları verilmiştir.

Şekil 4.56. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve sonrası (150 ve 510 dakika) piridin adsorplanmış FTIR spektrumları reaksiyon (a) öncesi ve sonrası b)(150 dakika), c) (510 dakika)

Ti80Ce20@Al₂O₃-SG2-10w katalizörünün Pridin adsorplanmış FTIR spektrumları incelendiğinde reaksiyon öncesinde 1445 ve 1595 cm⁻¹ dalga boylarında var olan ve Lewis asiditesini temsil eden piklerin varlığını koruduğu gözlenmiştir. Katalizörün FTIR spektrumunda (Şekil 4.52) Lewis asitliği ile ilgili olan OH bölgesinin reaksiyon sonrasında korunduğu belirlenmişti. Bu sonuçlar göz önüne alındığında katalizörün reaksiyon sonrasında asitliğini koruduğu belirlenmiştir.

Katalitik aktivite testleri sonrasında (150 dakika ve 510 dakika) Ti80Ce20@Al₂O₃-SG2-10w katalizöründe Al, Ti, Ce ve kükürdün dağılımının belirlenebilmesi amacıyla haritalama ("TEM Mapping") çalışması yapılmıştır. Şekil 4.57'de 150 dakika süren test sonrasında katalizördeki Al, Ti, Ce ve kükürt dağılımı verilmektedir. Yapıda ağırlıklı olarak bulunan Al haritalama işlemi sonucunda en yoğun olarak gözlenmiştir. Şekil 4.57'de görüldüğü gibi Ti ve Ce emdirme yöntemi ile alümina üzerinde dağılmıştır. TEM-Mapping ile reaksiyon sonrasında kükürdün katalizör yüzeyinde dağıldığı gözlenmektedir.

Şekil 4.57. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün 150 dakika süreyle gerçekleştirilen reaksiyon sonrası numunesi üzerinde TEM-Mapping görüntüleri

102

Aynı katalizör ile 510 dakika süren aktivite test çalışması sonrasında haritalama çalışması tekrarlanmıştır. Şekil 4.58'de görüldüğü gibi reaksiyon sırasında adsorplanan kükürt miktarında artış ve katalizör üzerinde dağılımı gözlenmiştir. 150 ve 510 dakika süren reaksiyon çalışmaları sonrasında yüzeyde biriken kükürt miktarları EDS ile sırasıyla kütlece %1,3 ve %1,73 olarak tespit edilmiştir. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün 150 ve 510 dakika süreyle gerçekleştirilen reaksiyon sonrası numunelerine ait EDS raporları EK-9'da verilmektedir.

Şekil 4.58. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün 510 dakika süreyle gerçekleştirilen reaksiyon sonrası numunesi üzerinde TEM-Mapping görüntüleri

4.2.3. SG2 alümina destekli Ti-Ce (Ti80Ce20@Al₂O₃-SG2-10w) katalizörüyle farklı reaksiyon şartları altında aktivite testleri

 H_2S' ün seçici katalitik oksidasyon deneylerinde 330 dakika boyunca %100 H_2S dönüşümü sergileyen Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile farklı sıcaklık (200, 250 ve 300°C) ve farklı oksijen konsantrasyonlarında (%1 ve %2 O₂; %6 su buharı) aktivite testleri gerçekleştirilmiştir.

Stokiyometrik besleme bileşimi ile 200°C ve 300°C sıcaklıkta Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile gerçekleştirilen reaksiyon testlerinde sırasıyla 45. ve 35. Dakikalarda aktivitede düşme gözlenmiştir. 150 dakika sonucu 200°C ve 300°C sıcaklıklar altında gerçekleştirilen aktivite testleri sonucunda sırasıyla %62 ve %66 H₂S dönüşümü elde edilmiştir. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile 200 ve 300°C sıcaklıklarda elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişim eğrileri EK-10'da verilmektedir. Farklı reaksiyon sıcaklıklarında gerçekleştirilen katalitik aktivite testleri sonucu elde edilen H₂S dönüşüm ve elementel kükürt seçicilik değerleri Şekil 4.59'de verilmiştir.

Şekil 4.59. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile farklı reaksiyon sıcaklıklarında 150 dakika sonucunda elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri (O₂/H₂S= 0,5, %1 H₂S, 150 dakika)

Farklı sıcaklıklar altında Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile gerçekleştirilen aktivite testleri sonucunda en yüksek H₂S dönüşümünün 250°C reaksiyon sıcaklığında gerçekleştiği görülmüştür (%100 H₂S dönüşüm). Çalışılan bütün reaksiyon sıcaklıklarında %100 elementel kükürt seçiciliği elde edilmiştir.

250°C sıcaklık ve besleme akımında aşırı oksijen (%1; 2) varlığında Ti80Ce20@Al₂O₃-SG2-10w katalizörünün aktivitesinin açıklanabilmesi amacıyla reaksiyon testleri gerçekleştirilmiştir. Ti80Ce20@Al₂O₃-SG2-10w katalizörüyle 250°C sıcaklık ve farklı besleme oranlarında gerçekleştirilen katalitik aktivite test sonucunda elde edilen H₂S dönüşümü ve elementel kükürt seçiciliği değerleri Çizelge 4.13'de verilmektedir. Aşırı oksijen içeren gaz karışımlarıyla gerçekleştirilen aktivite testleri sonucunda % 100 H₂S dönüşümü elde edilmiştir. Bununla birlikte reaksiyon sırasında zamanla SO₂ oluşumu gözlenmiştir. Besleme akımında %1 O₂ içeren gaz karışımıyla gerçekleştirilen aktivite testi sonunda %97, %2 O₂ içeren gaz karışımıyla gerçekleştirilen aktivite testi sonunda %90 elementel kükürt seçiciliği elde edilmiştir. Bu sonuç, besleme akımında aşırı oksijen bulunduğu durumlarda bile Ti80Ce20@Al₂O₃-SG2-10w katalizörünün H₂S'ün seçici oksidasyon reaksiyonunda kükürt verimini azaltan yan reaksiyonların (kükürdün ve H₂S'ün aşırı oksidasyonu) oluşumunun büyük ölçüde önlenebildiğini göstermiştir. Ti80Ce20@Al2O3-SG2-10w katalizörü ile 250°C sıcaklıkta farklı besleme oranlarında $(O_2/H_2S: 1, 2)$ gerçekleştirilen katalitik aktivite deneyleri sonucunda elde edilen H_2S , SO_2 ve H₂O derişimlerinin zaman ile değişimleri EK-11'de verilmektedir.

Çizelge 4.13. Farklı besleme bileşimlerinde Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile elde edilen H₂S dönüşümü ve elementel kükürt seçicilikleri (250°C; 150 dakika)

Besleme akımındaki O ₂ /H ₂ S oranı	H ₂ S Dönüşümü %	Elementel Kükürt Seçiciliği %
0,5	100	100
1,0	100	97
2,0	100	90

Besleme gaz bileşiminde su buharı varlığında, Ti80Ce20@Al₂O₃-SG2-10w ve Ti80Ce20 katalizörleriyle su buharı varlığında gerçekleştirilen aktivite test çalışması sonucunda elde edilen H₂S ve SO₂ derişimlerinin zaman ile değişim eğrileri sırasıyla Şekil 4.60 ve Şekil 4.61'de verilmiştir.

Şekil 4.60. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile elde edilen H₂S ve SO₂ derişimlerinin zaman ile değişimi (T=250° C, O₂/H₂S=0,5, %1 H₂S, %6 su buharı)

Şekil 4.61. Ti80Ce20 katalizörü ile elde edilen H₂S ve SO₂ derişimlerinin zaman ile değişimi (T=250° C, O₂/H₂S=0,5, %1 H₂S, %6 su buharı)

Besleme gazı bileşiminde %6'lık su buharı varlığında Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile gerçekleştirilen katalitik aktivite testinin 45. dakikasında, Ti80Ce20 katalizörü ile gerçekleştirilen katalitik aktivite testinin 30. Dakikasından sonra H₂S gazı gözlenmiştir. 150 dakika sonucunda Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile %56, Ti80Ce20 katalizörü ile %47 H₂S dönüşümü elde edilmiştir. Alümina malzemelerinde olduğu gibi su buharı varlığında bu iki katalizörün aktivitesinde azalma meydana gelmiştir. Ancak alümina desteğinin su buharı varlığında katalitik aktiviteyi olumlu yönde etkilediği gözlemlenmiştir. Ti80Ce20@Al₂O₃-SG2-10w ve Ti80Ce20 katalizörleri ile besleme gaz

bileşiminde su buharının olduğu ve olmadığı durumda elde edilen H_2S dönüşümü, elementel kükürt seçiciliği ve EDS analiz sonucu Çizelge 4.14'de verilmektedir.

Çizelge 4.14. Ti80Ce20 ve Ti80Ce20@Al₂O₃-SG2-10w katalizörleri ile 150 dakika süren reaksiyon sonucu elde edilen H₂S dönüşüm, ve elementel kükürt seçicilik değerleri (T=250° C, O₂/H₂S=0,5, %1 H₂S)

Katalizör	Besleme Gazı Bileşiminde Su buharı (% Hacim)	H2S Dönüşümü, %	Elementel kükürt seçiciliği, %	EDS Molar Oran
T;80Ca20		73	100	0,04
11000020	6	47	100	0,02
Ti80Ce20@Al ₂ O ₃ -		100	100	0,02
SG2-10w	6	56	100	0,02

Su buharı varlığında katalitik aktivite testi gerçekleştirilen Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon sonrası XRD ve FTIR analizleriyle karakterizasyon çalışması gerçekleştirilmiştir. Şekil 4.62'de Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve sonrası XRD desenleri verilmiştir. Malzemelerin XRD desenleri incelendiğinde kristal yapıda bir değişiklik olmadığı, reaksiyon öncesi yapıyı oluşturan γ -Al₂O₃ kristal fazının reaksiyon sonrasında da varlığını koruduğu tespit edilmiştir.

Şekil 4.62. Su buharı varlığında gerçekleştirilen deneyler sonucu Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon sonrası XRD desenleri

Ti80Ce20@Al₂O₃-SG2-10w katalizörünün yapısındaki değişiklikleri belirlemek amacıyla FTIR analizi gerçekleştirilmiştir. Şekil 4.63'de %6'lık su buharı varlığında gerçekleşen katalitik aktivite test sonucunda 3950-3150 cm⁻¹ ve 1000-450 cm⁻¹ dalga boyları arasındaki reaksiyon öncesi ve reaksiyon sonrası (150.dakika) FTIR spektrumları karşılaştırmalı olarak verilmiştir. Su buharı varlığında katalitik aktivite testleri gerçekleştirilen Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon sonrasında hidroksil gruplara ait piklerin kaybolduğu gözlenmiştir. Yaklaşık 3630 cm⁻¹ dalga boyunda bir pik gözlenmektedir. Bunun yanı sıra yaklaşık 3450 cm⁻¹ dalga boyunda fiziksel olarak adsorplanmış suya ait geniş bir pik gözlenmiştir (Pershin, 2003). Katalizörün alümina bölgesinde ise oktahedral ve tetrahedral koordinasyonlara ait piklerin (450-1000 cm⁻¹) reaksiyon sonucunda korunduğu belirlenmiştir.

Şekil 4.63. Su buharı varlığında katalitik aktivite testi gerçekleştirilen Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve sonrası FTIR spektrumu (%6 su buharı)

4.3. Tek-kap Yöntemiyle Sentezlenen Katalizörlerle (Ti-Ce-Al₂O₃) Gerçekleştirilen Karakterizayonlar ve Aktivite Test Çalışmaları

Çalışma kapsamında sentez yönteminin katalitik aktivite üzerine etkisinin araştırılması için emdirme yöntemiyle hazırlanan ve yüksek H2S dönüşümü elde edilen alümina destekli Ti-Ce katalizörleri (Kütlece %10 Ti+Ce) tek-kap yöntemi ile hazırlanmıştır. Tek-kap yöntemi, alümina malzemelerinin hazırlanması (Sol-Jel-1 veya Sol-Jel-2) sırasında Ti ve Ce tuzlarının ilave edilmesi olarak tanımlanmıştır. Tek-kap yöntemi ile hazırlanan katalizörlerin H₂S'ün seçici katalitik oksidasyonunda aktivitelerinin görülebilmesi amacıyla 250°C sıcaklık ve stokiyometrik besleme şartları altında aktivite testleri gerçekleştirilmiştir. Bu şartlarda yüksek dönüşüm sergileyen SG2 alümina destekli Ti-Ce katalizörüyle uzun ömürlülük testi yapılmıştır. Çalışmanın son aşamasında farklı sıcaklık (200, 300°C) ve farklı besleme koşullarında (O₂/H₂S: 0; 1; 2; %6 su buharı) aktivite testleri tekrarlanmıştır. Katalizörlerin yapısal ve fiziksel özellikleri bazı karakterizasyon çalışmaları (N₂ adsorpsiyon-desorpsiyon, EDS, XRD, FTIR, piridin FTIR, XPS, TEM) ile Bu bölümde tek-kap yöntemiyle hazırlanmış alümina destekli Ti-Ce belirlenmiştir. katalizörleriyle (Ti-Ce-Al2O3) gerçekleştirilen çalışmalar detaylı olarak alt başlıklar halinde sunulmuştur.

4.3.1. Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin (Ti-Ce-Al₂O₃) karakterizasyon çalışmaları

Şekil 4.64'de tek-kap yöntemi ile hazırlanan SG1 ve SG2 alüminaların destek olarak kullanıldığı Ti80Ce20-Al₂O₃-SG1-10w ve Ti80Ce20-Al₂O₃-SG2-10w katalizörlerinin azot adsorpsiyon-desorpsiyon izotermi ve gözenek çap dağılım eğrisi verilmektedir. Tek-kap yöntemi ile hazırlanan SG1 ve SG2 alümina destekli katalizörlerin N₂ adsorpsiyon-desorpsiyon izotermleri birbirleriyle benzerlik göstermektedir. Elde edilen izotermlerin (Şekil 4.64a,c) tip IV (IUPAC) adsorpsiyon izotermi ile uyumlu ve yaklaşık 0,7 relatif (P/P_o) basıncında bir histerisis sergilemeye başladığı görülmektedir (Lowell ve Shield, 1984). Bu histerisis davranışı katalizörde gözenek boyutu ve şeklinin iyi tanımlandığı H1 tip histerisise benzediği belirlenmiştir. Ti80Ce20-Al₂O₃-SG1-10w ve Ti80Ce20-Al₂O₃-SG2-10w katalizörlerinin mezogözenek bölgesinde olup BJH ile belirlenen ortalama gözenek çapları yaklaşık 9,5 nm'dir.

Şekil 4.64. Tek kap yöntemi ile hazırlanan katalizörlerin a,c) N₂ adsorpsiyon-desorpsiyon izotermi, b,d) Gözenek çap dağılım grafiği

Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin N_2 adsorpsiyondesorpsiyon analizleri ile elde edilen yüzey alanı, gözenek çapı ve hacmi değerleri Çizelge 4.15'de verilmektedir.

Çizelge 4.15. Tek-kap yöntemleriyle hazırlanan alümina destekli Ti-Ce katalizörlerinin fiziksel özellikleri

Katalizör	Katalizör Hazırlama Yöntemi	% Kütlesel (Ti+Ce)	BET yüzey alanı, m ² /g	Gözenek Hacmi, cm ³ /g	Ortalama Gözenek çapı, nm
Ti80Ce20-Al ₂ O ₃ - SG1-10w	SG1 Tek-kap	10	272	0,545	9,5
Ti80Ce20-Al ₂ O ₃ - SG2-10w	SG2 Tek-kap	10	219	0,409	9,6

Emdirme yöntemi ile hazırlanan SG1 ve SG2 destekli Ti-Ce katalizörlerinin yüzey alan değerleri sırasıyla 253 m²/g ve 266 m²/g olarak belirlenmişti. SG1 tek-kap yöntemi ile hazırlanan Ti80Ce20-Al₂O₃-SG1-10w katalizörünün yüzey alanı emdirme yöntemi ile hazırlanan SG1 alümina destekli Ti-Ce katalizörüne göre biraz yüksek bulunurken, SG2 tek-kap yöntemi ile hazırlanan Ti80Ce20-Al₂O₃-SG2-10w katalizörünün yüzey alanı emdirme yöntemi ile hazırlanan SG2 alümina destekli Ti-Ce katalizörüne göre biraz düşük bulunmuştur.

Sentezlenen katalizörlerin yapısında bulunan Ti-Ce metallerinin molar ve kütlesel konsantrasyonları EDS analizi ile belirlenmiştir. Çizelge 4.16'da tek-kap yöntemi ile sentezlenen Ti-Ce-Al₂O₃ katalizörlerinin EDS analiz sonuçları ile belirlenen Ti ve Ce oranları sentez çözeltisindeki oranlar ile beraber verilmektedir.

Çizelge 4.16. Tek-kap yöntemi ile sentezlenen alümina destekli Ti-Ce katalizörlerinin EDS analiz sonuçları

Katalizör	Ti/Ce Molar oranı Sentez çözeltisi	Ti/Ce Molar oranı EDS	(Ti+Ce) Kütlesel oran Sentez çözeltisi (%)	(Ti+Ce) Kütlesel oran EDS (%)
Ti80Ce20-Al ₂ O ₃ -SG1-10w	4/1	3.46/1	10	7.95
Ti80Ce20-Al ₂ O ₃ -SG2-10w	4/1	2.27/1	10	13.01

Ti80Ce20-Al₂O₃-SG1-10w katalizöründe sentez çözeltisindeki EDS analizleri ile uyumlu bulunmuştur. Bununla beraber SG2 sol-jel sentez yöntemi ile belirlenen Ti ve Ce oranları hazırlanan Ti80Ce20-Al₂O₃-SG2-10w katalizöründe ise EDS ile belirlenen Ti/Ce oranı sentez çözeltisine göre daha düşük elde edilmiştir. EK-12'de tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları verilmektedir.

Sentezlenen katalizörlerin katı fazlarını belirlemek amacıyla XRD analizleri gerçekleştirilmiştir. Şekil 4.65'de Ti80Ce20-Al₂O₃-SG1-10w ve Ti80Ce20-Al₂O₃-SG2-10w katalizörünün X-ışını kırınım deseni verilmiştir.

Şekil 4.65. Ti80Ce20-Al₂O₃-SG1-10w ve Ti80Ce20-Al₂O₃-SG2-10w katalizörlerinin X-ışını kırınım deseni (γ: γ-Alümina)

Ti80Ce20-Al₂O₃-SG1-10w katalizörünün XRD deseni incelendiğinde emdirme yöntemi ile sentezlenen katalizörlerde olduğu gibi amorfla beraber γ-alüminaya ait pikler olduğu belirlenmiştir. Ti80Ce20-Al₂O₃-SG2-10w katalizörünün X-ışını kırınım deseninde ise diğer katalizörlerden farklı olarak CeO₂ yapısına ait pikler gözlenmiştir. Ayrıca γ-Al₂O₃ yapısına ait küçük pikler ve TiO₂ "anatase" yapısını ana piki gözlenmiştir. Çizelge 4.17'de Ti80Ce20-Al₂O₃-SG2-10w katalizörüne ait literatür verileri ile deneysel veriler ayrıntılı olarak karşılaştırılmıştır. Ti80Ce20-Al₂O₃-SG2-10w katalizörüne ait literatür verileri verileri ile deneysel veriler ayrıntılı olarak karşılaştırılmıştır. Ti80Ce20-Al₂O₃-SG2-10w katalizörüne ait literatür verileri ile deneysel veriler

l Ti80Co	Numune e20-Al ₂ (: D ₃ -SG2	CeO ₂ L (File No (Smith	CeO ₂ Literatür (File No: 4-593) (Smith, 1974) γ-Alümina Literatür (File No: 29-6 (Smith, 1974)		mina atür 29-63) 1974)	Anatase TiO ₂ Literatür (File No: 21-1272) (Smith, 1974)	
2 theta	d	I/I ₀	d	I/I ₀	d	I/I ₀	d	I/I ₀
					4,530	35		
25,20	3,531	90					3,520	100
28,60	3,119	100	3,120	100				
32,30	2,769	25			2,800	45		
33,28	2,690	47	2,710	29				
							2,430	10
37,80	2,378	30			2,390	65	2,380	20
							2,330	10
					2,280	40		
45,78	1,980	35			1,980	80		
47,80	1,901	66	1,910	51				
							1,890	35
							1,690	20
							1,660	20
56,50	1,627	62	1,630	44				
					1,530	10		
							1,480	14
67,00	1,396	61			1,400	100		
							1,260	10
77,06	1,236	10	1,240	15				
			1,104	12				
			0,910	13				

Çizelge 4.17. Ti80Ce20-A₁₂O₃-SG2-10w katalizörünün X-ışını kırınım desenlerinin analizi

Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin yapısal özelliklerinin belirlenmesi amacıyla FTIR analizleri gerçekleştirilmiştir. Şekil 4.66'de Ti80Ce20-Al₂O₃-SG1-10w ve Ti80Ce20-Al₂O₃-SG2-10w katalizörlerinin reaksiyon öncesi FTIR spektrumları verilmiştir.

Şekil 4.66. Tek-kap yöntemleriyle hazırlanan katalizörlerin FTIR spektrumları

Katalizörlerin reaksiyon öncesi FTIR spektrumları incelendiğinde her iki katalizörde de oktahedral (~520 cm⁻¹) ve tetrahedral (~850 cm⁻¹) alümina yapılarını temsil eden pikleri bulundurduğu belirlenmiştir. Ti80Ce20-Al₂O₃-SG2-10w katalizöründe 3200-3800 cm⁻¹ dalga boyu aralığında hidroksil gruplarını temsil eden belirgin pikler gözlenirken Ti80Ce20-Al₂O₃-SG1-10w katalizöründe bu pikler belirgin olarak gözlenmemektedir. FTIR analizleri sonucu alüminaların büyük oranda oktahedral yapıda olduklarını ve özellikle Ti80Ce20-Al₂O₃-SG2-10w katalizöründe hidroksil gruplarının bulunduğunu göstermektedir.

4.3.2. Tek-kap yöntemi ile sentezlenen alümina destekli Ti-Ce (Ti-Ce-Al₂O₃) katalizörleri ile gerçekleştirilen aktivite testleri

Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin aktivitesinin belirlenebilmesi amacıyla 250°C sıcaklık ve stokiyometrik besleme gaz bileşiminde reaksiyon test çalışmaları gerçekleştirilmiş ve elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi Şekil 4.67'de verilmektedir.

Şekil 4.67. Ti80Ce20-Al₂O₃-SG1-10w katalizörüyle elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250°C, O₂/H₂S=0,5; %1 H₂S)

Tek-kap yöntemi ile sentezlenen SG1 alümina destekli Ti-Ce katalizörü ile gerçekleşirilen aktivite test çalışmasının 20. dakikasından itibaren çıkış akımından H₂S gazı tespit edilmiştir. 150 dakika reaksiyon süresi sonunda %66 H₂S dönüşümü elde edilmiştir. Reaksiyon boyunca reaktör çıkış akımından SO₂ gazı çıkışı tespit edilmemiştir. Şekil 4.68'de tek-kap yöntemi ile hazırlanan SG1 ve SG2 alümina destekli Ti-Ce katalizörleri ile 150 dakikalık reaksiyon süresi sonunda elde edilen H₂S dönüşüm ve elementel kükürt seçicilik değerleri karşılaştırmalı olarak verilmiştir.

Şekil 4.68. Ti80Ce20-Al₂O₃-SG1-10w ve Ti80Ce20-Al₂O₃-SG2-10w katalizörleriyle elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri (T= 250°C, O₂/H₂S= 0,5; %1 H₂S, 150 dakika)

150 dakika reaksiyon süresi boyunca SG1 alümina destekli Ti-Ce katalizörünün aktivitesinde azalma meydana gelirken, SG2 alümina destekli katalizör ile 150 dakika reaksiyon süresi sonunda %100 H₂S dönüşümü elde edilmiştir. Her iki katalizör ile %100 elementel kükürt seçiciliği elde edilmiştir. Yüksek aktivite gösteren SG2 alümina destekli Ti-Ce katalizörü ile uzun ömürlülük testi gerçekleştirilmiştir. Uzun ömürlülük testi boyunca elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi Şekil 4.69'de verilmektedir. Uzun ömürlülük testinin 320. dakikasından sonra reaktör çıkış akımında H₂S gazı tespit edilmiştir. 530 dakika sonunda Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile %60 H₂S dönüşümü elde edilmiştir. Bununla birlikte ilk 20 dakikada düşük konsantrasyonda SO₂ çıkışı tespit edilmiş ancak daha sonra SO₂ oluşumu gerçekleşmemiştir.

Şekil 4.69. Uzun ömürlülük testi boyunca Ti80Ce20-Al₂O₃-SG2-10w katalizörüyle elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250°C, O₂/H₂S=0,5; %1 H₂S)

Reaksiyon sırasında katalizörde kükürt birikiminin belirlenebilmesi için XPS ve EDS, yapısal değişim için XRD analizleri gerçekleştirilmiştir. Çizelge 4.18'de katalitik aktivite test ve EDS analizi sonuçları verilmektedir.

Çizelge 4.18. Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerinin H₂S dönüşümü, elementel kükürt seçiciliği, reaksiyon EDS analiz sonuçları (T= 250°C, O₂/H₂S= 0,5; %1 H₂S)

Katalizör	Reaksiyon süresi (dakika)	H ₂ S Dönüşümü %	Elementel Kükürt Seçiciliği %	Mol Oranları (EDS), S/(Ti+Ce+Al)
Ti80Ce20-Al ₂ O ₃ - SG1-10w	150	66	100	0,02
Ti80Ce20-Al ₂ O ₃ - SG2-10w	150	100	100	0,02
Ti80Ce20-Al ₂ O ₃ - SG2-10w	510	60	100	0,02

Gerçekleştirilen EDS analizleri sonucu 150 dakika reaksiyon süresi sonunda SG1 ve SG2 alümina destekli Ti-Ce katalizörlerinde yüksek kükürt birikimi tespit edilmemiştir. SG2 alümina destekli Ti-Ce katalizörünün aktivitesinde azalma meydana geldiği uzun ömürlülük testinden sonra yüzeyinde biriken kükürt miktarında 150 dakikalık reaksiyona göre benzer kükürt birikimi gözlenmiştir. SG2 destekli Ti-Ce katalizörün yüzeyde biriken kükürt oranının belirlenebilmesi amacıyla XPS analizi de gerçekleştirilmiştir ve S/(Al+Ti+Ce): 0,1 olarak belirlenmiştir. Tek-kap yöntemi ile hazırlanan katalizörlerin reaksiyon sonrası EDS raporları EK-14'de verilmiştir.

Şekil 4.70'de Ti80Ce20-Al₂O₃-SG1-10w ve Ti80Ce20-Al₂O₃-SG2-10w katalizörlerinin reaksiyon öncesi ve sonrası X-ışını kırınım desenleri karşılaştırmalı olarak verilmiştir. Ti80Ce20-Al₂O₃-SG1-10w katalizörünün reaksiyon sonrası X-ışını kırınım deseninde reaksiyon öncesine göre bir değişim gözlenmemiştir. Ti80Ce20-Al₂O₃-SG1-10w katalizörünün reaksiyon sonrası (150 ve 510 dakika) yapısında yaklaşık 2 θ = 27,4 açısında titanyumun rutile fazının oluştuğu ve yaklaşık 2 θ = 45,52 açısında bulunan γ -Alümina fazına ait küçük pikin reaksiyon sonrası kaybolduğu belirlenmiştir.

Şekil 4.70. Ti80Ce20-Al₂O₃-SG1-10w ve Ti80Ce20-Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve sonrası X-ışını kırınım deseni (γ: γ-Alümina, A: TiO₂ Anatase, R: TiO₂ Rutile, C: CeO₂)

Şekil 4.71. Ti80Ce20-Al₂O₃-SG1-10w katalizörünün reaksiyon a)öncesi ve b)sonrası FTIR spektrumları

SG1 alümina destekli Ti-Ce katalizörünün reaksiyon sonrası FTIR analizinde reaksiyon öncesine göre bir değişiklik olmadığı belirlenmiş, AlO₆ ve AlO₄ yapılarının korunduğu gözlemlenmiştir. SG2 alümina destekli Ti-Ce katalizörlerinin reaksiyon öncesi ve sonrası alınan FTIR spektrumları karşılaştırmalı olarak Şekil 4.72'de verilmektedir.

Şekil 4.72. Ti80Ce20-Al₂O₃-SG2-10w katalizörünün a)reaksiyon öncesi, b)150 ve c)510 dakika reaksiyon sonrasında FTIR spektrumları

Ti80Ce20-Al₂O₃-SG2-10w katalizörünün 3200-3800 cm⁻¹ dalga boyları arasında bulunan hidroksil gruplarında bir değişim gözlenmemiştir. 520 cm⁻¹ ve 850 cm⁻¹ dalga boyunlarında sırasıyla oktahedral ve tetrahedral Al koordinasyonlarını temsil eden pik şiddetlerinin zamanla azaldığı belirlenmiştir.

Reaksiyon çalışması sonrasında Ti80Ce20-Al₂O₃-SG2-10w katalizörü üzerinde biriken kükürt yapısal analizinin gerçekleştirilebilmesi amacıyla yapılan FTIR analizleri 900-1400 cm⁻¹ bant aralıklarında Şekil 4.73'de verilmektedir. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile 150 dakika reaksiyon süresi sonunda elde edilen FTIR spektrumunda 985, 1030, 1125 ve 1315 cm⁻¹ dalga boylarında pikler elde edilmiştir. 985, 1125 ve 1315 cm⁻¹ dalga boylarındaki pikler kükürdün oksijen ile bağ yaptığını, 1078 ve 1251 cm⁻¹ dalga boylarındaki pikler ise alüminyumla bağ yaptığı bileşiklere aittir. 510 dakika reaksiyon süresi sonucunda belirlenen S-Al bağının katalitik aktivitede azalma meydana getirdiği düşünülmektedir. Ti80Ce20-Al₂O₃-SG2-10w katalizörünün FTIR spektrumlarının analizleri kükürt bölgesi için ayrıntılı olarak Çizelge 4.19'de verilmektedir.

Şekil 4.73. Ti80Ce20-Al₂O₃-SG2-10w katalizörünün reaksiyon sonrası (150 ve 510. dakika) FTIR spektrumları

	Ti80Ce20-Al ₂ O ₃ -SG2-10w			
	150 dakika	510 dakika		
$(960-1000 \text{ cm}^{-1}; \sim 910 \text{ cm}^{-1}) *$	985 cm ⁻¹	970 cm ⁻¹		
$(1255 \text{ cm}^{-1}) *$		1251 cm ⁻¹		
$(1160-1140 \text{ cm}^{-1}; 1350-1300 \text{ cm}^{-1}) *$	1315 ve 1125 cm ⁻¹	1325 ve 1125 cm ⁻¹		
$(1070-1030 \text{ cm}^{-1}) **$	1030 cm ⁻¹	1078 cm ⁻¹		

Çizelge 4.19. Reaksiyon sonrası Ti80Ce20-Al₂O₃-SG2-10w katalizörünün FTIR spektrumlarında gözlenen S=O bağları ve dalga boyları

* Senturk, 2012; ** Smith, 1999

SG2 alümina destekli Ti-Ce katalizörü ile reaksiyon sonrası yüzey asitliğindeki değişimin belirlenebilmesi amacıyla Pridin adsorplanmış FTIR analizi gerçekleştirilmiştir. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile gerçekleştirilen Pridin adsorplanmış FTIR analiz sonuçları Şekil 4.74'de verilmektedir.

Şekil 4.74. Ti80Ce20-Al₂O₃-SG2-10w katalizörünün reaksiyon a)öncesi ve b)150 dakika c) 510 dakika reaksiyon sonrasında FTIR spektrumu

Katalizörün FTIR spektrumları incelendiğinde reaksiyon öncesinde 1445 cm⁻¹ dalga boyunda bulunan ve Lewis asitliğini temsil eden pikin reaksiyon sonrası azaldığı, 510. dakikada neredeyse kaybolduğu belirlenmiştir.

4.3.3. SG2 alümina destekli Ti-Ce (Ti80Ce20-Al₂O₃-SG2-10w) farklı reaksiyon şartları altında aktivite testleri

250°C sıcaklık ve stokiyometrik besleme şartları altında gerçekleştirilen aktivite testleri sonucu yüksek dönüşüm sergileyen Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile farklı reaksiyon sıcaklıklarında (200°C ve 300°C) aktivite testleri gerçekleştirilmiştir. Farklı sıcaklıklar altında gerçekleştirilen aktivite testleri sonucu elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri Şekil 4.75'de verilmektedir.

Şekil 4.75. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile farklı reaksiyon sıcaklıklarında 150 dakika sonucunda elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri (O₂/H₂S= 0,5)

200°C ve 300°C reaksiyon sıcaklıkları altında gerçekleştirilen aktivite testleri sonucunda Ti80Ce20-Al₂O₃-SG2-10w katalizörün aktivitesinde azalma meydana gelmiştir. 150 dakika süren reaksiyon sonucu 200°C sıcaklık altında %62 H₂S dönüşümü elde edilirken, 300°C sıcaklık altında %69 H₂S dönüşümü elde edilmiştir. Aktivite testleri gerçekleştirilen tüm sıcaklıklarda %100 elementel kükürt seçiciliği elde edilmiştir. Farklı sıcaklıklarda gerçekleştirilen reaksiyon çalışmalarından sonra Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile 250°C sıcaklık ve farklı besleme oranlarında (O₂/H₂S: 1; 2) aktivite testleri gerçekleştirilmiştir. Farklı besleme koşulları altında gerçekleştirilen aktivite testleri sonucu elde edilen H₂S dönüşüm ve elementel kükürt seçicilikleri Çizelge 4.20'de verilmektedir.

Çizelge 4.20. Farklı besleme bileşimlerinde Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile elde edilen H₂S dönüşümü ve elementel kükürt seçicilikleri (250°C; 150 dakika)

Besleme akımındaki O ₂ /H ₂ S oranı	H_2S Dönüşümü, %	Elementel Kükürt Seçiciliği, %
0.5	100	100
1	100	98
2	100	98

250°C reaksiyon sıcaklığı ve farklı besleme koşulları altında gerçekleştirilen aktivite testlerinin tümünde %100 H₂S dönüşümü ve yüksek elementel kükürt seçiciliği (\geq %98) elde edilmiştir. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile 250°C sıcaklıkta farklı besleme oranlarında (O₂/H₂S: 0, 1, 2) gerçekleştirilen katalitik aktivite deneyleri sonucunda elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimleri EK-15'de verilmektedir.

Tek-kap yöntemi ile sentezlenen SG2 alümina destekli Ti-Ce katalizörün su buharı varlığında aktivitesinin incelenmesi amacıyla %6'lık su buharı besleme akımında aktivite testi gerçekleştirilmiştir. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile %6 (hacim) su buharı varlığında gerçekleştirilen aktivite testinde elde edilen H₂S ve SO₂ konsantrasyonlarının zaman ile değişimi Şekil 4.76'da verilmektedir.

Şekil 4.76. Ti80Ce20-Al₂O₃-SG2-10w katalizörüyle elde edilen H₂S ve SO₂ derişimlerinin zaman ile değişimi (T=250° C, O₂/H₂S=0,5; %1 H₂S %6 su buharı)

Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile %6'lık su buharında gerçekleştirilen katalitik aktivite testin yaklaşık 30. dakikasında H₂S gözlenmeye başlanmıştır ve 150 dakika deney sonucunda %54 H₂S dönüşümü ve %100 elementel kükürt seçicilik değeri elde edilmiştir. Besleme gazı akımında su buharının olduğu ve olmadığı koşullarda bu katalizör ile elde edilen H₂S dönüşüm ve elementel kükürt seçicilik değerleri Çizelge 4.21'de verilmektedir. Reaksiyon gaz bileşiminde su buharının bulunmasıyla birlikte Ti80Ce20-Al₂O₃-SG2-10w katalizöründe aktivitede azalma gözlenmiştir. Su buharı varlığında gerçekleştirilen katalitik aktivite testleri sonrası EDS raporları EK-16'da verilmiştir.

Çizelge 4.21. Su buharı varlığında gerçekleştirilen katalitik aktivite testleri sonucu elde edilen H₂S dönüşüm ve elementel kükürt seçicilik değerleri

Katalizör	Su Buharı (% Hacim)	H ₂ S Dönüşümü	Elementel Kükürt Seçiciliği	Molar Oran EDS (S/Ti+Ce+Al)
Ti80Ce20-Al ₂ O ₃ -SG2-10w		100	100	0,02
Ti80Ce20-Al ₂ O ₃ -SG2-10w	6	54	100	0,04

Su buharı varlığında gerçekleştirilen ve katalizörün aktivitesinde azalma gözlenen aktivite testi sonucunda katalizörün yüzeyinde biriken kükürt miktarının arttığı EDS analizi sonucu belirlenmiştir. Şekil 4.77'de su buharı varlığında katalitik aktivite testi gerçekleştirilen

Ti80Ce20-Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve sonrası FTIR spektrumu verilmektedir.

Şekil 4.77. Su buharı varlığında katalitik aktivite testi gerçekleştirilen Ti80Ce20-Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve sonrası FTIR spektrumu (%6 su buharı)

Su buharı varlığında gerçekleştirilen aktivite testi sonucu alınan FTIR spektrumunda hidroksil gruplarının neredeyse tamamen kaybolduğu belirlenmiştir. Bunun yanı sıra yaklaşık 3450 cm⁻¹ dalga boyunda fiziksel olarak adsorplanmış suya ait geniş bir pik gözlenmiştir (Pershin, 2003). Oktahedral ve tetrahedral alümina bölgelerini temsil eden piklerde (450-1000 cm⁻¹) ciddi bir değişim olmadığı belirlenmiştir.

5. SONUÇLAR VE ÖNERİLER

Yüksek lisans çalışması kapsamında H₂S'ün elementel kükürde seçici katalitik oksidasyon reaksiyonunda kullanılmak üzere alümina destekli Ti-Ce katalizörleri sentezlenmesi ve aktivite test çalışmalarının gerçekleştirilmesi amaçlanmıştır. Titanyumun kükürde karşı dirençli ve seryumun kafes yapısındaki oksijen kapasitesinin yüksek olması nedeniyle katalizör aktif maddesi olarak seçilmişlerdir. Destek malzemesi alümina ise yapısal kararlılığından dolayı tercih edilmiştir. Sentezlenen katalizörlerin yapısal ve fiziksel özelliklerinin belirlenebilmesi amacıyla karakterizasyon çalışmaları (N₂-adsorpsiyon-desorpsiyon, XRD, EDS, XPS, TGA/DTA, TEM, FTIR, TPR) gerçekleştirilmiştir. Katalizörlerin aktivite testleri dolgulu kolon reaktör sisteminde gerçekleştirilmiştir. Çalışmanın son aşamasında su buharı varlığında katalitik aktivite testleri tekrarlanmıştır. Alümina destekli Ti ve Ce içeren katalizörlerin hazırlanması ve aktivite testlerinde elde edilen sonuçlar aşağıda maddeler halinde özetlenmektedir.

- Destek alümina malzemesi iki farklı sol-jel yöntemi (sol-jel 1; sol-jel 2) ile sentezlenmiş, karakterizasyon çalışmaları yapılmış ve aktivite testleri gerçekleştirilmiştir.
- Sol-jel 1 ve sol-jel 2 yöntemleri ile hazırlanan alümina malzemelerinin N₂ adsorpsiyondesorpsiyon analizleri sonucunda mezogözenekli yapıda olduğu belirlenmiştir. En yüksek yüzey alanının sol-jel 2 yöntemi ile sentezlenen SG2 alümina malzemesine (300 m²/g) ait olduğu belirlenmiştir. Her iki alümina malzemesinin XRD analizi sonucunda yapıda amorf yapıyla beraber γ-Al₂O₃ fazının olduğu görülmüştür. Yüzey asitliğinin belirlenmesi amacıyla gerçekleştirilen Pridin adsorplanmış FTIR analizleri sonucunda en asidik alümina malzemesinin SG1 alüminaya ait olduğu belirlenmiştir. FTIR ve NMR analizleri sonucunda alümina malzemelerinin esas olarak oktahedral (Al VI) koordinasyona sahip oldukları görülmüştür.
- Alümina malzemeleriyle katalitik aktivite testleri gerçekleştirilmiş (250°C, O₂/H₂S: 0,5) ve % 100 H₂S dönüşümleri elde edilmiştir. Bu sonuç doğrultusunda her iki malzemeyle uzun ömürlülük testi (630 dakika) gerçekleştirilmiş ve 390. dakikaya kadar %100 H₂S dönüşümü elde edilmiştir. Farklı reaksiyon sıcaklıklarında (200°C, 250°C ve 300°C) ve

farklı besleme bileşimlerinde (O_2/H_2S : 0, 0,5, 1,0, 2,0 ve %2-6 su buharı) aktivite testleri tekrarlanmıştır. Aşırı O_2 konsantrasyonundaki besleme bileşiminde yüksek kükürt seçiciliği elde edilmiştir. Su buharı varlığında gerçekleştirilen aktivite testi sonucunda her iki malzemenin de katalitik aktivitesinde azalma gözlemlenmiştir (SG1: % 62; SG2: % 54 H₂S dönüşümü).

 Alümina malzemeleri ile reaksiyon sonrası gerçekleştirilen karakterizasyon çalışmalarında yapının değişmediği, Lewis asitliği biraz daha yüksek olan SG1 alümina reaksiyon çalışması sonrasında asitliğini korurken, SG2 alüminanın aynı reaksiyon çalışması sonrasında Lewis asitliğini kaybettiği belirlenmiştir. FTIR çalışması ile hidroksil gruplarına sahip oldukları belirlenen alüminalardan SG2 reaksiyon sonrasında bu gruplarını da kaybetmiştir.

Şekil 5.1. Alümina malzemeleri farklı ile farklı besleme koşullarında elde edilen H₂S dönüşümleri

 Çalışmanın devamında SG1 ve SG2 alümina destekli Ti-Ce katalizörleri (Ti/Ce molar oranı 4/1) emdirme yöntemi ile farklı kütlesel oranlarda (Ti+Ce kütlesel oranı: %5, 10 ve 20) hazırlanmıştır. Yapılan XRD analizleri sonucunda katalizörlerin amorf ve beraberinde γ-alümina yapısına ait fazların bulunduğu belirlenmiştir. Pridin

128

adsorplanmış FTIR çalışması sonucunda yapıya Ti ve Ce emdirmesiyle yüzey asitliğinin arttığı belirlenmiştir.

- SG1 ve SG2 destekli farklı Ti+Ce oranlarındaki katalizörler ile aktivite testleri aynı şartlarda gerçekleştirilmiştir. SG1 ve SG2 destekli her iki katalizör ile %10 Ti ve Ce oranlarında %100 H₂S dönüşümü ve %100 elementel kükürt seçiciliği elde edilmiştir. Çalışmanın devamında kütlece %10 Ti+Ce içeren katalizörlerle uzun ömürlülük testleri gerçekleştirilmiştir. Bu katalizörlerden uzun ömürlülük testinde daha uzun süre yüksek aktivite gösteren SG2 destekli Ti80Ce20@Al₂O₃-SG2-10w katalizörüyle farklı sıcaklık (200°C, 250°C, 300°C), farklı besleme gazı bileşimlerinde (O₂/H₂S: 0, 0,5, 1, 2) ve su buharı varlığında katalitik testlerine devam edilmiştir. Su buharı varlığında katalitik testlerine devam edilmiştir.
- Kütlece %10 Ti+Ce içeren SG2 alümina destekli katalizörle gerçekleştirilen reaksiyon sonrası XRD analizinde katalizörün yapısında herhangi bir değişikliğin olmadığı belirlenmiştir. Su buharı varlığında gerçekleştirilen aktivite testleri sonucunda katalizörün yapısında bulunan hidroksil gruplarının yok olduğu, bunun da aktivitede azalma meydana getirdiği düşünülmektedir.
- Sentez metodunun katalitik aktivite üzerine etkisinin belirlenebilmesi amacıyla kütlece %10 Ti+Ce içeren alümina destekli katalizörler tek-kap yöntemi ile hazırlanmıştır. XRD analizleri ile SG1 destekli katalizörün yapısında γ-alümina ve SG2 alümina destekli katalizörün yapısında γ-alümina ile beraber TiO₂ (Anatase) ve CeO₂ fazlarının bulunduğu belirlenmiştir.
- Tek-kap yöntemi ile hazırlanan, 150 dakika süresince gerçekleştirilen aktivite testleri sonucunda SG1 alümina destekli katalizör ile %66, SG2 alümina destekli katalizör ile %100 H₂S dönüşümü elde edilmiştir. Yüksek H₂S dönüşümü elde edilen SG2 alümina destekli katalizör ile uzun ömürlülük, farklı sıcaklık ve farklı besleme bileşimlerinde aktivite testleri tekrarlanmıştır.
- Reaksiyon sonrası XRD analizlerinde SG1 alümina destekli katalizörün yapısında bir değişim gözlenmezken, SG2 alümina destekli katalizörün yapısında TiO₂'in rutile

fazının oluştuğu belirlenmiştir. Uzun ömürlülük testi sonucunda yapıda S-Al bağlarının oluştuğu, aktivitede meydana gelen azalmanın gerçekleşen bu bağdan kaynaklandığı düşünülmektedir.

Şekil 5.2. Alümina destekli Ti-Ce katalizörleri ile farklı besleme koşullarında elde edilen H₂S dönüşümleri

Gerçekleştirilen çalışmalar sonucunda SG2 alümina destekli katalizör ile H₂S'ün seçici katalitik oksidasyon reaksiyonlarında daha yüksek aktivite elde edilmiştir. SG2 destekli Ti-Ce katalizörlerinin H₂S'ün seçici oksidasyonuyla elementel kükürt eldesi için ümit verici katalizörler olduğu düşünülmektedir.

H₂S'ün seçici katalitik oksidasyonu ile ilgili yapılacak çalışmalara bazı öneriler getirilebilir. H₂S'ün çokça bulunduğu petrokimya ve doğalgaz proseslerinde oluşan NH₃ ve aktivite CO_2 gibi bileşiklerin gaz karışımında bulunduğu ortamda testleri gerçekleştirilebilir. Proses şartlarına entegre etmek amacıyla daha yüksek konsantrasyonlarda (%3-4) H₂S gazı içeren besleme bileşiminde aktivite testleri yapılabilir. Alümina desteği üzerine Ti metali ile seryum gibi oksijen hareketliliği yüksek ve H₂S'ün seçici katalitik oksidasyon reaksiyonlarında daha aktif olan metaller kullanılabilir.

KAYNAKLAR

- Auvray, X., Olsson, L. (2015). Stability and activity of Pd-, Pt- and Pd-Pt catalysts supported on alumina for NO oxidation, *Applied Catalysis B: Environmental*, 168-169, 342–352.
- Asencios, Y.J.O., Sun-Kou, M.R. (2012). Synthesis of high-surface-area γ -Al₂O₃ from aluminium scrap and its use for the adsorption of metals: Pb(II), Cd(II) and Zn(II), *Applied Surface Science*, 258, 10002-10011.
- Bineesh, K.V., Cho, D.R., Kim, S.Y., Jermy, B.R., Park, D.W. (2008). Vanadia-doped titania-pillared montmorillonite clay for the selective catalytic oxidation of H₂S, *Catalysis Communications*, 9, 2040–2043.
- Bineesh, K.V., Kim, S.Y., Cho, H.J., Park, D.W. (2010). Synthesis of metal-oxide pillared montmorillonite clay for the selective catalytic oxidation of H₂S, *Journal of Industrial and Engineering Chemistry*, 16, 593–597.
- Bineesh, K.V., Kim, M., Lee, G., Selvaraj, M., Park, D. (2013). Catalytic performance of vanadia-doped alümina-pillared clay for selective oxidation of H₂S, *Applied Clay Science*, 74, 127-134.
- Brundle, C.R., Evans, C.A. (1992). *Materials characterization series*. In: Wachs I.E., editor. *Characterization of catalytic materials*. Boston: Manning Publications Co., 6.
- Chun, S.W., Jang, J.Y., Park, D.W., Woob, H.C., Chung, J.S. (1998). Selective oxidation of H₂S to elemental sulfur over TiO₂/SiO₂ catalysts, *Applied Catalysis B: Environmental*, 16, 235–243.
- Chung, J.S., Paik, S.C., Kim, H.S., Lee, D.S., Nam, I.S. (1997). Removal of H₂S and/or SO₂ by catalytic conversion Technologies, *Catalysis Today*, 35, 37-43.
- Davydov, A.A., Marshneva, V.I., Shepotko, M.L. (2003). Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide I. The comparison study of the catalytic activity. Mechanism of the interactions between H₂S and SO₂ on some oxides, *Applied Catalysis A: General*, 244, 93–100.
- Eslek, D.D., Yasyerli, S. (2009). Selectivity and stability enhancement of iron oxide catalyst by ceria incorporation for selective oxidation of H₂S to sulfur, *Industrial* & Engineering Chemistry Research, 48, 5223–5229.
- Ferguson, P. A. (1975). *Gas purification-Oxidation and other processes* (1.Basım). London: Noyes Data Corporation, 189-235.
- Huang, S.J., Walters, A.B., Vannice, M.A. (2000). TPD, TPR and DRIFTS studies of adsorption and reduction of NO on La₂O₃ dispersed on Al₂O₃, *Applied Catalysis B: Environmental*, 26, 101-118.

- Internet:URL:http://www.webcitation.org/query?url=http%3A%2F%2Fsrdata.nist.gov%2F xps%2FselEnergyType.aspx&date=2015-09-19. Son Erişim Tarihi: 19.09.2015.
- Keller. N., Pham-Huu. C., Ledoux. M. (2001). Continuous process for selective oxidation of H₂S over SiC-supported iron catalysts into elemental sülfür above its dewpoint, *Applied Catalysis A: General*, 217, 205-217.
- Kim, M., Ju, W.D., Kim, K.H., Park, D.W., Hong, S.S. (2006). Selective oxidation of hydrogen sulfide to elemental surfur and ammonium thiosulfate using VOx/TiO₂ catalysts. *Studies in Surface Science and Catalysis*, 159, 225–228.
- Kim, S.M., Lee, Y. J., Jun, K.W., Park, J.V., Potdar, H.S. (2007). Synthesis of thermostable high surface area alumina powder from sol-gel derived boehmite, *Material Chemistry and Physics*, 104, 56-61.
- Kirk-Othmer. (1992). Encyclopedia of Chemical Technology (4.Basım). New York: John Wiley & Sons Inc.
- Kohl, A.L., Nielsen, R.B. (1997). Gas Purification (5.Basım). Texas: Gulf Publishing Company, 708–711.
- Laperdrix, E., Costentin, A., Saur, O., Lavalley, J.C., Nedez, C., Poncet, S.S., Nougayrede, J. (2000). Selective Oxidation of H₂S over CuO/Al₂O₃: Identification and role of the sulfurated species formed on the catalyst during the reaction, *Journal of Catalysis*, 189, 63–69.
- Ledoux, M.J, Huua, C.P., Keller, N., Nougayrède, J.B., Poncet, S.S., Bousquet, J. (2000). Silicon carbide supported NiS₂ catalyst for the selective oxidation of H₂S in Claus tail-gas, *Studies in Surface Science and Catalysis*, 130, 2891–2896.
- Lee, J.D., Park, N.K., Han, K.B., Ryu, S.O., Lee, T.J. (2006). Influence of reducing power on selective oxidation of H₂S over V₂0₅ catalyst in IGCC system, *Studies in Surface Science and Catalysis*, 159, 25–28.
- Li, K.T., Yen, C.S., Shyu N.S. (1997). Mixed-metal oxide catalysts containing iron for selective oxidation of hydrogen sulfide to sulfur, *Applied Catalysis A: General*, 156, 117–130.
- Lin, F., Wang, Z., Ma, Q., Yang, Y., Whiddon, R., Zhu, Y., Cen, K. (2016). Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst, *Applied Catalysis B: Environmental* 198, 100–111.
- Liu, X., Truitt, R.E. (1997). DRFT-IR Studies of the Surface of γ-Alumina, *Journal of the American. Chemical Society*, 119, 9856-9860.
- Lowell, S., Shield, J. (1984). *Powder surface area and porosity* (2. Basım). New York: Chapman and Hall, 11–14.

- Mali, A., Ataie, A. (2004). Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method, *Ceramics International*, 30(7),1979-1983.
- Marcilly, C., Courty, P., Delmon, B. (1970). Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous precursors, *Journal of the American Ceramic Society*, 53, 56-57.
- Matori, K.A., Wah, L.C., Hashim, M., Ismail, I., Zaid, M.H.M. (2012). Phase transformations of α-Alumina made from waste aluminum via a precipitation technique, *International Journal of Molecular Science*, 13, 16812-16821.
- Mohammed, S., Raj, A., Shoaibi, A. A., Sivashanmugam, P. (2015). Formation of polycyclic aromatic hydrocarbon in Claus process from contaminants in H₂S feed gas, *Chemical Engineering Science*, 137, 91-105.
- Nguyen, P., Edouard, D., Nhut, J-M., Ledoux, M.J., Pham, Ch., Pham-Huu, C. (2007). High thermal conductive β -SiC for selective oxidation of H₂S: A new support for exothermal reactions, *Applied Catalysis B: Environmental* 76, 300-310.
- Nhut, J.M., Vieira, R., Keller, N., Huu, C.P., Boll, W., Ledoux, M.J. (2002). Carbon composite-based catalysts: new perspectives for low-temperature H₂S removal, *Studies in Surface Science and Catalysis*, 143, 983–991.
- Palma, V., Barba, D. (2014). Low temperature catalytic oxidation of H₂S over V₂O₅/ CeO₂ catalysts, *International Journal of Hydrogen Energy*, 39, 21524-21530.
- Palma, V., Barba, D. (2014). H₂S purification from biogas by direct selective oxidation to sulfur on V₂O₅-CeO₂ structured catalysts, *Fuel*, 135, 99-104.
- Palma, V., Barba, D., Gerardi V. (2016). Honeycomb-structured catalysts for the selective partial oxidation of H₂S, *Journal of Cleaner Production*, 111, 69-75.
- Pardal, X., Brunet, F., Charpentier, T., Pochard, I., and Nonat, A. (2012). 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate, *Inorganic Chemistry*, 51, 1827-1836.
- Park, D.W.,Park, B-K.,Park, D-K., Woo, H-C. (2002). Vanadium-antimony mixed oxide catalysts fort he selective oxidation of H₂S containing excess water and ammonia, *Applied Catalysis A*, 223, 215-224.
- Park, N., Han, D.C., Han, G.B., Ryu, S.O., Lee, T.J., Yoon, K.J. (2007). Development and reactivity tests of Ce-Zr-based Claus catalysts for coal gas cleanup, *Fuel*, 86, 2232-2240.
- Peláez, R., Marín, P., Ordónez, S. (2016). Synthesis of formaldehyde from dimethyl ether on alumina-supported molybdenum oxide catalyst, *Applied Catalysis A: General* 527, 137–145.

- Pershin, S.M. (2003). Structure of the Raman Band of the OH Stretching Vibrations of Water and its Evolutions in a Field of Second Harmonic Pulses of a Nd:YAG Laser, *Moleculer Spectroscopy*, 96, 811-815.
- Pi, J., Lee. D., Lee. J., Jun. J., Park. N., Ryu. S., Lee. T. (2003). The study on the selective oxidation of H₂S over the mixture Zeolite NaX-WO₃ Catalysts, *Korean Journal of Chemical Engineering*, 21, 126-131.
- Pineda, M.M., Castillo, S., Lopez, T., Gomez, R., Borboa, C., Novaro, O. (1999). Synthesis, characterization and catalytic cctivity in the reduction of NO by CO on alumina-zirconia sol-gel derived mixed oxides, *Applied Catalysis B: Environmental*, 21, 79-88.
- Ryczkowski, J. (2001). IR spectroscopy in catalysis, Catalysis Today, 68, 263-381.
- Senturk, G.S., Vovk, E. I., Zaikovskii, V. I., Say, Z., Soylu, A. M., Bukhtiyarov, V. I., Ozensoy, E. (2012). SO_x uptake and release properties of TiO₂/Al₂O₃ and BaO/TiO₂/Al₂O₃ mixed oxide systems as NO_x storage materials, *Catalysis Today*, 184, 54-71.
- Shin, M.Y., Park, D.W., Chung, J.S. (2000). Vanadium-containing catalysts for the selective oxidation of H₂S to elemental sulfur in the presence of excess water, *Catalysis Today*, 63, 405–411.
- Shin, M.Y., Nam, C.M, Park, D.W., Chung, J.S. (2001). Selective oxidation of H₂S to elemental sulfur over VO_x/SiO₂ and V₂O₅ catalysts, *Applied Catalysis A: General*, 211, 213–225.
- Shin, M.Y., Park, D.W., Chung, J.S. (2001). Development of vanadium-based mixed oxide catalysts for selective oxidation of H₂S to sulfur, *Applied Catalysis B: Environmental*, 30, 409–419.
- Skorodumova, N. V., Simak, S. I., Lundqvist, B. I., Abrikosov, I. A., Johansson, B. (2002). Quantum origin of the oxygen storage capability of ceria, *Physical Review Letters* 89, 166601.
- Smith, D.K., Mrose, M.E., Berry, L.G., Bayliss, P. (1974). Selected Powder Diffraction Data for Minerals (1.Basim). Pennsylvania: Joint Committee on Powder Diffraction Standarts.
- Smith, B.C. (1999). Fundamentals of Fourier Transform Infrared Spectroscopy (1. Basım). New York: CRC Press.
- Soriano, M.D., Jimenez, J.J., Concepcion, P.,Lopez, A.J., Castellon, E.R., Nieto, J.M.L. (2009). Selective oxidation of H₂S to sulfur over vanadia supported on mesoporous zirconium phosphate heterostructure. *Applied Catalysis B: Environmental*, 92, 271– 279.

- Soriano, M.D., Castellon, E.R., Gonzales, E.G., Nieto, J.M.L. 2014. Catalytic behaviour of NaV₆O₁₅ bronze for partial oxidation of hydrogen sulfide, *Catalysis Today*, 238, 62-68.
- Soriano, M.D., Moya, A.V., Castellon, E.R., Melo, F.V., Blasco, M.T., Nieto, J.M.L. (2015). Partial oxidation of hydrogen sulfide to sulfur over vanadium oxide bronzes, *Catalysis Today*, 259, 237-244.
- Soriano, M.D., Cecilia, J.A., Natoli, A., Jimenez, J.J., Nieto, J.M.L. (2015). Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulfide to sulfur, *Catalysis Today*, 254, 36-42.
- Tasdemir, H.M., Yasyerli, S., Yasyerli, N. (2015). Selective catalytic oxidation of H₂S to elemental sulfur over titanium based Ti-Fe, Ti-Cr and Ti-Zr catalysts, *International Journal of Hydrogen Energy*, 40, 9989-10001.
- Trueba, M., Trasatti, S.P. (2005). γ-Alumina as a support for catalyst: A review for fundamental aspects, *Europan Journal of Inorganic Chemistry*, 17, 3393-3403.
- Uhm, J.H., Shin, M.Y, Zhidong, J., Chung, J.S. (1999). Selective oxidation of H₂S to elemental sulfur over chromium oxide catalysts, *Applied Catalysis B: Environmental*, 22, 293–303.
- Vasconcelos D.C.L., Nunes E.H.M., Vasconcelos W.L. (2012). AES and FTIR characterization of sol-gel alumina films, *Journal of Non-Crystalline Solids*, 358, 1374-1379.
- Yasyerli, S., Dogu, G., Ar, I., Dogu, T. (2004). Dynamic analysis of removal and selective oxidation of H₂S to elemental sulfur over Cu-V and Cu-V-Mo mixed oxides in a fixed bed reactor, *Chemical Engineering Science*, 59, 4001-4009.
- Yasyerli, S., Dogu, G., Dogu, T. (2006). Selective oxidation of H₂S to elemental sulfur over Ce-V mixed oxide and CeO₂ catalysts prepared by the complexation technique, *Catalysis Today*, 117, 271-278.
- Yaşyerli, S., Aktaş, Ö. (2012). Propanın oksidatif dehidrojenasyonu için doğrudan sentez ve emdirme yöntemleriyle hazırlanmış MCF destekli V-Mo-Nb katalizörleri, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27, 49–58.
- Zangouei, M., Moghaddam, A.Z., Arasteh, M. (2010). The influence of nickel loading on reducibility of NiO/Al₂O₃ catalysts synthesized by sol-gel method, *Chemical Engineering Research Bulletin*, 14, 97-102.
- Zhang, X., Dou, G., Wang, Z., Cheng, J., Wang, H., Ma, C., Hao, Z. (2013). Selective oxidation of H₂S over V₂O₅ supported on CeO₂-intercalated Laponite clay catalysts, *Catalysis Science & Technology*, 3, 2778.
- Zhang, X., Dou, G., Wang, Z., Li, L., Wang, Y., Wang, H., Hao, Z. (2013). Selective catalytic oxidation of H₂S over iron oxide supported on alumina-intercalated laponite clay catalysts, *Journal of Hazardous Materials*, 260, 104–111.

- Zhang, X., Thang, Y., Qiao, N., Yang, L., Qu, S., Hao, Z. (2015). Comprehensive study of H₂S selective catalytic oxidation on combined oxides derived from Mg/Al-V₁₀O₂₈ layered double hydroxides, *Applied Catalysis B: Environmental*, 176-177, 130-138.
- Zhu, H., Qin, Z., Shan, W., Shen, W., Wang, J. (2004). Pd/CeO₂–TiO₂ catalyst for CO oxidation at low temperature: A TPR study with H₂ and CO as reducing agents, *Journal of Catalysis*, 225, 267–277.

EKLER

EK-1. Reaksiyon sonrası FTIR analizinde gözlenen H₂S, SO₂ ve H₂O bileşiklerine ait örnek FTIR spektrumları ile SO₂ ve H₂S'ün kalibrasyon grafikleri

Şekil 1.1. H₂S bileşiğine ait örnek FTIR spektrumu.

Şekil 1.2. H₂S bileşiğine ait kalibrasyon grafiği.

EK-1. (devam) Reaksiyon sonrası FTIR analizinde gözlenen H₂S, SO₂ ve H₂O bileşiklerine ait örnek FTIR spektrumları ile SO₂ ve H₂S'ün kalibrasyon grafikleri

Şekil 1.3. SO₂ bileşiğine ait örnek FTIR spektrumu.

Şekil 1.4. SO₂ bileşiğine ait kalibrasyon grafiği.

EK-1. (devam) Reaksiyon sonrası FTIR analizinde gözlenen H₂S, SO₂ ve H₂O bileşiklerine ait örnek FTIR spektrumları ile SO₂ ve H₂S'ün kalibrasyon grafikleri

Şekil 1.5. H₂O bileşiğine ait örnek FTIR spektrumu.

EK-2. Alümina malzemelerinin X-ışını kırınım deseni analizleri

Numune: Ticari Alümina			γ-Alümina Literatür (File No: 29-63) (Smith, 1974)	
2 theta	d	I/I ₀	d	I/I ₀
			4,530	35
			2,800	45
37,56	2,393	60	2,390	65
			2,280	40
46,18	1,964	46	1,980	80
60,64	1,526	20	1,530	10
67,18	1,392	100	1,400	100

Tablo 2.1. Ticari Alümina malzemesinin X-ışını kırınım deseni analizi

Tablo 2.2. SG2 Alümina malzemesinin kırınım deseni analizi

Numune: SG2 Alümina			γ-Alümina Literatür (File No: 29-63) (Smith, 1974)	
2 theta	d	I/I ₀	d	I/I ₀
			4,530	35
			2,800	45
36,88	2,435	61	2,390	65
			2,280	40
45,82	1,979	84	1,980	80
			1,530	10
66,94	1,397	100	1,400	100

EK-3. Alümina malzemeleriyle 250°C sıcaklık ve O₂/H₂S: 0,5 şartlarında elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi

Şekil 3.1. Ticari alümina malzemesiyle elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T= 250°C ,O₂/H₂S= 0,5)

Şekil 3.2. SG2 alümina malzemesiyle elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250°C, O₂/H₂S=0,5)

Şekil 4.1. SG1 alümina malzemesiyle uzun ömürlülük teti sonrası elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250°C, O₂/H₂S=0,5)

Şekil 4.2. SG2 alümina malzemesiyle uzun ömürlülük teti sonrası elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250°C, O₂/H₂S=0,5)

Şekil 5.1. Ticari alümina malzemesiyle oksijensiz ortamda gerçekleştirilen aktivite testi sonrası elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250°C, %1 H₂S; %99 He)

Şekil 5.2. SG1 alümina ile oksijensiz şartlarda gerçekleştirilen deney sonucunda elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250° C, %1 H₂S; %99 He)

EK-5. (devam) Alümina malzemeleriyle 250°C sıcaklık ve O₂/H₂S: 0 şartlarında elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi

Şekil 5.2. SG2 alümina malzemesiyle oksijensiz ortamda gerçekleştirilen aktivite testi sonrası elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250°C, %1 H₂S; %99 He)

EK-6. SG2 Alümina malzemesi ile 250°C sıcaklık ve O₂/H₂S: 1 ve 2 şartlarında elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi

Şekil 6.1. SG2 Alümina malzemesi ile elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250° C, O₂/H₂S=1)

Şekil 6.2. SG2 Alümina malzemesi ile elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (T=250° C, O₂/H₂S=2)

EK-7. Alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları

Şekil 7.1. Ti80Ce20@Al₂O₃-SG1-20w ait EDS analiz raporu

EK-7. (devam) Alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları

Şekil 7.2. Ti80Ce20@Al₂O₃-SG1-10w ait EDS analiz raporu

EK-7. (devam) Alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları

Şekil 7.3. Ti80Ce20@Al₂O₃-SG1-5w ait EDS analiz raporu

EK-7. (devam) Alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları

Şekil 7.4. Ti80Ce20@Al₂O₃-SG2-20w ait EDS analiz raporu

EK-7. (devam) Alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları

Şekil 7.5. Ti80Ce20@Al₂O₃-SG2-10w ait EDS analiz raporu

EK-7. (devam) Alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları

Şekil 7.6. Ti80Ce20@Al2O3-SG2-5w ait EDS analiz raporu

EK-8. Farklı kütlesel yüzdelerde hazırlanan Ti-Ce@Al₂O₃ katalizörlerinin reaksiyon öncesi ve sonrası X-ışını kırınım desenleri

Şekil 8.1. Ti80Ce20@Al₂O₃-20w katalizörünün reaksiyon öncesi ve sonrası X-ışını kırınım deseni

Şekil 8.2. Ti80Ce20@Al₂O₃-SG2-20w katalizörünün reaksiyon öncesi ve sonrası X-ışını kırınım deseni

EK-8. (devam) Farklı kütlesel yüzdelerde hazırlanan Ti-Ce@Al₂O₃ katalizörlerinin reaksiyon öncesi ve sonrası X-ışını kırınım desenleri

Şekil 8.3. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon öncesi ve sonrası X-ışını kırınım deseni

Şekil 8.4. Ti80Ce20@Al₂O₃-SG2-5w katalizörünün reaksiyon öncesi ve sonrası X-ışını kırınım deseni

EK-9. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün 150 ve 510 dakika süreyle gerçekleştirilen reaksiyon sonrası numunelerine ait EDS raporları

Şekil 9.1. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün 150 dakika süreyle gerçekleştirilen reaksiyon sonrası numunelerine ait EDS raporu

EK-9. (devam) Ti80Ce20@Al₂O₃-SG2-10w katalizörünün 150 ve 510 dakika süreyle gerçekleştirilen reaksiyon sonrası numunelerine ait EDS raporları

Şekil 9.2. Ti80Ce20@Al₂O₃-SG2-10w katalizörünün 510 dakika süreyle gerçekleştirilen reaksiyon sonrası numunelerine ait EDS raporu

EK-10. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile farklı sıcaklıklar (T=200 ve 300°C) altında gerçekleştirilen katalitik aktivite sonucunda elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi

Şekil 10.1. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile 200°C reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (O₂/H₂S: 0,5)

Şekil 10.2. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile 300°C reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (O₂/H₂S: 0,5)

EK-11. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile 250°C sıcaklıkta farklı besleme oranlarında (O₂/H₂S: 1, 2) gerçekleştirilen katalitik aktivite sonucunda elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi

Şekil 11.1. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile 250°C reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (O₂/H₂S: 1)

Şekil 11.2. Ti80Ce20@Al₂O₃-SG2-10w katalizörü ile 250°C reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (O₂/H₂S: 2)

EK-12. Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları

Şekil 12.1. Ti80Ce20-Al₂O₃-SG1-10w katalizörüne ait EDS raporu

EK-12. (devam) Tek-kap yöntemi ile hazırlanan alümina destekli Ti-Ce katalizörlerine ait EDS analiz raporları

Şekil 12.2. Ti80Ce20-Al₂O₃-SG2-10w katalizörüne ait EDS raporu

EK-13.	Ti80Ce20-Al ₂ O ₃ -SG2-10w	katalizörüne	ait	literatür	verileri	ile	deneysel	verilerin
	karşılaştırılması							

Numune:	Ti80Ce20-Al ₂ O ₃ -S	γ-Alümin (File No (Smith	a Literatür o: 29-63) , 1974)	
2 theta	d	I/I _o	d	I/I _o
20,46	4,337	25	4,530	35
			2,800	45
36,24	2,477	20	2,390	65
			2,280	40
45,5	1,991	65	1,980	80
			1,530	10
66,7	1,401	100	1,400	100

Çizelge	13.1.	Ti80Ce20-Al ₂ O ₃ -SG1-10w	(tek-kap)	katalizörünün	X-ışını	kırınım
		desenlerinin analizi				

EK-14. Tek-kap yöntemi ile hazırlanan katalizörlerin reaksiyon sonrası EDS raporları

Şekil 14.1. Ti80Ce20-Al₂O₃-SG1-10w katalizörünün reaksiyon sonrası (150 dakika) EDS raporu

c:\edax32\genesis\genspc.spc Label: kV:30.0 Tilt:0.0 Take-off:34.5 Det Type:SUTW+ Res:128 Amp.T:102.4 FS : 838 Lsec : 38 23-Oct-2015 11:18:09 AKa 0 Ka TiLa CeLb CeLb CeLa TiKb TiKa Тi L1 S Ka CeLg Ce11 8.00 12.00 2.00 4.00 6.00 10.00 keV

EK-14. (devam) Tek-kap yöntemi ile hazırlanan katalizörlerin reaksiyon sonrası EDS raporları

EDAX ZAF Quantification (Standardless) Element Normalized SEC Table : Default								
Element	Wt %	At % K-Ratio	Z	A	F			
O K AlK S K TiK CeL Total	42.90 43.94 1.21 3.11 8.85 100.00 1	59.91 0.1254 36.39 0.1926 0.84 0.0057 1.45 0.0260 1.41 0.0795 00.00	1.0502 0.9836 1.0070 0.9051 0.7945	0.2781 0.4453 0.4664 0.9228 1.1308	1.0006 1.0006 1.0021 1.0000 1.0000			
Element	Net Inte.	Bkgd Inte.	Inte. Er:	ror	P/B			
O K AlK S K TiK CeL	42.90 139.91 3.81 12.42 12.55	0.47 0.84 0.78 2.04 2.37	2.49 1.37 9.83 5.28 5.35	16	1.33 7.53 4.87 6.10 5.29			

Şekil 14.2. Ti80Ce20-Al₂O₃-SG2-10w katalizörünün reaksiyon sonrası (150 dakika) EDS raporu

EK-14. (devam) Tek-kap yöntemi ile hazırlanan katalizörlerin reaksiyon sonrası EDS raporları

EDAX ZAF Quantification (Standardless) Element Normalized SEC Table : Default								
Element	Wt %	At %	K-Ratio	Z	А	F		
O K AlK S K TiK CeL Total	47.24 42.63 1.29 2.45 6.38 100.00	63.23 33.84 0.86 1.10 0.97 100.00	0.1460 0.1947 0.0063 0.0205 0.0573	1.0434 0.9773 1.0005 0.8984 0.7888	0.2961 0.4670 0.4833 0.9316 1.1398	1.0006 1.0006 1.0016 1.0000 1.0000		
Element	Net Int	e. Bk	gd Inte.	Inte. Ern	or	P/B		
O K AlK S K TiK CeL	214.14 605.99 18.03 42.08 38.79		2.25 6.01 4.88 5.73 6.11	2.12 1.26 8.96 5.33 5.64	9 10	5.00 0.81 3.69 7.34 6.35		

Şekil 14.3. Ti80Ce20-Al₂O₃-SG2-10w katalizörünün reaksiyon sonrası (510 dakika) EDS raporu

EK-15. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile 250°C sıcaklıkta farklı besleme oranlarında (O₂/H₂S: 0, 1, 2) gerçekleştirilen katalitik aktivite deneyleri sonucunda elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi

Şekil 15.1. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile 250°C reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (O₂/H₂S: 0)

Şekil 15.2. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile 250°C reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (O₂/H₂S: 1)

EK-15. (devam) Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile 250°C sıcaklıkta farklı besleme oranlarında (O₂/H₂S: 0, 1, 2) gerçekleştirilen katalitik aktivite deneyleri sonucunda elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi

Şekil 15.3. Ti80Ce20-Al₂O₃-SG2-10w katalizörü ile 250°C reaksiyon sıcaklığında gerçekleştirilen aktivite testi sonucu elde edilen H₂S, SO₂ ve H₂O derişimlerinin zaman ile değişimi (O₂/H₂S: 2)

Element Normalized SEC Table : Default									
Element	Wt %	At %	K-Ratio	Z	A	F			
O K AlK S K Total	46.82 51.81 1.37 100.00	59.85 39.27 0.88 100.00	0.1903 0.3787 0.0091	1.0371 0.9659 0.9775	0.3916 0.7566 0.6749	1.0008 1.0002 1.0000			
Element	Net Int	e. Bk	gd Inte.	Inte. Err	or	P/B			
O K Alk S K	907.34 2579.89 49.86		7.56 22.99 17.98	1.07 0.63 5.94	12 11	20.01 2.23 2.77			

Şekil 16.1. %6 Su buhar varlığında SG1 alümina malzemesinin reaksiyon sonrası (150 dakika) EDS raporu

EDAX ZAF Quantification (Standardless) Element Normalized SEC Table : Default								
Element	Wt %	At %	K-Ratio	Z	А	F		
O K AlK S K Total	51.76 47.02 1.22 100.00	64.50 34.74 0.76 100.00	0.2227 0.3324 0.0082	1.0335 0.9625 0.9738	0.4160 0.7343 0.6893	1.0007 1.0002 1.0000		
Element	Net Int	e. Bk	gd Inte.	Inte. Err	or	P/B		
O K AlK S K	1216.00 2604.71 51.85		10.15 23.24 17.24	0.73 0.50 4.53	11 11	.9.78 .2.07 3.01		

Şekil 16.2. %6 Su buhar varlığında SG2 alümina malzemesinin reaksiyon sonrası (150 dakika) EDS raporu

Şekil 16.3. %2 Su buhar varlığında SG2 alümina malzemesinin reaksiyon sonrası (150 dakika) EDS raporu

Şekil 16.4. %6 Su buhar varlığında Ti80Ce20@Al₂O₃-SG2-10w katalizörünün reaksiyon sonrası (150 dakika) EDS raporu

Şekil 16.5. %6 Su buhar varlığında Ti80Ce20-Al₂O₃-SG2-10w katalizörünün reaksiyon sonrası (150 dakika) EDS raporu

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, Adı	:	YAĞIZATLI, Yavuz
Uyruğu	:	T.C.
Doğum Tarihi ve Yeri	:	17.07.1991, Ankara
Medeni Hali	:	Bekar
Telefon	:	0 (501) 911 09 64
E-posta	:	yvzygztli@gmail.com

Eğitim

Derece	Eğitim Birimi	Mezuniyet Yılı
Yüksek Lisans	Gazi Üniversitesi / Kimya Mühendisliği	Devam Ediyor
Lisans	Gazi Üniversitesi /Kimya Mühendisliği	2014
Lise	TED Ankara Koleji	2010

İş Deneyimi

Yıl	Yer	Görev

Yabancı Dil

İngilizce, Fransızca, Almanca

Yayınlar

- 1. Taşdemir, H.M., Yağızatlı, Y., Yaşyerli, S., Yaşyerli, N., Doğu, G. (2015). *H*₂S'ün seçici katalitik oksidasyonu için hazırlanan CeO₂ katalizörünün kalsinasyon sıcaklığının aktiviteye etkisi, 27. Ulusal Kimya Kongresi, Çanakkale, Türkiye.
- 2. Tasdemir, H.M., Yagizatli, Y., Dogu, G., Yasyerli, N., Yasyerli, S. (2015) Performance of Ti-Ce catalysts for selective oxidation of H₂S to elemental sulfur, International Conference on Chemical and Biochemical Engineering, Paris, Fransa.
- 3. Tasdemir, H.M., Yagizatli, Y., Dogu, G., Yasyerli, N., Yasyerli, S. (2015). *Comparison of Ce incorporated V, Fe and Ti catalysts for selective oxidation of H*₂*S to elemental sulfur*, Porous Powder Materials (PPM), İzmir, Türkiye.

- Yağızatlı, Y., Taşdemir, H.M., Doğu, G., Yaşyerli, N., Yaşyerli, S. (2016). Elementel Kükürt Üretimi İçin Tek-Kap ve Emdirme Yöntemi ile Hazırlanmış Ti-Ce-Al Katalizörlerinin Karşılaştırılması, 12. Ulusal Kimya Mühendisliği Kongresi (UKMK-12), İzmir, Türkiye.
- 5. Tasdemir, H.M., Yagizatli, Y., Yasyerli, S., Yasyerli, N., Dogu, G. (2016). *Effect of Ti-Ce Content on the Catalytic Activity of Alumina Supported Catalysts in Selective Oxidation of H*₂S, NCC6 - 6th Catalysis Conference, Bursa, Türkiye.
- 6. Yagizatli, Y., Tasdemir, H.M., Dogu, G., Yasyerli, N., Yasyerli, S. (2016). *Effect of Preparation Method on Catalytic Activity of Ti-Ce-Al Oxides for Sulfur Production*, International Congress on Green Chemistry and Sustainable Engineering, Roma, İtalya.
- Tasdemir, H.M., Yagizatli, Y., Yasyerli, N., Dogu, G., Yasyerli, S. (2016). Selective Oxidation of H₂S over MCM-41, Al-MCM-41 and Al₂O₃ Supported Ti-Ce Catalysts, International Congress on Green Chemistry and Sustainable Engineering, Roma, İtalya.
- 8. Tasdemir, H.M., Yagizatli, Y., Yasyerli, S., Yasyerli, N., Dogu, G. (2017). *H*₂S'ün Seçici Katalitik Oksidasyonu Elementel Kükürt Üretimi İçin Tek-Kap ve Emdirme Yöntemi ile Hazırlanmış Ti-Ce-Al Katalizörlerinin Karşılaştırılması ile Elementel Kükürt Eldesinde Ce-O Katalizörleri, Journal of the Faculty of Engineering and Architecture of Gazi University (Kabul edildi).
- 9. Yağızatlı, Y., Taşdemir, H.M., Doğu, G., Yaşyerli, N., Yaşyerli, S. (2017). *The Effect* of Water Vapor on Catalytic Activity of Sol-Gel Alumina For Selective Oxidation of H₂S to Elementel Sulfur, Porous Powder Materials (PPM), Kuşadası, Türkiye.
- 10. Yağızatlı, Y., Taşdemir, H.M., Tarı, E., Güzeler, S., Yasyerli, S., Yasyerli, N. (2017). Vanadyum Oksit ve Alümina Destekli Vanadyum Oksit Katalizörlerinin H₂S'ün Seçici Oksidasyonundaki Aktiviteleri, 29. Ulusal Kimya Kongresi, Ankara, Türkiye.

GAZİ GELECEKTİR...