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ABSTRACT

Renewable energy sources are increasing their share in electricity generation. In the Turkish
electricity system, the establishment of generation facilities based on renewable energy
sources, especially wind and solar power, is encouraged. Turkey has a large wind and solar
energy potential geographically. Western part of Turkey have enormous wind energy
potential, while the middle parts of Turkey have huge solar energy potential. In this study,
the total solar energy potential of Turkey was determined and the effects of the large scale
solar power plant, which is planned to be completed in Karapinar district of Konya to the
secondary frequency control performance were investigated. With this thesis study, the
information about the compatibility of the secondary frequency control performance of
power system in Turkey with the large-scale solar energy plant will be given and the
necessary precautions for the future will be mentioned.
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OZET

Yenilenebilir enerji kaynaklar elektrik iiretiminde giderek paymni arttirmaktadir. Tiirkiye
elektrik sisteminde de basta riizgar ve giines enerjisine dayali liretim tesisleri olmak iizere
yenilenebilir enerji kaynaklarma dayali iiretim tesislerinin kurulmasi tesvik edilmektedir.
Tiirkiye cografi olarak biiyilik bir riizgar ve gilines potansiyeline sahiptir. Riizgar enerjisi
bakimindan 6zellikle bat1 bolgeleri, giines enerjisi bakimindan da orta bolgeleri 6nemli bir
potansiyele sahiptir. Bu calisma kapsaminda Tiirkiye’nin sahip oldugu gilines enerjisi
potansiyeli belirlenmis ve Konya ili Karapinar ilgesine kurulmasi planlanan biiyiik ¢apl
glines enerjisi santralinin sekonder frekans kontroliine olan etkileri incelenmistir. Bu
kapsamda hazirlanan caligma ile Tiirkiye elektrik sistemi sekonder frekans kontrolii
mekanizmasinin biiyiik ¢capli giines enerjisi santraline uygunlugu hakkinda bilgi verilecek
ve gelecege yonelik gerekli 6nlemlerden bahsedilecektir.
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1. INTRODUCTION

Aim of this thesis is to analyze the solar power potential in Turkey and to investigate the
effects of solar power plant sample to Turkish electrical system from a load stability point

of view.

Green energy becomes more popular in many developed countries because these countries’
governments are more aware of that carbon emissions from other energy sources cause of
climate change. In the last years, many countries canalize their money into renewable
sources of electricity, such as solar, wind and geothermal plants. Especially China and
United States are the main countries that use renewable energy in the world [1]. Brazil,

Germany and Russia are the other countries that invest that invest in renewable energy.

There are six main renewable sources samples: bioenergy, geothermal energy, hydropower,
ocean energy, solar energy and wind energy [2]. They are clean energy sources that have
much lower environmental impact such as CO: emission than traditional energy
technologies. Besides environmental benefits, renewable energy provides new job
opportunities. Hydropower technology is an old and it has been used for a long time. On the

other hand wind and solar power technology is developing day by day.

Solar energy is a major renewable energy source with the potential to meet necessities of the
energy producing. This power source is increasing in popularity because it is versatile with

many benefits to people and the environment.

The technologies developed to take advantage of solar energy not only increase the amount
of solar energy utilization but also reduce infrastructure costs. Solar energy, which meets its
investment in a short time with low investment cost and high efficiency, is also attractive as

a cost-free and environment-friendly energy source.

In the Turkish electricity system, the establishment of generation facilities based on
renewable energy sources, especially wind and solar power, is encouraged. Turkey has large
wind and solar energy potential. Western part of Turkey have enormous wind energy
potential, while the middle parts of Turkey have huge solar energy potential. In this context,



in order to give information about the next years, analysis studies is carried out to determine
the potential of solar power plants in Turkey.

Within the scope of the study, areas not suitable for solar power plant construction are
identified then electrical and economic analyzes are made for the remaining areas. Total
solar power plant capacity in Turkey is determined considering economic investment for

suitable areas.

After determining the total solar capacity in Turkey, in this thesis, the influence of the solar
power plants on the electricity grid is examined. In this context, the effect of solar power

plant on the secondary frequency control performance is investigated.

Frequency control of an interconnected system takes place on 4 stages: primary control,
secondary control, tertiary frequency control and time control. The primary frequency
control mechanism is carried out by measuring the difference between the rotor speed and
the reference speed and by proportionally responding to this difference [3]. If the power
balance in the electrical system deteriorates, the system frequency changes. For this reason,
frequency control mechanism is applied in order to keep power balance in power systems.
The primary frequency control is performed by the conventional generation facilities by
reacting to the changes in the system frequency while the secondary frequency control is
implemented by a central controller in response to the changes occurring in the system
frequency and the load flow in the interconnection lines. Within the context of the ENTSO-
E connection, power imbalances in the system lead to changes in the power flow over the
interconnection lines rather than the system frequency. For this reason, the amount of
secondary control reserves plays an important role to eliminate these imbalances. Secondary
frequency control mechanism maintain the power flow over the interconnection lines at

scheduled values and bring the frequency back to its nominal value.

Because the solar power plants use solar radiation as the primary source, the active power
output of the solar power plants to the system is directly proportional to the solar radiation
level reaching the solar panels [4]. For this reason, the active power levels of the solar power
plants starts to increase with the sunrise in the morning, reaches maximum in the middle of

the day, decreases in the evening hours, and goes down with the sun sinking. In addition,



due to the effect of clouding during the day, solar power plants experiences sudden changes

in the active power output levels.

In order to examine these effects on secondary control performance of 3 GW solar power
plants, which is planned to be constructed in Karapinar, Konya, in the coming years, is
designated as a model solar power plant. It is planned to build this plant approximately 60

km? surface area [5].

In this thesis study, the MATLAB program is used in necessary analysis to determine total
solar power plant potential in Turkey. On the other hand, the effects on secondary control
performance of 3 GW solar plant in Karapmar is observed by using DIgSILENT

PowerFactory power system analysis software.

In chapter 2, solar power plant potential in Turkey is determined. The methods used in this
thesis study are explained. First of all, suitable areas for PV plants are determined then solar
radiation values are obtained automatically from PV-GIS web-site. Finally, there is

economic analysis for suitable areas for solar power plant.

In chapter 3, general background on frequency control mechanism is provided. Frequency
control mechanism in Turkey is explained in detail. On the other hand, working principle of

AGC system and ACE performance criteria is described in this section.

In the fourth chapter, general properties of 3 GW solar power plant in Karapinar is explained.
Solar power plants geographical and environmental properties are analyzed. In addition,

solar power plant daily generation profile are obtained for each month,

In the fifth chapter, 3 GW solar power plant in Karapinar effects on secondary frequency
control performance is determined. In this context, active power changing of solar power
plant is investigated. Daily active power changing because of solar radiation and clouding

effects on the solar power plant are analyzed in detail.

In chapter 6, the scenarios and simulation results are reported. There are 9 different scenarios
to obtain the effects of 3 GW solar power plant on secondary frequency control performance.

In addition, simulated scenarios results are shown in detail in this chapter.



In the concluding chapter, results of simulated scenarios are discussed. Moreover, it is
decided whether the current secondary frequency mechanism is sufficient for the solar power
plants to be built in the next years.



2. DETERMINATION OF SOLAR POWER POTENTIAL IN TURKEY

2.1. Determination of Areas That Can be Installed PV Plants in Turkey

When determining the total capacity of solar power plants that Turkey has, first of all, it is
necessary to determine the appropriate areas for solar power plant installation. Then total
capacity is achieved by considering the installation of a solar power plant for each of the
appropriate areas. This capacity is correspond to the potential in the case of establishing a
solar power plant in all of these appropriate areas. When the appropriate areas for the
installation of the solar power plant are determined, areas which are not suitable for the

installation of the plant are removed in accordance with the following criteria [6]:

e Areas with a land slope greater than 3 %

e Settlement areas and remaining areas within the 500 m safety lane

e Areas within the 100 m safety lane by land and railways

e Areas within the 3 km safety lane with airports

e Environmental protection, national parks and natural areas and areas within the 500 m
safety lane

o Lakes, rivers, dam lakes and wetlands

e Protected forests, afforested areas, private forests, nurseries, reeds and marshes,

conservation forests and arboretums.

The SEPA data of the General Directorate of Renewable Energy affiliated to the Ministry of
Energy and Natural Resources is used to determine the appropriate areas for the construction
of solar power plants [7]. In this context, Turkey's global solar radiation distribution map is

shown in Figure 2.1.



Figure 2.1. Global solar radiation distribution in Turkey [7]
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The following figures can be shown as examples. Figure 2.2 shows the solar radiation

distribution of Konya and Figure 2.3 shows the resultant solar radiation distribution of the

areas determined by taking the above mentioned criteria into consideration.
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Figure 2.2. Solar radiation distribution in Konya [7]
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Figure 2.3. Solar radiation distribution of suitable points for the solar power plant installation
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For all cities in Turkey relevant city maps showing solar radiation distribution and areas
suitable for solar energy plant installation are obtained from SEPA as shown in the graphs
above.

The areas where the solar power plant can be installed in Turkey are determined form the
map for Turkey. In the next steps, the coordinates of the points that are appropriate for solar
plant construction and the values of radiation at these coordinates is determined. For
determining the total solar energy potential in Turkey, first of all, superimposing the map
obtained from SEPA with the map obtained from Google Earth for each cities in Turkey is

applied, then appropriate areas are find out by eliminating the improper areas for installation.
2.1.1. Superimposing SEPA and Google Earth maps for each cities in Turkey

To determine the coordinates of the geographical points from SEPA map image’s each
pixels, superimposing method is applied for Google Earth image and SEPA image for each
cities in Turkey. Thus, the form of the SEPA map image have the same projection as the
Google Earth image for each cities. The coordinates of the extreme points of the cities are
determined. The coordinates of the westernmost, northernmost, eastern and southernmost
points of the city are obtained and the map image of the city is considered as a rectangular

shape.



The coordinates of the endpoints of the city are divided by the pixel numbers of the SEPA
map image, and the coordinate change corresponding to each pixel changing is determined.
In this figure, the longitude change of the SEPA map in horizontal pixels and the latitude
change in vertical pixels are calculated. It is assumed that the latitude for horizontal pixels

and longitude for vertical pixels are not changed.

Figure 2.4 shows a sample Google Earth image of Adana and the coordinates of the
endpoints.

max longitude = 36.4140

min longitude = 34.7802

min latitude = 36.5144

Figure 2.4. Google Earth image of Adana and the endpoints coordinates

Figure 2.5 shows a sample SEPA image of Adana with suitable areas for solar power plants
installation and global solar radiation for these areas.

Figure 2.6 shows a sample of superimposing images of SEPA and Google Earth maps for
Adana.



Figure 2.5. Solar radiation distribution of suitable points for the solar power plant installation
in Adana

Figure 2.6. Superimposing images of SEPA and Google Earth maps for Adana
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It is possible to examine the SEPA map in detail after superimposing the maps of the Google
Earth and SEPA. The coordinates of each pixel in SEPA map image is determined because
it is known in which coordinate range the horizontal and vertical pixels are located. After
determining the coordinates of each pixel of the image, the RGB codes of these pixels are
obtained through the MATLAB program. By removing the black pixels, only the color and

coordinate information of the related pixels in relevant city are obtained.

After analyzing the color information for all pixels in the SEPA map image, following

information are obtained for each pixels remaining within the city boundaries:

e Coordinate information
e Compliance with solar power plant installation

e General information about radiation values

Afterwards, for each city in Turkey, the white areas on the SEPA map image would be
eliminated, then the annual solar radiation value for the other areas would be obtained and

the total capacity would be determined.

2.1.2. Elimination of improper areas for solar power plant installation

After obtaining the coordinates and the color information of each pixel of the cities by using
SEPA map images, it is necessary to extract the areas which are improper for solar power
plant construction. Hence, white pixels in the SEPA map are eliminated. As a result, only
the areas where solar power plant can be installed and the coordinate information of these

areas are obtained.

After this election, 120 184 coordinates which are suitable areas for solar power plant
construction are obtained for the entire Turkey. Annual solar radiation data for each
coordinate correspond to 1 km? area as mentioned in the next section. Therefore, the total

area solar power plant installation in Turkey is 120 184 km?.

Table 2.1 shows 5 sample coordinates and its color information in terms of RGB code.
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Table 2.1. Sample coordinates and its color information

Latitude | Longitude Red Green Blue
41,0703 | 30,8462 106 180 144
40,3230 | 30,7357 115 225 251
39,7392 | 27,2607 176 213 238
39,3161 | 38,0279 231 222 174
38,8462 | 44,2238 212 81 81

2.2. Obtain Solar Radiation Data for Particular Coordinates

As well as determining the areas suitable for the solar power plant installation, color
information about these areas is also obtained from SEPA map image. Color information
corresponds to the yearly radiation value in the color scale from blue to red. These colors
vary according to the solar radiation values between 1400 kWh/m? — year to 2000 kWh/m?
—year. However, it is not possible that the colors have accurate information about the annual
solar radiation data of suitable areas for solar power plant construction. Because the color
values in the maps obtained from SEPA are general information about annual solar radiation.
Therefore, annual solar radiation values should be obtained in more detail. In addition to
annual solar radiation, monthly solar radiation also provides information about the seasonal

generation of solar power plants.

After detailed investigations, solar radiation values are obtained from the PV Geographical
Information System, which is prepared by the European Union Joint Research Center, has
been used to examine annual radiation value [8]. These data are calculated using

measurements taken at specific measurement points [9].

According to the descriptions in the PV Geographical Information System, it is seen that the
solar radiation values have 1 km? area resolution. The previously determined 120 184
coordinates are also considered to be suitable for construction in the area of 1 km? in this
direction. Therefore, it is thought that the solar radiation values obtained from the PV
Geographical Information System correspond to the area of 1 km? suitable for construction.

As a result, it is found that 120 184 km? area for the 120 184 coordinates are obtained after

find out suitable areas for solar power plant construction. It is known that Turkey surface
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area is 780 043 km? [10]. Therefore it is seen that the areas suitable for solar power plant

installation corresponds to about 15% of the whole country area.

The solar radiation values obtained from the PV Geographical Information System are
obtained after entering the coordinate information as in Figure 2.7. This process is performed
for each of the 120 184 coordinates, and the radiation values of suitable areas for solar power

plant construction in Turkey are obtained in detail.

The radiation value obtained for the determined coordinate is like Figure 2.8.
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Figure 2.7. PV Geographical information system - interactive maps [8]
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Monthly Solar Irradiation

PVGIS Estimates of long-term monthly averages

Location: 38°28'43" North, 34°6'3" East. Elevation: 1207 masl.

Solar radiation database used: PVGIS-classic

Optimal inclination angle 1s: 31 degrees
Annual irradiation deficit due to shadowing (horizontal): 0.1 %

Month H;| Ho Tiix
Jan 2130 3050 58
Feb 2890 3790 50
Mar 4470 5280 39
Apr 5110 5380 24
May 6240 | 6060 11
Tun 6900 6460 5
Jul 6820 6510 9
Aug 6210 6390 20
Sep 5340 6200 35
Oct 3810 4970 48
Nov 2490 3530 57
Dec 1890 2740 59
Year 4530 5040 31

= 2
H;: Irradiation on horizontal plane (Wh/m=/day)

.
H,,.: Irradiation on optimally inclined plane (Wh/m=/day)

L, Optimal inclination (deg.)

Figure 2.8. Solar radiation data for specific coordinate [8]

As seen in the above figure, there are two different radiation values and an optimal
inclination value. One of these radiation values is the solar radiation on horizontal plane and
the other one is the solar radiation on optimally inclined plane. In all PV plants installation,
the panel is positioned at the optimum angle in order to benefit from the solar energy more
than the horizontal plane. Therefore, when the necessary analysis is carried out, the radiation

on optimally inclined plane is taken into account.

After the removal of the points that are not suitable for the solar power plant construction,
the remaining area corresponds to 120 184 km? and the map is shown in Figure 2.9 which is

created by coloring according to the values of horizontal radiation.



14

yigh P - % KWh/m? - year

g 3
. W T C o B 1400- 1450
Wi ] - DNSO'DOO
i [ 1500-1550
[ 1550 - 1600
[ 1600 - 1650
[ 1650 - 1700
I 1700 - 1750
I 1750 - 1800
[ 1500 - 2000

[] Areas not suitable
~ for solar power
plant installation

Figure 2.9. Annual solar radiation on horizontal plane distribution of suitable areas for solar
power plant installation in Turkey

2.3. Analyzing of Solar Power Plant Potential from Investment Point of View

Different technologies are available for electricity generation from the sun. The main ones
are PV systems and concentrated solar power systems. PV cells are semiconducting
materials that convert the solar radiation coming directly to their surfaces into electrical
energy. PV panel works with the photovoltaic principle, that is, when light falls on them,
voltage is generated at their ends [11]. On the other hand, CSP system follow the sun in two
axes, concentrating the sunlight into focus area. At this point, electricity generated by heating
the water [12].

Generally PV power plants are currently installed in Turkey because it is more economic
and feasible. Within the scope of the thesis study, it is thought that the plants to be installed
in the suitable areas would be the PV power plant. Therefore the studies are carried out in
this direction. On the other hand it is assumed that each 1 MW solar PV plants has 20000 m?
plant area. For example 1 GW solar PV plants is constructed in 20 km?.

Considering the map in Figure 2.9, for each 1 km?, annual solar radiation on optimally
inclined plane is obtained. While calculating the capacity factor in this direction, the use of
the radiation on optimally inclined plane is deemed suitable and the capacity factor of each
point is calculated by using this radiation value as mentioned in the previous section. The
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capacity factor is unitless and corresponds to a percentage value and is calculated according
to the following formulation.

Radiation Value on Optimmaly Inclined Plane (%)
m? X year

365 x 24 x LWh
m

CF = (2.1)

Each coordinate covers an area of 1 km? and it is possible to install a 50 MW PV solar plant
in this area. When these PV plants are considered economically, the capacity factor
depending on the annual solar radiation value gains importance. In this context, the
economically gains of power plants with high capacity factor would be constructed for the

priority investments.

Table 2.2. Installable PV plant capacity according to minimum C.F. is required in Turkey

Minimum Capacity Installable PV Capacity
Factor (%) Over Turkey (GW)

12 6009
13 6009
14 6008
15 6007
16 5997
17 5488
18 5100
19 4876
20 4333
21 2647
22 1009
23 162
24 16

25 3

26 0,05

As a result, when the minimum capacity factors is required for solar PV plants, the total
installed power of the solar PV plants that can be established in Turkey is like Table 2.2.

It is known that the minimum capacity factor should be around 20% in order to economically

reasonable return of the PV power plants. In this aspect, it is considered that this value would
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be taken into consideration when possible solar power plants that would be established in
Turkey in the coming years. It is thought that the PV power plant investments which has
annual capacity factor greater than %20 are priority investments. It is seen that in Table 2.2,
installable PV plant capacity over Turkey for minimum 20% capacity factor is about 4300
GW. It is obvious that Turkey has a great solar potential when it is considered that the

installed power capacity of Turkey is about 80 GW at present.
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3. FREQUENCY CONTROL MECHANISM IN TURKEY

The frequency of a power system depends on the active power balance. Active power
demand change will lead to a change in the frequency. In interconnected systems, active
power is required to control the frequency, that is, control of power generated by the power

plants.

In an electrical power system, the power system demand constantly changes throughout the
day. This variation may depends on conditions, working hours, day length, special holidays,
etc. These changes in demand can be predicted by various means depending on the historical
statistical data. Moreover, the demand change rate as a consequence of the above-mentioned
causes is not high enough to change the state of the system from a stable point to an unstable
point [3].

If generation is more than demand, frequency increases, on the other hand, if generation is
less than demand, frequency decreases. With the frequency control system, the amount of
generation is increased or decreased to keep the system frequency in the desired level. These

changes at the active power generation level are provided by the plants with obligations.

The frequency control of the interconnected system takes place on 4 stages; primary,
secondary, tertiary frequency control and time control according to ENTSO-E regulations
[13].

In this context, in order to ensure that the system frequency in Turkey is maintained at the
determined levels, the ancillary services for frequency control are deployed in a certain

hierarchy. The cycle for frequency control mechanism in Turkey is shown in Figure 3.1.
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Figure 3.1. Frequency control philosophy in Turkey [13]

3.1. Primary Frequency Control

Primary frequency control provides the frequency of the system to be stabilized at the
equilibrium point by increasing or decreasing the active power outputs of the generator by

the speed governors in case the system frequency in the out of determined range.

The primary frequency control response starts within a few seconds following the frequency

deviation and reaches its maximum value without exceeding 30 seconds. The primary

frequency control response keep its maximum value during 15 minutes.
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In order to meet the ENTSO-E standards the ancillary services need to be provided correctly

and adequately. Primary frequency control service has great importance in terms of system

security since it is the first service to be offered in case of decrease or increase of system

frequency.

All generation facilities with an installed capacity of 50 MW or more must participate in

primary frequency control. Generation facilities based on the following renewable energy

sources are exempt from this obligation [14]:

e Run of the river hydroelectric generation facilities

e Wind energy based generation facilities

e Solar energy based generation facilities

e Wave energy based generation facilities

o Tidal energy based generation facilities

The active output power change according to the frequency deviations of the generators

providing the primary frequency control service should be as shown in Figure 3.2.
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~ fo Frequency range in which the generator primary frequency control
~
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Figure 3.2. Change of generator active power output according to frequency change [14]
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3.2. Secondary Frequency Control

As understood from the previous section, primary frequency control aim is to stop the
deviation of frequency from its nominal value. However, the frequency is not be able to
recover to its nominal value without any other active power supplementation. For recovering
frequency to its nominal value, there must be change in active power output of the system.

This can be applied by assigning new power setpoints to some generators in the system.

In order to bring the system frequency to the nominal value and the power flows of
interconnection lines to the scheduled value, the active power outputs of the generation
facilities which are obliged to participate in the secondary frequency control are arranged by

AGC in power system.

It is imperative that all generation facilities with installed capacity of 100 MW and above
have the capability of providing secondary frequency control service. The generation

facilities indicated below are exempt from this obligation [14]:

e Run of the river hydroelectric production generation
e Wind energy based production generation

e Solar energy based production generation

e Wave energy based production generation

e Tidal energy based production generation

e Cogeneration generation

e Geothermal production generation

AGC computes the ACE signal from interchange and frequency. ACE tells whether a system
is in balance or needs to make supplements to generation. AGC software, automatically
determines the most economical output for generating resources while observing energy
balance and frequency control, usually by sending setpoints to generators during observing
ACE. Some generators also use pulse-accumulator methodology to derive a setpoint from

pulses sent by AGC, but they are less common over time [15].
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The AGC program running at the National Load Dispatch Center calculates an ACE every
2 seconds. AGC performs PI control.

ACE = (NIA — NIS) + K(FA — FS) (4.1)

Where:

NIA is Actual Net Interchange

NIS is Scheduled Net Interchange

K is Network Bias Factor (chosen 2256 for Turkey)
FA is Actual Frequency

FS is Scheduled Frequency (50 Hz in Turkey)

Average value of ACE for one hour is calculated as shown below:
ACE, =~ ¥, ACE, 4.2)

ACE performance criteria plays an important role for evaluating these scenarios. This criteria
is assumed to be a daily assessment for the ACE signal, as well as daily if provided for each
hour. In this direction, 1-hour simulations are performed. At the end of the 1 hour period, if
the ACE values which are greater than 175 MW is more than 11%, the ACE criterion for
that hour is not provided. Similar condition must be provided for 100 MW, with a 33 % limit

condition

The summary of the ACE signal performance criterion is as shown in Table 3.1. In order for

relevant hour to be successful, it must meet the ACE criteria set by ENTSO-E in the table.

Table 3.1. ENTSO-E ACE performance criteria

ACE Performance Maximum Acceptance
Criteria Ratio
|ACE| > 175 MW % 11

IACE| > 100 MW % 33
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3.3. Tertiary Frequency Control
Tertiary frequency control is that changing active power outputs of generators by the system

operator. In addition, it is much slower when compared to primary and secondary frequency

control. Using tertiary control, the following objectives are targeted:

e Always release secondary reserves when necessary to have sufficient reserves,

e Distribution of secondary reserves through economic preparations.

Active power output of generators changing can be made as fallows in tertiary frequency

control:

e Load shedding
e Start up the generator
e Switching off the generator

e Redistribution of secondary frequency control reserves

3.4. Time Control

Time control is a control action carried out to return an existing time deviation between

synchronous time and UTC time to zero. This differences must not exceed 30 seconds.

Table 3.2 summarizes the frequency control mechanism in Turkey.

Table 3.2. Frequency control mechanism summary [15]

Control Ancillary Services Timeframe
Primary Control Frequency Response | 30 Seconds — 15 Minutes
Secondary Control Regulation 30 Seconds — 15 Minutes
Tertiary Control Imbalance/Reserves 15 Minutes - Hours
Time Control Time Error Correction Hours
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In this context, it is thought that solar energy power plants have negative effects on the
secondary frequency control system after integrating to the power system. With the sunrise
and sunset, the rapidly changing in active power level becomes important when considered

from secondary control reserve capacity.

In the following chapters, the impact of the solar power plants on the grid is analyzed in

terms of the effects on secondary frequency control performance.
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4. 3 GW SOLAR POWER PLANT IN KARAPINAR

Renewable energy sources are increasingly contributing to electricity generation in Turkey.
The power system in Turkey, the establishment of renewable energy sources, especially
generation facilities based on wind and solar power, is encouraged. In this context, it is

planned to establish a 3 GW solar power plant in Karapinar in 2025 by Turkish government.

The active output power level given by the solar power plants to the system starts to increase
with the sunrise in the morning because of the direct proportion to the radiation and decreases
in the evening hours with the sun setting. On the other hand, because of clouding on a large-
scale solar power plant, active power output level of the solar power plant also decreases
with the amount of sunlight falling on the panel. And this would lead to generation demand

imbalance in the power system.

The connection of large scale PV plant to the electricity system from a single point is thought

to have a great effect on the system in the morning and evening hours.

Disruption of the generation demand balance in the power system leads to changes in grid
frequency. The active power balance in the Interconnected Turkey electrical system, is
maintained by the primer, secondary and tertiary frequency control to keep the frequency
within the determined range.

In this chapter of thesis, the characteristic of the solar PV plant planned to be installed in
Karapinar, Konya and the effects of the active power output changing of PV plant electricity

generation on power system in Turkey is examined.

4.1. Properties of Planned PV Plant in Karapinar

Until 2025, it is planned to establish a large-scale solar power plant in Karapiar, Konya in
Central Anatolia region. In accordance with the decisions of the government, it is planned
to build a solar PV plant with a capacity of 3 GW in approximately 60 km? area. The total
surface area of Karapinar is 3030 km? and the altitude of the country is 1026 meters. In
addition the population of the city is about 50000 [16]. When the SEPA is analyzed, the
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regions with the highest solar radiation are: Mugla, Burdur, Antalya, Konya (South),
Karaman, Icel (North), Nigde, Kayseri, K.Maras, Malatya, Adiyaman, Elazig, Bingol, Mus,
Bitlis and VVan. Among these regions, one of the area with the largest and least mountainous

areas is undoubtedly the Karapinar region.

The areas where the 3 GW solar PV plant would be constructed are published in the official
gazette dated 08.09.2012. In this context, these areas is approximately 60 km?. The specified
areas which have totally of approximately 60 km? is shown in Figure 4.1. These blue areas

have been designated as suitable areas for solar power plant investment by government.

Figure 4.1. Specified areas for 3 GW solar power plant investment in Karapinar [17]

The sum of the two areas shown in the figure above is approximately 60 km?. Description

about the areas is shown below [16].
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First area: It is 3 km distance from the town center and it is located in the Fatih
neighborhood. The size of this area is 27 186 031 m?. The slope of the area is 1%.

Second area: It is 19 km distance from the town center and it is located in the Resadiye

neighborhood. The size of this area is 32 400 845 m?. The slope of the area is 1%.

In PV solar power plants, the structure type of PV panels are directly affects the amount of
energy produced. If fixed-plane PV is preferred, the optimum plane angle must be found and
installation must be done in this respect. Even if installation is carried out by determining
the most suitable angle, generation is reduced at times when sunlight does not come directly
during the day. Within this context, new technologies have been developed to make more
use of solar energy. Two-axes PV panels developed to produce maximum energy from the
solar radiation by moving according to sun position. For this reason, the capacity factors of
two-axes PV panels are higher than fixed PV panels. However, given the investments made,
it is expected that Karapinar 3 GW solar PV plant is going to consist of fixed plane PV panels
only. Therefore, considering the effects of active power changing of 3 GW solar PV plants
on frequency control, only changes in fixed-plane PV plants is considered and the results are
evaluated accordingly.

When the annual solar radiation of these regions are considered, it is seen that these areas
have a high capacity factor. The annual solar radiation value for region 1 is shown in Figure
4.2.

In Figure 4.2, the average daily radiation value for each month is displayed. In this context,
it is seen that the solar radiation coming to the optimum angle is quite much. Furthermore,
when the 1 year period is considered, the average daily radiation value is 5180 W/m?/day.
This corresponds to an annual output of 1890 kWh/m2/year. Therefore, this area has a

capacity factor of 21,5%, which is a pretty good value for a fixed-plane PV plant.


http://tureng.com/tr/turkce-ingilizce/neighborhood
http://tureng.com/tr/turkce-ingilizce/neighborhood
http://tureng.com/tr/turkce-ingilizce/neighborhood
http://tureng.com/tr/turkce-ingilizce/neighborhood
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Monthly Solar Irradiation

PVGIS Estimates of long-term monthly averages

Location: 37°4827" North, 33°38'4" East. Elevation: 986 masl.

Solar radiation database used: PVGIS-classic

Optimal inclination angle 1s: 31 degrees
Annual irradiation deficit due to shadowing (honizontal): 0.0 %

Month ‘ H; : H,p, ‘ Iope
Tan 1 2260 3300 | 59
[Feb 3010 3080 51
IMas ‘ 4590 | 5440 | 39
[Apr j 5210 5490 | 24
May ' 6390 6170 10
[Tun 7040 | 6550
[Tut ‘ 6900 | 6560 |
Aug 6260 | 6420 19
Sep 5420 6280 35
[Oct 3960 | 5190 48
Nov ‘ 2590 3720 | 57
Dec 2020 | 3000 60
Year 4650 5180 31

O o
Hj: Irradiation on horizontal plane (Wh/m=/day)

H,,, Irradiation on optimally imnclined plane (Wh m? day)

L,pr- Optimal inclination (deg.)

Figure 4.2. Annual solar radiation for region 2 [8]

The above figure also shows the optimal inclination angle for fixed plane PV for each month.
This value indicates that the panel would be positioned to maximize the benefit from the
solar radiation. However, when large scale PV plants are considered, PV panel position
cannot be changed every month, so the panel positioning is made according to annual
optimum angle and remains constant for all year. The annual optimally inclination angle for

these region is about 30 degrees.
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4.2. Karapmar PV Plant Generation Profile

The monthly averages daily data obtained from the PV Geographic Information System to
examine the change of the Karapinar solar PV plant active output power. The daily active
output power change for each month is calculated by using "Clear-Sky" solar radiation data,
in which clouding effect is neglected from these data. The total installed power of the fixed-
plane PV solar power plant is assumed to be 3 GW. In this direction, Karapinar solar PV
power plant daily active power output curves for each season are given in Figure 4.3, Figure
4.4, Figure 4.5 and Figure 4.6.

Daily Active Power Output Curve of 3 GW Solar PV Plant in Karapinar in Winter
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Figure 4.3. Daily active power output curve of 3 GW solar PV plant in Karapinar in winter
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Daily Active Power Output Curve of 3 GW Solar PV Plant in Karapinar in Spring
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Figure 4.4. Daily active power output curve of 3 GW solar PV plant in Karapinar in spring

Daily Active Power Output Curve of 3 GW Solar PV Plant in Karapinar in Summer
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Figure 4.5. Daily active power output curve of 3 GW solar PV plant in Karapinar in summer
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Daily Active Power Output Curve of 3 GW Solar PV Plant in Karapinar in Fall
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Figure 4.6. Daily active power output curve of 3 GW solar PV plant in Karapinar in fall

As can be seen in the above figures, 3 GW PV power plant active power output increases
rapidly in the morning hours and decreases rapidly in the evening hours. PV plant electricity
generation hours are increasing in summer and decreasing in winter. Another point is that

the time to reach the maximum of the active output power.

PV power plant active power output remains at its maximum in spring and fall. Especially
in March and October, it is observed that the active power output is at the maximum level
between 10 and 14 hours. When summer and winter months are compared, it is observed
that the sunshine durations in summer are increased, but the periods of maximum power of
the active power output do not change. In this topic, generation profile for March and

October are shown in Figure 4.7, and for December and June are shown in Figure 4.7.
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Daily Active Power Output Curve of 3 GW Solar PV Plant in Karapinar in March and October

3000~ :
March
=——Qctober

2500}

G 1| . T TS o

=
<
1=}
1=}

Active Power Output (MW)
3
S
I

500

Il . L L | ] | | | | | | | | . L . Il |
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time(hour)

Figure 4.7. Karapinar solar PV plant active power generation profile in March and October

Daily Active Power Output Curve of 3 GW Solar PV Plant in Karapinar in June and December
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Figure 4.8. Karapinar solar PV plant active power generation profile in June and December
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5. IMPACT OF SOLAR POWER PLANT IN KARAPINAR ON
SECONDARY FREQUENCY CONTROL

The importance of assessing the changes in the active output power of the solar power plants
is the speed of the changes in the active output power. As is known, a rapid change in the
active power output power is compensated by the frequency control reserves in the first
stage. It is necessary to balance a generation demand imbalance to be experienced by the
secondary frequency control within 15 minutes at the latest [18]. For this reason, it is
necessary to consider the changes that can be experienced in minute periods in the solar

power plant's active power output.

In order to evaluate the effects of 3 GW Karapinar solar PV plant on secondary frequency
control, it is necessary to examine the day-to-day variation of active power output of the
plant and daily generation curve together. The daily load curves for sample day of each
month of the year 2015 are derived from YTBS. The investments to be made in the Karapinar
are planned to be completed in 2025. Therefore the daily load curves obtained from the
YTBS are scaled in the direction of the 2025 consumption. These curves also be thought as

the daily generation curves.

In this context, when the effect of solar power plant to be installed in Karapinar to secondary
frequency control are examined and two important topics came to the forefront. First one is
the daily solar radiation variance and the second one is the clouding over power plant area
which cause the changing in the active power output level. The effects of these changes on
the secondary frequency control is examined in the fallowing topics.
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Figure 5.1. Estimated daily generation curves in 2025

5.1. Daily Active Power Changes due to Solar Radiation Variation

The daily generation profiles of solar PV plant in Karapinar for each month are shown in the
previous sections. However, in secondary frequency control mechanism, active output power
of the solar power is gaining importance. In this context, the rates of active power change in

Karapinar solar PV plant are shown in Figure 5.2.

Daily Active Power Changes in Karapinar Solar PV Plant
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Figure 5.2. Daily active power changing rate in Karapinar solar PV plant
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As can be seen in the Figure 5.2, the rate of increase in active power output of the solar
power plant in the morning can reach up to 60 MW/min. On the other hand, the rate of
decrease in active power output of the solar power plant in the evening can reach up to 30

MW/min. These rates are gaining more importance when considering 15 minute time scale.

Daily generation curves of Karapinar solar plant in Figure 4.3, Figure 4.4, Figure 4.5 and
Figure 4.6 are compared with the estimated daily generation curves of 2025 and the effects
of 3 GW Karapinar solar PV plant on estimated daily generation curves in 2025 are shown
in between Figure 5.3 and Figure 5.14.

o Impact of 3 GW Solar PV Plant on Daily Generation Curve in 2025
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Figure 5.3. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (January)

When the daily generation curve for January is analyzed, it is observed that the active power
of solar plant increases with the consumption in the morning hours. On the other hand, while
the consumption increases, the active power of solar plant decreases in the evening hours.
For this reason, it can be said that the solar plant has positive effect in the morning hours and
the negative effect in the evening hours on daily generation in January.
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¢ Impact of 3 GW Solar PV Plant on Daily Generation Curve in 2025
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Figure 5.4. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (February)

When the daily generation curve for February is analyzed, it is observed that the active power
of solar plant increases with the consumption in the morning hours. On the other hand, while
the consumption increases, the active power of solar plant decreases in the evening hours.
For this reason, it can be said that the solar plant has positive effect in the morning hours and

the negative effect in the evening hours on daily generation curve in February.
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Figure 5.5. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (March)
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When the daily generation curve for March is analyzed, it is observed that the active power
of solar plant decreases when the consumption increases in the morning and evening hours.
For this reason, it can be said that the solar plant has negative effect in the morning and the

evening hours on daily generation curve in March.
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Figure 5.6. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (April)

When the daily generation curve for April is analyzed, it is observed that the active power
of solar plant decreases with the consumption in the evening hours. On the other hand, the
active power of solar plant increases more than the consumption in the morning hours. For
this reason, it can be said that the solar plant has negative effect in the morning hours and

the positive effect in the evening hours on daily generation curve in April.
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¢ Impact of 3 GW Solar PV Plant on Daily Generation Curve in 2025
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Figure 5.7. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (May)

When the daily generation curve for May is analyzed, it is observed that the active power of
solar plant decreases with the consumption in the evening hours. On the other hand, the
active power of solar plant increases more than the consumption in the morning hours. For

this reason, it can be said that the solar plant has negative effect in the morning hours and

the positive effect in the evening hours on daily generation curve in May.
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Figure 5.8. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (June)
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When the daily generation curve for June is analyzed, it is observed that the active power of
solar plant decreases with the consumption in the evening hours. On the other hand, the
active power of solar plant increases more than the consumption in the morning hours. For
this reason, it can be said that the solar plant has negative effect in the morning hours and

the positive effect in the evening hours on daily generation curve in June.
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Figure 5.9. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (July)

When the daily generation curve for July is analyzed, it is observed that the active power of
solar plant decreases with the consumption in the evening hours. On the other hand, the
active power of solar plant increases more than the consumption in the morning hours. For
this reason, it can be said that the solar plant has negative effect in the morning hours and
the positive effect in the evening hours on daily generation curve in July.
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s Impact of 3 GW Solar PV Plant on Daily Generation Curve in 2025
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Figure 5.10. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (August)

When the daily generation curve for August is analyzed, it is observed that the active power

of solar plant decreases with the consumption in the evening hours. On the other hand, the

active power of solar plant increases more than the consumption in the morning hours. For

this reason, it can be said that the solar plant has negative effect in the morning hours and

the positive effect in the evening hours on daily generation curve in August.
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Figure 5.11. Effect of 3 GW solar PV plant in Karapinar on daily generation curve

(September)
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When the daily generation curve for September is analyzed, it is observed that the active
power of solar plant decreases with the consumption in the evening hours. On the other hand,
the active power of solar plant increases more than the consumption in the morning hours.
For this reason, it can be said that the solar plant has negative effect in the morning hours

and the positive effect in the evening hours on daily generation curve in September.
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Figure 5.12. Effect of 3 GW solar PV plant in Karapinar on daily generation curve (October)

When the daily generation curve for October is analyzed, it is observed that the active power
of solar plant increases with the consumption in the morning hours. On the other hand, while
the consumption decreases, the active power of solar plant did not change too much in the
evening hours. For this reason, it can be said that the solar plant has positive effect in the
morning hours and the negative effect in the evening hours on daily generation curve in
October.
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¢ Impact of 3 GW Solar PV Plant on Daily Generation Curve in 2025
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Figure 5.13. Effect of 3 GW solar PV plant in Karapmar on daily generation curve
(November)

When the daily generation curve for November is analyzed, it is observed that the active
power of solar plant increases with the consumption in the morning hours. On the other hand,
while the consumption increases, the active power of solar plant decreases in the evening
hours. For this reason, it can be said that the solar plant has positive effect in the morning

hours and the negative effect in the evening hours on daily generation curve in November.
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Figure 5.14. Effect of 3 GW solar PV plant in Karapinar on daily generation curve
(December)
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When the daily generation curve for December is analyzed, it is observed that the active
power of solar plant increases with the consumption in the morning hours. On the other hand,
while the consumption increases, the active power of solar plant decreases in the evening
hours. For this reason, it can be said that the solar plant has positive effect in the morning

hours and the negative effect in the evening hours on daily generation curve in December.

When the effects of the 3 GW solar PV plant in Karapinar active power output changing on
the daily generation curve are assessed in general, it is seen that there are different effects
according to the months. It is observed that there are negative effects both in the morning
and in the evening in March. Between October and February there are positive effects in the
morning and the negative effects in the evening. For remaining months there are negative

effects in the morning and the positive effects in the evening.

Additional active power imbalances due to the solar power plant are given in Table 5.1 when
solar power plant in Karapinar daily generation and 2025 estimated daily generation curves
are jointly evaluated in secondary frequency control. If the total power demand increases
while the solar power plant active power output increases or if the total power demand
decreases while the solar power plant active power output decreases, the additional
secondary frequency reserve is not required since the power imbalance is decreased.
Otherwise, it is investigated that additional secondary control reserves are required to

balance the power imbalance in the Turkish power grid.

Table 5.1. Active power imbalance in the system in the scope of secondary frequency control

Morning Hours Evening Hours
January - + 32,2 MW/min
February - + 17,6 MW/min
March - + 13,4 MW/min
April - + 10,8 MW/min
May -5 MW/min + 10,4 MW/min
June - 11,4 MW/min + 9,6 MW/min
July - 11,2 MW/min + 9,8 MW/min
August -11,6 MW/min + 10,4 MW/min
September | -12,8 MW/min + 11,4 MW/min
October - + 12,2 MW/min
November - + 20,8 MW/min
December - + 25,8 MW/min
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In the morning, PV plant electricity generation increases rapidly with the sunrise, causing
the secondary frequency control reserves to be used as a load. On the other hand, PV plant
generation decreases rapidly with the sunset, causing the secondary frequency control

reserves to be used as a generator in the evening.

5.2. Clouding Effect on Solar Power Plant Active Power Output Level

The generation level of photovoltaic solar power plants is highly dependent on geographical
conditions. Especially for large scale PV power plants, the clouding in the power plant region
seriously affects the level of generation.

The change in generation level due to clouding differs due to the reasons such as cloud speed,

density, height, etc. Level of change depends on PV plant area.

Total solar radiation value, which is determinant in the generation quantities of photovoltaic
panels, consists of direct radiation and diffuse radiation. The clouding dramatically reduces
the direct radiation value. Reduced direct radiation on the panel causes a decrease in total

solar radiation and hence a decrease in the active power generation level.

The US National Renewable Energy Laboratory (NREL) is able to record the radiation
values in these regions on a daily basis by placing certain point-of-day solar radiation
measurement devices in the USA. Therefore, it is possible to reach real values for the
measured points. In this respect, the measurements for the two different days obtained in the

NREL study for the Los Angeles area are shown in Figure 5.15 [19].
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Figure 5.15. Radiation values for a sample days in August and December for the measuring
point in Los Angeles area [19]

The values in August 12 when clouding has not occurred and there are no significant changes
in direct radiation, so total solar radiation has smooth structure. However it is observed that
there are significant changes in the direct radiation due to the clouding in December 16, this

change causes the oscillations in the total amount of solar radiation.

It is observed that clouding at 09:15 in the morning in December, caused the direct radiation
value to decrease by approximately 300 W/m? for the sampling point which resulted in a
decrease of approximately 40 % in total solar radiation value. In this direction, the change

in the output power of a single panel is about 40%.

Clouding, which causes serious changes in radiation values, may occur in different types.
There are basically three different types of clouding in photovoltaic studies. The visual state

of these clouding is shown in Figure 5.16.

Figure 5.16. Left — Stratus Cloud, Middle — Shallow Cloud, Right — Dense Cloud
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Another study on clouding is the study of the "Observed Impacts of Transient Clouds on
Utility-Scale PV Fields" for the Florida region [20]. The results obtained in this study are
shown in Figure 5.17, Figure 5.18 and Figure 5.19.
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Figure 5.17. Changes in radiation values for photovoltaic power plant in Florida region
according to the type of clouding [20]

As shown in Figure 5.18, there is some reduction in the level of radiation in the stratus cloud
and no oscillation is observed. However, in the case of dense cloud, it is observed that the

level of radiation is decreasing severely and the oscillations become more frequent.
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Figure 5.18. Percentage of photovoltaic power plant generation established on 730 000 m?

and located in Florida by changing radiation value [20]
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As shown in Figure 5.19, the generation level is reduced by up to 80% when exposed to the
effect of a dense cloud.
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Figure 5.19. The impact of fast cloud transition on daily generation of photovoltaic solar
power plant located in Florida established on 730 000 m? [20]

In addition to affecting the daily generation profile of clouding, a very sudden cloud crossing
over the PV plant on a sunny day also dramatically reduces the generation level
instantaneously. The change in radiation caused by a fast and dense cloud passing over the
PV plant installed on 730 000 m? and the oscillation at the generation level caused by this
change is shown in Figure 5.19. It is seen that the instantaneous cloud transition caused a
drop of close to 60% within 3 minutes of the generation level.

In addition, for the South Africa region, the study of "Cloud Cover Impact on Photovoltaic
Power Production in South Africa" is investigated [21]. The results obtained in this study

are shown in Figure 5.20 and Table 5.2.
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PV power production [%

Figure 5.20. Daily generation curves of three PV plants in the same zone (50 km? on the left,
250 km? on the Middle, 500 km? on the Right) [21]

The effect of radiation due to clouding on the generation level may vary depending on the
size of the PV plant area. As the area of the generation facility grows, the percentage of
active power changes level decreases. As can be seen in Figure 5.20, as the area grows, the
daily generation profile has a smoother structure and sudden changes are less likely to

disappear.

Considering the 15-minute changes in the generation level, as seen in Table 5.2, it is
observed that the photovoltaic power plant installed on a 50 km? area is observed 24% loss
of generation level at the time of clouding, and this oscillation decreases as the area grows.

It is observed to loss of generation level fall down to 6% for the larger area.

Table 5.2. Percentage of active power changes that occur due to the clouding according to
plant area [21]

PV Plant Area 15 Minutes Change Interval
[km?] [% Nominal DC Power]
5 +15 - 440
50 +8 - 24
250 +3 -  £10
500 +2 - =6

In the direction of these studies, 3 GW Karapinar solar PV plant is planned to be built on 60
km?, active power output may change to £25% (+750 MW) of the installed power of PV

plant during clouding within 15 minutes.
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6. SIMULATION AND RESULTS

9 different scenarios are constructed for examining the effects of the 3 GW Karapnar solar
power plant on the secondary frequency control performance. In this context, the scenarios
are simulated in the DIgSILENT PowerFactory program and the results are analyzed in the
MATLAB program.

The following topics inform the simulation model, scenario information and results of the

simulation.

6.1. Simulation Model in DIgSILENT PowerFactory

After synchronizing the Turkish electricity system with the ENTSO-E system, the secondary
frequency control performance has gain more importance than before. In order to be able to
make the evaluations of the secondary frequency control properly, it is necessary to verify
the model of the automatic generation control (AGC) and the relevant generators created in
the DIGSILENT PowerFactory program.

The AGC simulation model calculates the total secondary reserve amount to be used by
measuring the measured frequency data and difference between the power flow values on
the ENSO-E lines and the scheduled power flow values. Then the calculated secondary
reserve is shared among the power plants with secondary frequency control obligations

according to reserve capacity of the plants.

In this context, the block diagram of the AGC system modeled on DIgSILENT

PowerFactory is as shown in Figure 6.1.
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Figure 6.1. Block diagram of modeled AGC system in DIgSILENT PowerFactory

Parameters used in Figure 6.1 are explained as follows:

Pexch: Power flow values on the ENTSO-E connection lines

Pexcho: Planned power flow values on the ENTSO-E connection lines

f: System frequency in Hz

fo: Nominal frequency (50 Hz in Turkey)

Genl, Gen2, Gen3 and Gen4: Generators with secondary frequency control obligation

The AGC model used in DIGSILENT PowerFactory is shown in Figure 6.2.



Figure 6.2. Secondary frequency control model in DIgSILENT PowerFactory

Calculation of ACE as shown in below:

ACE = AP + KAf (6.1)

Where;

AP: Difference of power flow in ENTSO-E connection lines from planned
K: Network frequency bias value
Af: Frequency difference

With the secondary frequency controller model, the ACE is calculated by looking frequency
and ENTSO-E connection lines. After PI controllers and limiters total setpoints to be sent to
the generators is determined. Distribution blocks are used to distribute the total setpoints to

the generators with secondary frequency control obligation.

Verification of the AGC model in DIgGSILENT PowerFactory was performed with real data
from SCADA. After analyzing two model, it is seen that the model used in DIGSILENT

PowerFactory has perform similar performance with real AGC model.

In Turkey, the secondary control frequency capacity is about 1000 MW. Therefore in the

simulation model 990 MW secondary reserve is used.
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Modeled generators with secondary frequency control obligation and its reserve capacity is
shown in Table 6.1.

Table 6.1. Generators with secondary frequency control obligation and its reserve capacity

in DIGSILENT PowerFactory model

Secondary frequenc

Generator Source reserve cap))/acit?/ (Mvz)
Generator-A Natural Gas 45
Generator-B Natural Gas 38
Generator-C Natural Gas 10
Generator-D Natural Gas 30
Generator-E Natural Gas 56
Generator-F Natural Gas 29
Generator-G Hydro 135
Generator-H Natural Gas 30
Generator-I Natural Gas 50
Generator-J Natural Gas 95
Generator-K Natural Gas 38
Generator-L Natural Gas 38
Generator-M Natural Gas 37
Generator-N Natural Gas 37
Generator-O Natural Gas 33
Generator-P Natural Gas 71
Generator-Q Hydro 15
Generator-R Natural Gas 36
Generator-S Hydro 7

Generator-T Natural Gas 160

For the active power changes that occur at the generation level of Karapinar solar power
plant, “load event” is defined during simulation in DIgSILENT PowerFactory. Thus, active
power changes in Karapinar solar power plant can be applied in the simulation model with

this load event. The details of the simulation model are presented in the appendix.

In the simulation, ACE performance will be examined as described in chapter 3.2. After
simulation whether the current secondary frequency performance is evaluated during the

active power changes in the solar power plant.
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It is necessary to sweep electricity generation demand imbalance by the secondary frequency
control within 15 minutes [18]. Therefore, active power changes that the solar power plant
can occur in 15 minutes will be taken into consideration, since the power imbalance due to

the solar power plant yields to an increase in the magnitude of the ACE.

Simulation time is set to 1 hour to evaluate the criteria described in chapter 3.2. In this

context, the events applied during 1 hour simulation are shown in Figure 6.3.

Simulation Time Frame (min)

0 5 10 15 20 25 30 35 40 45 50 55 60

A A

Simulation Simulation
start end
Start of End of active
active power power
changing due changing due
to solar to solar
power plant power plant

|

Evaluation of 1 hour secondary frequency control performance

Figure 6.3. Simulation time frame of simulation
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6.2. Simulation and Results

The main purpose secondary frequency control is to keep the frequency at the nominal value
and power flow in the interconnection lines at the scheduled levels. Within this scope,
different scenarios are created in order to examine the effects of Karapinar solar plant on the
power grid. While these scenarios are created the arc furnaces changes is taken into

consideration.

The iron-steel industry causes unwanted sudden load changes. This constantly changes the
amount of power flow in the ENTSO-E lines. Therefore the active power changes in the
solar power plant are considered together with changes in the active power demand of the

arc furnaces to ensure the reality of the scenarios.

The active power variations of arc furnaces loads in the iron and steel industry are shown in
Table 6.2. The normal load shown in the table shows the unchanging part of the consumption
and the impact load shows the sudden changes in the active power consumption of the arc

furnaces.

Table 6.2. Active power demand of arc furnaces

Arc Furnace Normal Load (MW) | Impact Load (MW)
Arc Furnace-A 119 410
Arc Furnace-B 55 277
Arc Furnace-C 100 178
Arc Furnace-D 480 175
Arc Furnace-E 40 155
Arc Furnace-F 50 150
Arc Furnace-G 19 135
Arc Furnace-H 40 134
Arc Furnace-I 30 120
Arc Furnace-J 30 105
Arc Furnace-K 0 90
Arc Furnace-L 40 90
Arc Furnace-M 0 72
Arc Furnace-N 15 70
Arc Furnace-O 16 64
Arc Furnace-P 60 58
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The active power changes that occur in the arc furnace loads are examined in three different
scenarios. For scenarios to be applied over a 1-hour period, it is simulated that the active

power changes occurring in the arc furnace as high, moderate and low.

The load curves of the low, moderate and high arc load variations are shown in Figure 6.4,
Figure 6.5 and Figure 6.6.
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Figure 6.4. Arc furnace load deviation - low case

Arc Furnace Load Deviation - Moderate Case
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Figure 6.5. Arc furnace load deviation - moderate case
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Arc Furnace Load Deviation - High Case
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Figure 6.6. Arc furnace load deviation - high case

6.2.1. Simulation scenarios

First of all clouding is considered as a scenario. As mentioned in 5.2, there is £750 MW
change in solar power plant in Karapinar due to clouding. In the scenario of clouding, the
active power level of Karapinar solar power plant decreases 750 MW in 7,5 minutes and
then increases 750 MW in 7,5 minutes. Totally, 750 MW total active power change in 15
minutes duration. The clouding scenarios are examined for 3 different situations as low,

moderate and high deviations of arc furnace.

On the other hand, active power changing because of sunrise and sinking are determined as
scenarios. The biggest active power changes are +32,2 MW/min and -12,8 MW/min as
shown in Table 5.1. When considering 15 minutes time interval, +483 MW /15 min and
-192 MW/15 min changes are observed. These changes are considered with low, moderate

and high deviations of arc furnace.

As aresult, 9 different scenarios are constructed. Active power changing in solar power plant

is considered with arc furnace. These scenarios are represented in Table 6.3.
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Table 6.3. Scenarios for examining the effects of Karapinar solar power plant on secondary

frequency control
Scenario Scenario Description
Scenario 1 Clouding & Low Case Arc Furnace
(750 MW /15 min )
Scenario 2 Clouding & Moderate Case Arc Furnace
(750 MW /15 min )
Scenario 3 Clouding & High Case Arc Furnace

(+ 750 MW /15 min )

Active Power Positively Change & Low Case Arc Furnace

Scenario 4 (+ 483 MW /15 min )
) Active Power Positively Change & Moderate Case Arc Furnace
Scenario 5 .
(+ 483 MW /15 min)
S i0 6 Active Power Positively Change & High Case Arc Furnace
cenarto (+ 483 MW /15 min)
S i0 7 Active Power Negatively Change & Low Case Arc Furnace
cenarto (- 192 MW /15 min)
S i0 8 Active Power Negatively Change & Moderate Case Arc Furnace
cenarto (- 192 MW /15 min)
. Active Power Negatively Change & High Case Arc Furnace
Scenario 9

(- 192 MW /15 min )

9 different scenarios are simulated and the results are evaluated. The evaluations generally
take into account active power change in the ENTSO-E lines, frequency oscillation, changes
in the generation levels of the power plants participating in the secondary reserve and

changes in the ACE signal.
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6.2.2. Results

In this part of the thesis, it is examined whether the active power imbalance in the system
which is formed as a result of the 9 scenarios can be met by the seconder frequency control
system. In this context, it is examined whether the ACE signal conforms to the performance
criteria described in 3.2 and whether the maximum and minimum active power changes can
be met by the secondary frequency reserve.

The minimum and maximum active power changes in the demand, which is the change in
generation levels of 9 different scenarios because of arc furnaces and Karapinar solar plant,

are shown in Table 6.4.

Table 6.4. Maximum and minimum active power changes in the scenarios

Maximum Active Power | Minimum Active Power
Scenario Name Change in Total Load Change in Total Load

(MW) (MW)
Scenario 1 988 -162
Scenario 2 1060 -150
Scenario 3 1271 111
Scenario 4 868 -280
Scenario 5 1016 -364
Scenario 6 1251 -200
Scenario 7 415 -317
Scenario 8 528 -342
Scenario 9 738 -178
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Scenario 1 results

In scenario 1, clouding over the 3 GW solar power plant and low case arc furnace changing
is considered together. There is 750 MW active power changing within 15 minutes because
of sudden cloud transition over the solar power plant area. The solar power plant active
power generation during Scenario 1 is shown in Figure 6.7. In this respect, the active power

imbalances because of solar power plant generation and arc furnaces loads changing during
Scenario 1 is shown in Figure 6.8.
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Figure 6.7. Solar power plant generation profile during Scenario 1
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Figure 6.8. Scenario 1 simulated imbalance
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After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure
6.9 and the results summary of Scenario 1 is shown in Table 6.5.
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Figure 6.9. Secondary frequency reserve in service changing during Scenario 1

Table 6.5. Results summary of Scenario 1

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>100
Requirement MW MW

988 30,7

After 1 hour simulation it is seen that secondary frequency control mechanism does not meet

the ACE performance criteria exactly, although 990 MW reserve capacity meets the
maximum reserve requirement needed.

As aresult, the existing secondary frequency control performance is found to be insufficient
for this scenario.
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Scenario 2 results

In scenario 2, clouding over the 3 GW solar power plant and moderate case arc furnace
changing is considered together. There is 750 MW active power changing within 15 minutes
because of sudden cloud transition over the solar power plant area. The solar power plant
active power generation during Scenario 2 is shown in Figure 6.10. In this respect, the active

power imbalances because of solar power plant generation and arc furnaces loads changing
during Scenario 2 is shown in Figure 6.11.
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Figure 6.10. Solar power plant generation profile during Scenario 2
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Figure 6.11. Scenario 2 simulated imbalance
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After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure

6.12 and the results summary of Scenario 2 is shown in Table 6.6.
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Figure 6.12. Secondary frequency reserve in service changing during Scenario 2

Table 6.6. Results summary of Scenario 2

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>100
Requirement MW MW

After 1 hour simulation it is seen that secondary frequency control mechanism does not meet
the ACE performance criteria and 990 MW reserve capacity does not meet the maximum

reserve requirement needed.

As aresult, the existing secondary frequency control performance is found to be insufficient

for this scenario.
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Scenario 3 results

In scenario 3, clouding over the 3 GW solar power plant and high case arc furnace changing
is considered together. There is 750 MW active power changing within 15 minutes because
of sudden cloud transition over the solar power plant area. The solar power plant active
power generation during Scenario 3 is shown in Figure 6.13. In this respect, the active power
imbalances because of solar power plant generation and arc furnaces loads changing during
Scenario 3 is shown in Figure 6.14.
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Figure 6.13. Solar power plant generation profile during Scenario 3
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Figure 6.14. Scenario 3 simulated imbalance
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After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure

6.15 and the results summary of Scenario 3 is shown in Table 6.7.
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Figure 6.15. Secondary frequency reserve in service changing during Scenario 3

Table 6.7. Results summary of Scenario 3

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>100
Requirement MW MW

After 1 hour simulation it is seen that secondary frequency control mechanism does not meet
the ACE performance criteria and 990 MW reserve capacity does not meet the maximum

reserve requirement needed.

As a result, the existing secondary frequency control performance is found to be insufficient

for this scenario.
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Scenario 4 results

In scenario 4, active power changing because of sunset over the 3 GW solar power plant and
low case arc furnace changing is considered together. There is 483 MW active power
increasing within 15 minutes because of sunset in January evening in Karapinar region. The
solar power plant active power generation during Scenario 4 is shown in Figure 6.16. In this
respect, the active power imbalances because of solar power plant generation and arc

furnaces loads changing during Scenario 4 is shown in Figure 6.17.
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Figure 6.16. Solar power plant generation profile during Scenario 4
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Figure 6.17. Scenario 4 simulated imbalance
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From the 35th minute, 600 MW tertiary frequency control is activated within 15 minutes.
After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure

6.18 and the results summary of Scenario 4 is shown in Table 6.8.
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Figure 6.18. Secondary frequency reserve in service changing during Scenario 4

Table 6.8. Results summary of Scenario 4

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>100
Requirement MW MW

868

After 1 hour simulation it is seen that secondary frequency control mechanism does not meet
the ACE performance criteria while 990 MW reserve capacity can meet the maximum
reserve requirement needed.

As a result, the existing secondary frequency control performance is found to be insufficient
for this scenario.
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Scenario 5 results

In scenario 5, active power changing because of sunset over the 3 GW solar power plant and
moderate case arc furnace changing is considered together. There is 483 MW active power
increasing within 15 minutes because of sunset in January evening in Karapinar region. The
solar power plant active power generation during Scenario 5 is shown in Figure 6.19. In this
respect, the active power imbalances because of solar power plant generation and arc
furnaces loads changing during Scenario 5 is shown in Figure 6.20.
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Figure 6.19. Solar power plant generation profile during Scenario 5
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Figure 6.20. Scenario 5 simulated imbalance
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From the 35th minute, 700 MW tertiary frequency control is activated within 15 minutes.
After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure

6.21 and the results summary of Scenario 5 is shown in Table 6.9.
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Figure 6.21. Secondary frequency reserve in service changing during Scenario 5

Table 6.9. Results summary of Scenario 5

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>100
Requirement MW MW

After 1 hour simulation it is seen that secondary frequency control mechanism does not meet
the ACE performance criteria and 990 MW reserve capacity does not meet the maximum
reserve requirement needed.

As a result, the existing secondary frequency control performance is found to be insufficient
for this scenario.
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Scenario 6 results

In scenario 6, active power changing because of sunset over the 3 GW solar power plant and
high case arc furnace changing is considered together. There is 483 MW active power
increasing within 15 minutes because of sunset in January evening in Karapinar region. The
solar power plant active power generation during Scenario 6 is shown in Figure 6.22. In this
respect, the active power imbalances because of solar power plant generation and arc
furnaces loads changing during Scenario 6 is shown in Figure 6.23.
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Figure 6.22. Solar power plant generation profile during Scenario 6
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Figure 6.23. Scenario 6 simulated imbalance
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From the 35th minute, 800 MW tertiary frequency control is activated within 15 minutes.
After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure

6.24 and the results summary of Scenario 6 is shown in Table 6.10.
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Figure 6.24. Secondary frequency reserve in service changing during Scenario 6

Table 6.10. Results summary of Scenario 6

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>175
Requirement MW MW

After 1 hour simulation it is seen that secondary frequency control mechanism does not meet
the ACE performance criteria and 990 MW reserve capacity does not meet the maximum

reserve requirement needed.

As aresult, the existing secondary frequency control performance is found to be insufficient

for this scenario.
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Scenario 7 results

In scenario 7, active power changing because of sunrise over the 3 GW solar power plant
and low case arc furnace changing is considered together. There is 192 MW active power
decreasing within 15 minutes because of sunrise in September morning in Karapinar region.
The solar power plant active power generation during Scenario 7 is shown in Figure 6.25. In
this respect, the active power imbalances because of solar power plant generation and arc

furnaces loads changing during Scenario 7 is shown in Figure 6.26.
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Figure 6.25. Solar power plant generation profile during Scenario 7

SIMULATED IMBALANCE

500 .

P

ted Acﬁve Power Changi

400—

w
=1
=)

N

(=3

(=}
I

100

Active Power (MW)
CJ

-

=]

=]
I

-200

-300:

400 | L | 1 | 1 | |
0 5 10 15 20 25 30 35 40 45 50 55 60
Time (Min)

Figure 6.26. Scenario 7 simulated imbalance
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From the 35th minute, 100 MW tertiary frequency control is activated within 15 minutes.
After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure

6.27 and the results summary of Scenario 7 is shown in Table 6.11.
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Figure 6.27. Secondary frequency reserve in service changing during Scenario 7

Table 6.11. Results summary of Scenario 7

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>175
Requirement MW MW

477 8,3 25,2

After 1 hour simulation it is seen that secondary frequency control mechanism can meet the
ACE performance criteria and 990 MW reserve capacity can meet the maximum reserve

requirement needed.

As a result, the existing secondary frequency control performance is found to be sufficient

for this scenario.
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Scenario 8 results

In scenario 8, active power changing because of sunrise over the 3 GW solar power plant
and moderate case arc furnace changing is considered together. There is 192 MW active
power decreasing within 15 minutes because of sunrise in September morning in Karapinar
region. The solar power plant active power generation during Scenario 8 is shown in Figure
6.28. In this respect, the active power imbalances because of solar power plant generation

and arc furnaces loads changing during Scenario 8 is shown in Figure 6.29.
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Figure 6.28. Solar power plant generation profile during Scenario 8
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Figure 6.29. Scenario 8 simulated imbalance
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After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure

6.30 and the results summary of Scenario 8 is shown in Table 6.12.
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Table 6.12. Results summary of Scenario 8

|
40 45 50 55 60

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>175
Requirement MW MW
628 10,2 28,5

After 1 hour simulation it is seen that secondary frequency control mechanism can meet the

ACE performance criteria and 990 MW reserve capacity can meet the maximum reserve

requirement needed.

As a result, the existing secondary frequency control performance is found to be sufficient

for this scenario.




75

Scenario 9 results

In scenario 9, active power changing because of sunrise over the 3 GW solar power plant
and high case arc furnace changing is considered together. There is 192 MW active power
decreasing within 15 minutes because of sunrise in September morning in Karapinar region.
The solar power plant active power generation during Scenario 9 is shown in Figure 6.31. In
this respect, the active power imbalances because of solar power plant generation and arc

furnaces loads changing during Scenario 9 is shown in Figure 6.32.
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Figure 6.31. Solar power plant generation profile during Scenario 9
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Figure 6.32. Scenario 9 simulated imbalance
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From the 35th minute, 100 MW tertiary frequency control is activated within 15 minutes.
After 1 hour simulation, secondary frequency reserve in service changing is shown in Figure

6.33 and the results summary of Scenario 9 is shown in Table 6.13.
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Figure 6.33. Secondary frequency reserve in service changing during Scenario 9

Table 6.13. Results summary of Scenario 9

Maximum Reserve | % of abs(ACE)>175 | % of abs(ACE)>175
Requirement MW MW

738 8,8 29,3

After 1 hour simulation it is seen that secondary frequency control mechanism can meet the
ACE performance criteria and 990 MW reserve capacity can meet the maximum reserve

requirement needed.

As a result, the existing secondary frequency control performance is found to be sufficient

for this scenario.

6.3. General Evaluation of Scenarios

The scenarios are examined which have 990 MW secondary frequency reserve capacity

provided by 20 power plants within the scope of existing network system conditions. In this
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direction, 9 different scenarios are constructed according to the possible situations that the

current system may encounter.

In this context, active power changes due to changes in solar radiation values during the day,

as well as sudden changes in active power generation level during clouding, are examined.

At the end of the simulations it is determined whether the maximum secondary reserve
requirement during the simulation have met and whether the ACE signal met the ENTSO-E

criteria (described in 3.2). Then the current secondary frequency performance is evaluated.
In this context, the summary table of the simulation results is shown in Table 6.14. In the
direction of the results, the current secondary frequency performance is sufficient for only 3

of 9 different scenarios.

Table 6.14. Summary table of simulation results

Maximum % of % of
Scenario Reserve abs(ACE)>175 | abs(ACE)>100
Requirement MW MW

Scenario 1 N4

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9
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7. CONCLUSION

In this thesis study, the potential of solar power plant in Turkey is determined and the effects
of the solar power plant planned to be established in the coming years on the secondary

frequency control performance is investigated.

Firstly, in accordance with the information obtained from SEPA, suitable areas for the
installation of solar energy power plant in Turkey are determined and solar radiation values
of these areas are obtained. Then, an economic analysis is carried out according to the

radiation values and the solar energy potential of Turkey is obtained.

In the next section, the frequency control mechanism in Turkey is explained. In this context,
primary, secondary, tertiary and time frequency control issues are detailed. It is thought that
the solar power plant planned to be established in Karapinar in the following years would
have an effect especially on the secondary frequency control performance. Therefore, the
ACE performance evaluation, which is the ENTSO-E evaluation criterion under the

secondary frequency control, is described.

In Chapter 4, the properties of the solar power plant to be installed in Karapinar are
mentioned. Within this scope, the installed power of the power plant, the area to be installed
and the radiation values of this area are examined. The annual generation profile is

investigated with the radiation values obtained.

In Chapter 5, the effects of active power changes caused by the solar power plant on the
secondary frequency control are investigated. In this context, active power changes are
examined in two main categories. The first one is how the solar power plant generation
profile affects the daily generation curves for each month. The other effect of the solar power
plant to the secondary frequency control is the active power changes due to clouding on the
power plant area. In this direction, it is determined that there are +483 MW / 15 min and -
192 MW / 15 min changes in the active power change due to the radiation values, and +/-
750 MW / 15 min changes due to clouding.
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In the next chapter, 9 different scenarios are constructed in order to evaluate the effects of
these changes on the secondary frequency control performance. Active power changes
identified in Chapter 5 are considered together with the electric arc furnace that are already
a problem for the Turkish power system. Each change is combined with the low, medium
and high variations of the arc furnace loads and 9 scenarios are constructed and their results

are determined.

As a result of the evaluations, 3 successful results are obtained with 990 MW secondary
frequency control reserve of 9 analysis scenarios. In this context, it is considered that the
integration of the solar power plant to the electrical system at a single point at 3 GW levels

is risky for the secondary frequency control system.

Within this scope, two different suggestions are presented. The first one is that reduction of
the installed capacity of the planned solar power plant, and the second one is to increase the

current secondary frequency control reserve amount.

In order to use the solar power potential in Turkey more efficiently, necessary precautions
must be taken in advance. If necessary measures are taken, Turkey will improve further with

this solar potential.
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APPENDIX-1. Karapinar specialized industrial area map information (first area)

KARAPINAR ENERJI IHTISAS ENDUSTRI BOLGESI (1. KISIM)
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APPENDIX-2. Karapinar specialized industrial area map information (second area)

KARAPINAR ENERJI IHTISAS ENDUSTRI BOLGESI (II. KISIM)
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APPENDIX-2. (Continued) Karapinar specialized industrial area map information (second
area)

KARAPINAR ENERJI IHTISAS ENDUSTRI BOLGESI (1I. KISIM)
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418367014

EB_291

544389, 37

419338182

EB_178

548415,07

4196690,72

EB 235

546834 67

4183647 00

EB_292

544366,10

4193395.78

EB 178

540401,08

4196806,93

EB 236

546484,03

4193638 83

EB_293

544306, 51

4193443 74

EB_180

545050,08

4196580,61

EB 237

546475,59

419363558

EB_254

54423142

4193512,94

EB_181

549058,82

4196600,66

EB_238

546470.92

418363545

EB_295

544186.79

4193546.89

EB 182

540043,85

419681803

EB_239

546445 59

419364558

EB_296

544186,79

4194647.68

EB_183

548950,68

4196818,84

EB_240

546434 42

4193847 53

EB_2597

543735,87

4194647 BB

EB_184

548593,72

4196820,84

EB 241

546360,13

4193654 06

EB_298

542972,98

418465264

EB 185

548588 31

4196662,74

EB_242

546281,18

419365035

EB_288

542943,66

4194676 BY

EB_186

54868421

4156666,15

EB 243

546224, 77

419364052

EB_300

542824 56

4184762 04

EB 187

948703,89

419656588

EB_244

546193,35

4193531 58

EB_301

54277501

4194806.74

EB 188

548108,96

4196545.21

EB_245

546159.27

4193617 65

EB_302

S42730,56

419485202

EB_189

54B446,56

4156498,66

EB_246

546147 42

4193604 76

EB_303

54263518

4194931 29

EB_190

548480.81

4185551,98

EB_247

54612830

4193555,30

EB_304

542544 88

4195011,19

EB_191

548417.42

4195733,37

EB_248

54611668

4183494 40

EB_305

542498,08

419504607

EB_192

548381.26

4185731,67

EB_248

546111,05

4193431 63

EB_306

54247915

419506463

EB_193

54815080

4195714,54

EB_250

546108,55

4193385,28

EB 307

542470,02

4195056,19

EB 194

54B161.70

4195650,54|

EB_251

54611063

4193367 40

EB_308

542462 26

4195048,98

EB_185

548187.14

418554721

EB_252

54592157

4193351 38

EB_308

542456,32

4195045,22

EB_196

548197.05

4195501,62

EB_253

545899,67

4193163,71

EB_310

542261 87

4184806,18

EB 197

548104,65

419545438

EB_254

545940.41

4192960,65

EB_311

542247 63

4194895,99

EB 188

548123.32

4185357,09

EB_255

545960,15

4192961,90

EB_312

542248 31

4194890,11

EB_ 198

54817919

4195082,24/

EB_256

546040,58

4192580,50

EB_313

54161765

4194724 42

EB_200

548126 .26

4185062,09

EB 257

54607842

4192580,50

EB_314

54161017

4184721,25

EB_201

54817419

4195037,09

EB_258

546110,22

4192588.61

EB_315

541289.18

4184625 99

EB_202

548124,67

4195017,11

EB_258

546143,26

4192583,18

EB_318

541280,55

4194625 57

EB 203

548107,77

4195008,92

EB_260

546148,78

4192465,84

EB_317

541068,71

4194585,17

EB_204

548026,16

4194871.83

EB_261

54615317

4192416,289

EB_318

54103487

4194665,55

EB_205

547347 44

419493157

EB_262

546013,66

4162384 48

EB 318

540648 27

4195558 26

EB 206

547119,74

4195376,72

EB_263

548042 .41

4192113,80

EB_320

540589,82

4195758,29

EB_207

548656, 26

4194986,04

EB_264

54B8074.60

4192119,65

EB_321

540353 63

4196138,03

EB_208

5465648,48

4194584.23

EE_265

54612864

4192138,81

EB 322

540208,57

419656087

EB_208

545652,84

4184873,91

EB_266

546140,52

4191885,09

EB_323

540038,08

4196938 56

EB_210

546465,14

4194924 74

EB_267

54606464

4191623 04

EB_324

539819,21

4197201,39

EB 211

546674,53

4194846,37

EE_268

54B059,27

419187283

EB_325

538910,29

4197226,20

EB 212

546683 92

4184789 92

EB_269

545527,05

4191880,08

EB_326

539908,59

4197232 64

EB_213

546680,30

419478369

EB 270

545951,96

4191914 ,60

EB_327

53988788

4197273,86

EB 214

5467110,56

4194713.87

EB 271

545858,09

4191923,80

EB_328

539869,22

4197318,59

EB 215

546718,81

419465677

EB 272

545961,54

418184373

EB_329

53584316

4187378,39

EB_216

546768,89

4184472 76

EB 273

54596001

4192033.03

EB_330

539801,54

4197474 82

EB_217

54B783,76

4194380,09

EB 274

545962, 31

4192076,34

EB_331

53978250

4197515,34

EB 218

946825,34

4184348 38

EB_275

54594583

4192289,39

EB 332

539787.87

4197565,89

EB_218

546314 63

4184339,77

EB_276

54584046

419230514

EB_333

53978287

4197622 38

EB 220

546300,43

4194328 17

EB 277

545905 20

4192306,29

EB 334

539769,93

4157671,81

EB 221

546756 88

4184327 70

EB 278

545765,31

4192288 04

EB_335

539743 30

4197720,02

EB 222

546768, 77

4194280,35

EB 279

54586304

419231472

EB 223

54677217

4194267 61

EB_280

S45856,53

4192317 79|

EB 336

539744 38

419773846

EB_337

539700,24

4187840,25

EB_224

54681377

4194270,7

EB_281

545740,78

4182287 13

EB 338

539650,44

4197964 ,01

EB 225

54683122

4194235 B6

545657 62

4152488 87

EB_339

5385658,54

4198150 59

EB_226

548841,75

4194191,14

EB_282
EB 283

54564535

419250290

EB_340

538507,00

4198300,02

EB 227

546859.41

4194059.89

EB_284

545621,11

4182516,72

EB 341

535496,65

4196323,96

EB_228

54B859,74

418400866

EB_285

545561,16

4192560,37

EB_342

53548326

4198345.69
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APPENDIX-2. (Continued) Karapinar specialized industrial area map information (second
area)

KARAPINAR ENER.JI IHTISAS ENDUSTRI BOLGESI (ll. KISIM)
Nokta No L Y MNokta No X Y

EB_343

530450,45

4198382,93

EB_400

540154 61

4199440 27

EB 344

535413,53

4188435.08

EB_ 401

540172,05

4199431,83

EE_345

538378,67

4196468 25

EB_402

540226,25

4159407 83

EB_346

535283,52

4198550 66

EB_403

54025813

4158382 64

EB_347

539249,55

4198562 37

EB_404

540313,45

410836414

EB_348

535208.80

4198595,40

EB_405

540332.01

4198351,76

EB_349

53920375

4198689 66

EB_4086

540351,37

4199333.87

EB_350

5359198.07

418B8730,35

EB_407

540383.05

4199311,83

539130,42

4196760.78

EB_408

540429 89

4199279.59

EB_352

539188,01

4198785,19

EB_409

540517 ,57

4199211,40

EB_353

53919407

4108881,64

EB_410

540580,08

419914877

EB 354

53820242

4188908,07

EB 411

540637 27

4199114 ,56

EB_355

535138.34

4199166,83

EB_412

540699.77

4199062 B0

EB 356

538186,60

4198196 57

EB_413

540727 32

4188042 91

EB 357

539187,37

4199327,95

EB 414

540769,68

4199010,55

EB_358

539180,97

4199383 34

EB 415

240811,06

4198986,22

EB 358

539177,17

418840117

EB 416

540851,78

4198973.99

EB_38680

539177,33

4199448,08

EB_417

54086717

4108987,94

EB 381

539179,31

4189463,09

EB_418

540848 97

4198524 88

EB 362

539187,07

4195496,44

EB 419

541021,60

4198891,50

EB_363

539230,57

4199500,12

EB_420

54107227

419886175

EB_364

538i50,15

4199506,35

EB_421

541134,87

4189883910

EB_385

538150,81

4198513 61

EB_422

541186,75

418883391

EB_366

539:57.06

4198513,86

EB_423

541205.77

4198830,11

EB_367

539325 47

4159516,53

EB_424

541233,96

4198818.87

EB_368

53933089

4199513,12

EB_425

541264 40

4198800.88

EB_369

5393138,26

41589517,50

EB_426

541289,59

419879967

EB_370

536341,03

4188522 60

EB 427

54135778

4198757 48

EB_371

539381,85

4189537,10

EB_428

541428 24

4198687.75

EB 372

539393,71

4199536, 96

EB_429

541434 50

4198682 42

EB_373

539407,99

4199558,64

EB_430

54145422

4198667 75

EB_374

538414,27

4198562 98

EB_431

54155081

4198403.28

EB_375

538418,27

41588565,61

EB_432

541696.25

4197928 14

EB_376

530413.94

4199576,35

EB_433

541772,09

4197616,09

538420,10

4188589.18

EB 434

541876,53

4197287,87

EB_378

538434,56

4199589, 45

EB_435

541904,95

4197191,14

EB_379

539836 56

4199568,57

EB 436

541908,54

4197138.14

EB_380

539774 47

4198524.03

EB_4237

54191617

419714070

EB_381

53932,16

4198512 04

EB_438

54183830

4197181.27

EB_382

539841,71

4199487,40

EB_438

541972 60

4197220,089

EB_383
EB_384

539342 40

4198494,25

“EB_440

542003,57

4197246 91

539843,70

4199500,21

EB_441

S42333,76

419728004

EB_385

530942,40

4199518,52

EB_442

542334 .84

4197276,80

EB_3856

538948.70

4198516,22

EB_443

54284974

419738230

EB_387

538959,38

4185512.85

EB_444

543462 .54

4197526,69

EB_388

538965,58

4199512,10

EB 389

539987 90

4199506,10

EB_390

538009577

4195506 47

EB_391

540000,28

4199505,53

EB_392

540008,90

4198504,60

EB_383

540023,90

4199492 41

EB_354

54003722

4199484,72

EB 395

540061,03

4199473 84

EB_386

54007622

4199470,28

EB_397

54010023

4199464,65

EB_338

540108,60

4199461, 46

EB_39%

540130.80

4199450.21

Harita Bligileri

Projeksiyon: UTM (& Derece)
Datum-EUROPEAN 1850

Olgek:1/50.000
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APPENDIX-3. Load shedding rate of generators with secondary frequency control
obligation in DIGSILENT PowerFactory model

Generator Generator’s ramp rates
(MW/min)
Generator-A 10
Generator-B 30
Generator-C 72
Generator-D 20
Generator-E 50
Generator-F 21
Generator-G 160
Generator-H 40
Generator-I 96
Generator-J 60
Generator-K 30
Generator-L 30
Generator-M 30
Generator-N 30
Generator-O 56
Generator-P 42
Generator-Q 150
Generator-R 36
Generator-S 120
Generator-T 69
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