

SÜPER ÇÖZÜNÜRLÜK YÖNTEMLERİNİN ULTRASON GÖRÜNTÜLERİNDE İNCELENMESİ

Ezgi KÜPÇÜOĞLU YAŞIN

YÜKSEK LİSANS TEZİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ANA BİLİM DALI

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

HAZİRAN 2022

ETİK BEYAN

Gazi Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- Bu tezde sunduğum çalışmanın özgün olduğunu bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

Ezgi KÜPÇÜOĞLU YAŞIN 27/06/2022

SÜPER ÇÖZÜNÜRLÜK YÖNTEMLERİNİN ULTRASON GÖRÜNTÜLERİNDE İNCELENMESİ

(Yüksek Lisans Tezi)

Ezgi KÜPÇÜOĞLU YAŞIN

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Haziran 2022

ÖZET

Günümüzde görüntü kalitesi çoğu alanda önemli bir etken haline gelmiştir. Özellikle uydu görüntüleri, yüz ve plaka tanıma, medikal görüntüleme alanlarında kaliteli görüntüler ihtiyaç haline gelmiştir. Yüksek görüntü elde edebilmek için kullanılan cihazlar maliyet açısından yük oluşturmaktadır. Ayrıca istenilen çözünürlükte görüntü için kullanılan cihazlar da yetersiz olabilmektedir. Tüm bu sorunlar dikkate alındığında, yüksek çözünürlüklü görüntü elde edebilmek için süper çözünürlük teknikleri kullanılmaya başlanmıştır. Süper çözünürlüğün tanımı basit olarak düşük çözünürlüklü görüntüler kullanılarak yüksek çözünürlüklü görüntüler oluşturmaktır. Son yıllarda derin öğrenme kullanılarak yapılan çalışmaların başarılı sonuçlar verdiği gözlemlenmiştir. Bu çalışmada, medikal görüntülemedeki yüksek çözünürlüklü görüntü ihtiyacı gözetilerek ve derin öğrenme algoritmalarındaki başarılar göz önüne alınarak, tek görüntü süper çözünürlük yöntemi olan DBVSR modelleri eğitilmiş ve sonuçları karşılaştırılmıştır.

Bilim Kodu	:	90521
Anahtar Kelimeler	:	Süper çözünürlük, derin öğrenme, evrişimli sinir ağları
Sayfa Adedi	:	41
Danışman	:	Prof. Dr. Hasan Şakir BİLGE

EXAMINATION OF SUPER RESOLUTION METHODS ON ULTRASOUND IMAGES (M. Sc. Thesis)

Ezgi KÜPÇÜOĞLU YAŞIN

GAZİ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

June 2022

ABSTRACT

Today, image quality has become an important factor in many areas. Especially in the fields of satellite images, face and license plate recognition, medical imaging, quality images have become a necessity. The devices used to obtain high images create a burden in terms of cost. In addition, the devices used for the desired resolution image may also be insufficient. Considering all these problems, super resolution techniques have been used to obtain high resolution images. The definition of super resolution is simply creating high resolution images using low resolution images. In recent years, it has been observed that studies using deep learning give successful results. In this study, considering the need for high resolution images in medical imaging and the achievements in deep learning algorithms, EDSR and DCSCN models, which are single image super resolution methods, are trained and their results are compared.

Science Code	:	90521
Key Words	:	Super resolution, deep learning, convolutional neural network
Page Number	:	41
Supervisor	:	Prof. Dr. Hasan Şakir BİLGE

TEŞEKKÜR

Tez çalışmamda bana destek olan değerli hocam Prof. Dr. Hasan Ş. BİLGE'ye,

Bu uzun ve zorlu süreçte her daim yanımda olan, sevgisini, desteğini ve sabrını esirgemeyen meslektaşım ve sevgili eşim Hanşeref YAŞIN'a,

Bilgisi ve emeğiyle, bana büyük bir özveriyle destek olan değerli meslektaşım Ahmed Hani YAŞIN'a,

En önemlisi hayatımın her anında yanımda olan ve benden hiçbir desteğini esirgemen sevgili aileme teşekkür ederim.

İÇİNDEKİLER

Sayfa

ÖZET	iv
ABSTRACT	. v
TEŞEKKÜR	. vi
İÇİNDEKİLER	vii
ÇİZELGELERİN LİSTESİ	ix
ŞEKİLLERİN LİSTESİ	X
1. GİRİŞ	1
2. SÜPER ÇÖZÜNÜRLÜK	3
2.1. Enterpolasyon Tabanlı Yöntemler	3
2.1.1. En yakın komşu enterpolasyonu	3
2.1.2. Bilineer enterpolasyon	3
2.1.3. Bikübik enterpolasyon	4
2.2. Yeniden Yapılandırma Tabanlı Yöntemler	4
2.2.1. Yinelemeli geri projeksiyon yöntemi	4
2.2.2. Düzenleme yöntemi	5
2.3. Örnekleme Tabanlı	5
2.3.1. Regresyon tabanlı öğrenme	5
2.3.2. Öğrenmeye dayalı yöntem	5
3. DERİN ÖĞRENME	7
3.1. Yapay Sinir Ağları	7
3.1.1. Aktivasyon fonksiyonları	9
3.1.2. Evrişimli sinir ağları katmanları	12
3.2. ResNet	15
4. TEK GÖRÜNTÜ SÜPER ÇÖZÜNÜRLÜK	17
4.1. EDSR	17
4.2. DCSCN	18
5. ÇOK GÖRÜNTÜ SÜPER ÇÖZÜNÜRLÜK	21

S	Sayfa
5.1. DBVSR	21
6. DENEYSEL SONUÇLAR VE TARTIŞMA	23
6.1. Tek Görüntü Süper Çözünürlük Yöntemlerinin Uygulanması	23
6.2. Çok Görüntü Süper Çözünürlük Yöntemlerinin Uygulanması	26
7. SONUÇLAR VE ÖNERİLER	29
KAYNAKLAR	31
EKLER	33
EK-1. EDSR Eğitiminde Kullanılan Parametreler	34
EK-2. DCSCN Eğitiminde Kullanılan Parametreler	35
EK-3. DBVSR Eğitiminde Kullanılan Parametreler	39
ÖZGEÇMİŞ	41

ÇİZELGELERİN LİSTESİ

Çizelge Sa	ayfa
Çizelge 2.1 Süper çözünürlük yöntemleri	3
Çizelge 4.1. EDSR ve SRResNet modelleri PSNR ve SSIM kıyaslaması	18
Çizelge 4.2. SRCNN, VDSR ve DCSCN modelleri PSNR;SSIM değerleri	19
Çizelge 5.1. Bikübik, RCAN, SPMC ve DBVSR modelleri PSNR;SSIM değerleri	22
Çizelge 6.1. EDSR ve DCSCN modelleri PSNR/SSIM değerleri	24
Çizelge 6.2 DBVSR modeli PSNR/SSIM değerleri	28

ŞEKİLLERİN LİSTESİ

Şekil	Sayfa
Şekil 3.1. Sinir hücresi biyolojik gösterimi	7
Şekil 3.2. Perseptron gösterimi	8
Şekil 3.3. Yapay sinir ağlarında katmanlar	9
Şekil 3.4. Sigmoid fonksiyonu grafiksel gösterimi	10
Şekil 3.5. ReLU fonksiyonu gösterimi	10
Şekil 3.6. Sızıntı ReLU fonksiyonu gösterimi	11
Şekil 3.7. PReLU grafiği	12
Şekil 3.8. Tanh fonksiyonu grafiksel gösterimi	12
Şekil 3.9. Evrişim katmanı basit bir hesaplama gösterimi	13
Şekil 3.10. Maksimum havuzlama işlemi	14
Şekil 3.11. Tam bağlantı katmanı örneği	14
Şekil 3.12. Düğüm seyreltme katmanı	15
Şekil 4.1. ResNet(a), SRResNet(b) ve EDSR(c) modellerinde kullanılan yapılar	17
Şekil 4.2. EDSR mimarisi	18
Şekil 4.3. DCSCN modeli	19
Şekil 5.1. DBVSR modeli	21
Şekil 6.1. Performans analizi için test verilerinin kullanılması	23
Şekil 6.2. EDSR modeli loss grafiği	25
Şekil 6.3. EDSR modeli PSNR grafiği	25
Şekil 6.4. DCSCN modeli loss grafiği	25
Şekil 6.5. DCSCN modeli PSNR grafiği	26
Şekil 6.6. DBVSR modeli loss grafiği	27
Şekil 6.7. DBVSR modeli PSNR grafiği	27

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Kısaltmalar	Açıklamalar
CNN	Convolutional Neural Network
DBVSR	Deep Blind Video Super Resolution
DCSCN	Fast and Accurate Image Super Resolution by Deep
	CNN with Skip Connection and Network in Network
EDSR	Enhanced Deep Residual Networks for Single Image
	Super-Resolution
FSRCNN	Fast Super-Resolution Convolutional Neural Network
PReLU	Parametric ReLU
ReLU	Rectifier Linear Unit
ResNet	Residual Network
SRResNet	Super Resolution Residual Network
SRCNN	Super-Resolution Convolutional Neural Network

1. GİRİŞ

Süper çözünürlüğün temel amacı, düşük çözünürlüklü görüntüler kullanılarak çözünürlüğü yüksek görüntüler oluşturmaktır [1]. Görüntülemede kullanılan lenslerin düşük çözünürlüklü çıktılar üretmesi, maliyetin yüksek olması veya kullanılan donanımların ihtiyaçları karşılamada yetersiz olması durumunda, minimum maliyet ve daha yüksek performans sebebiyle süper çözünürlük yöntemleri ön plana çıkmıştır.

Günümüzde epey popüler olan süper çözünürlük yöntemleri birçok alanda ihtiyaçlara cevap vermiştir. Özellikle görüntü kalitesinin önemli olduğu, medikal görüntüleme, uydu görüntüleri, plaka tanıma, yüz tanıma gibi alanlarda başarılı çalışmalar yapılmıştır [2].

Son yıllarda, performansının yüksek olması sebebiyle, öğrenme tabanlı süper çözünürlük yöntemleri kullanılmaya başlanmıştır [3, 4]. Derin öğrenme kullanılarak yapılan ilk süper çözünürlük yöntemi literatürde SRCNN olarak bilinmektedir. İlk kez evrişimli sinir ağı kullanılarak, az sayıda katman ile düşük çözünürlüklü görüntüden yüksek çözünürlüklü görüntü elde edilmiştir [5]. SRCNN' den sonra, hızı ve performansı daha yüksek olan FSRCNN yöntemi önerilmiştir [6]. Artık öğrenme, belirlenen bir katmanın giriş özelliklerinin başka bir katmana atlamalı bağlantı ile geçirilmesi ile gerçekleştirilir. Artık ağlar kullanılarak yapılan ilk çalışma ResNet' tir [7]. Artık ağlar ile süper çözünürlük çalışması ise SRResNet ile yapılmıştır. SRResNet ile ağın öğrenmesini kolaylaştırmak ve performansı artırmak hedeflenmiştir [8]. Evrişimli sinir ağları kullanılarak videolar için geliştirilen süper çözünürlük algoritmaları da literatürde yerini almıştır [9]. Evrişimli sinir ağlarında, bir alt piksel evrişim katmanı eklenerek oluşturulan ve video kullanılarak oluşturulan algoritmaların da daha iyi performansı sonuçlar verdiği görülmüştür [10, 11].

Bu çalışmada, tek görüntü süper çözünürlük yöntemleri olan EDSR [12] ve DCSCN [13]; çok görüntü süper çözünürlük yöntemi DBVSR [14], ultrason veri setleri kullanılarak eğitilmiş ve sonuçları kıyaslanmıştır.

2. SÜPER ÇÖZÜNÜRLÜK

Süper çözünürlük teknikleri farklı etkenlerine göre genel olarak Çizelge 2.1'deki gibi kategorize edilebilir [15].

	Süper Çözünürlük	
Enterpolasyon Tabanlı	Yeniden Yapılandırma Tabanlı	Örnekleme Tabanlı
En Yakın Komşu Enterpolasyonu	Yinelemeli Geri Projeksiyon	Derin Öğrenme
Bilineer Enterpolasyon	Düzenleme	Regresyon Tabanlı
Bikübik Enterpolasyon		Öğrenmeye Dayalı

Çizelge 2.1. Süper çözünürlük yöntemleri

2.1. Enterpolasyon Tabanlı Yöntemler

Enterpolasyon yöntemi, var olan piksel değerlerinin, belirli aralıklarla kullanılarak, yeni ve değeri bilinmeyen piksel değerlerinin oluşturulmasına dayanır. Bulanık görüntüler oluşturma ihtimali bu yöntemin dezavantajıdır. Enterpolasyon yöntemi genel olarak üçe ayrılır.

2.1.1. En yakın komşu enterpolasyonu

En yakın komşu enterpolasyon yönteminde, oluşturulacak yeni piksel, en yakın komşu pikselin değeri ile doldurulur. Enterpolasyon yöntemleri arasında en hızlı hesaplanan yöntemdir. Fakat oluşturulan görüntünün sonucu daha pürüzlü üretilir.

2.1.2. Bilineer enterpolasyon

Bilineer enterpolasyon yönteminde, en yakındaki dört piksel değerinin ağırlıklı ortalaması ile yeni piksel değeri hesaplanır. En yakın komşu enterpolasyon yöntemine göre daha iyi çözünürlükte görüntü üretilir. Fakat bu yöntemde görüntü, kenar ve köşe gibi alanlarda sonuçları yumuşatılır.

2.1.3. Bikübik enterpolasyon

Bikübik enterpolasyon yönteminde 16 pikselin ağırlıklı ortalaması alınarak daha iyi çözünürlüklü görüntü üretilir. Bikübik yöntemi daha fazla hesaplama zamanı gerektirir. Zamanın önemli olmadığı durumlarda tercih edilebilir ve diğer yöntemlere göre daha iyi sonuç verir.

2.2. Yeniden Yapılandırma Tabanlı Yöntemler

Yeniden yapılandırma tabanlı yöntemler temel olarak, düşük çözünürlüklü giriş görüntüsünün yüksek çözünürlüklü görüntünün bozulmuş haliyle temsil edilebileceğini varsayar. Bozulma modeli bulanıklaştırma, alt örnekleme ve gürültülerden oluşur. Eldeki ön bilgi ile düşük çözünürlüklü görüntüdeki kenar alanlar iyileştirilebilir. Eksik bilgi ne kadar fazlayla görüntü o kadar az ayrıntı ile oluşturulur. Bu modelin dezavantajı ise eğer düşük çözünürlüklü görüntü ile yüksek çözünürlüklü görüntü arasındaki ne kadar fazlaysa oluşturulan görüntü o kadar bulanık olur.

2.2.1. Yinelemeli geri projeksiyon yöntemi

Yinelemeli geri projeksiyon yaklaşımda, simüle edilen görüntü ile gözlemlenen görüntü arasındaki hata geri yansıtılır. Bu işlem iteratif olarak tekrarlanır, böylece bu hata en aza indirilir. Süper çözünürlüğün yineleme süreci, maliyet fonksiyonunu en aza indirene kadar devam eder.

2.2.2. Düzenleme yöntemi

Düzenleme yönteminin temel fikri, yüksek çözünürlüklü görüntüyü oluşturabilmek için çözüm alanını sınırlayarak bazı önbilgileri birleştirmektir. Bu yöntem ile enterpolasyon ile çözümü zor olan, pürüzlü görüntü ve keskin olmayan kenar görüntüsü iyileştirilebilir.

2.3. Örnekleme Tabanlı

Daha önce denenen yöntemler ile elde edilen sonuçların performansı yeterli olmadığı görülmüştür. Bununla beraber performansı artırmak için yinelemeli bir yöntem kullanılması fikri öne sürülmüştür. Yinelemeli yöntemler, daha iyi çıkış verisi elde etmek için önceki çıkış verilerinin ön bilgilerini kullanır. Yinelemeli süper çözünürlük yöntemlerinin temel mantığı, basit fakat güçlü bir benzetme algoritması oluşturmasıdır. Algoritmanın amacı, düşük çözünürlüklü görüntüleri kullanarak daha kaliteli görüntü oluşturmaktır. Bu oluşturma işlemi kalitenin artması devam edinceye kadar veya belirlenen sayıda iterasyon bitinceye kadar sürebilir.

2.3.1. Regresyon tabanlı öğrenme

Regresyon tabanlı öğrenmede bellek depolama alanını azaltmak için büyük data setleri yerine eşleme işlevleri eğitilir. Yüksek çözünürlüklü pikselleri doğrudan kullanmayıp, görüntü kalitesini yükseltmek için haritalama işlevlerini bulur. Fakat, bulunmak istenen haritalama işlevi için en yakın kümeyi arama hızı sistemin bir sorunu olabilir. Eşleme işlevi sayısı arttıkça sorun kritikleşebilir.

2.3.2. Öğrenmeye dayalı yöntem

Öğrenmeye dayalı yöntemlerde, düşük ve yüksek çözünürlüklü veri setinden oluşan görüntüler kullanılarak, veriler arasındaki ilişkinin öğretilmesi amaçlanmıştır. İlerleyen bölümlerde öğrenme dayalı yöntemler detaylı olarak açıklanacaktır.

3. DERİN ÖĞRENME

Derin öğrenme, insan beyninin çalışmasının modellenmesi ile oluşturulan çok katmanlı ağ yapılarıdır. Derin öğrenme, makine öğrenmesinin alt koludur. Derin öğrenme girdi olarak verilen verilerle sonuçlar arasında ilişki kuran algoritmaları oluşturur [16][17].

3.1. Yapay Sinir Ağları

Yapay sinir ağlarını açıklamadan önce biyolojik sinir ağlarını açıklamak daha doğru olacaktır.

Beynin en küçük yapı taşını nöronlar yani sinir hücreleri oluşturur. Şekil 3.1'de sinir hücresinin biyolojik gösterimi mevcuttur. Dentritler ile diğer sinir hücrelerinden gelen sinyaller alınır ve aksonlar ile sinyaller yine diğer sinir hücrelerine iletilir.

Şekil 3.1. Sinir hücresi biyolojik gösterimi

Sinir hücresinin matematiksel modeli Şekil 3.2'deki gibidir. Perseptron yapay sinir ağlarının en küçük yapı taşıdır. Lineer bir fonksiyon ile gösterilen perseptron, 1958 yılında Frank Rosenblatt tarafından tanımlanmıştır [18].

Şekil 3.2. Perseptron gösterimi

Perseptron tek katmanlı bir yapay sinir ağıdır. Buradaki hedef en doğru çıktı verilerini üretebilecek ağırlık değerlerinin (w) bulunmasıdır. Nöronlar ile gelen girdiler (x) ağırlık değerleri ile çarpılır. Çarpılan değerler dendritler ile toplanır. Toplanan değerlere bayas (b) değeri eklenerek bir aktivasyon fonksiyonu oluşturulur. İlgili eşitlik Eş. 3.1'de gösterilmiştir.

$$a = f(wx + b) \tag{3.1}$$

Yapay sinir ağları birden fazla perseptronun bir araya gelmesi ile oluşur. Yapay sinir ağlarındaki katmanlar genel olarak girdi katmanı, gizli katmanlar ve çıkış katmanıdır.

Veriler girdi katmanından geçtikten sonra gizli katmanlara gönderilir. Gizli katmanlarda işlenen veriler çıktı katmanına gönderilir. Çıktı katmanında doğru veriler alabilmek için gizli katmanlarda doğru ağırlık değerlerinin kullanılması gerekir. Şekil 3.3'de sinir ağlarındaki katmanlar ve verilerin katmanlara giriş ve çıkışları örnek olarak gösterilmiştir.

Şekil 3.3. Yapay sinir ağlarında katmanlar

3.1.1. Aktivasyon fonksiyonları

Aktivasyon fonksiyonları, derin öğrenme modeline verileri öğretirken işlenen verilerin daha doğru sonuçlar vermesi için kullanılır. İyi bir aktivasyon fonksiyonu, doğrusal olmamalı, türevlenebilir olmalı, alt ve üst sınırlara sahip olmalı, monoton artan ve azalan olmalı, orijin noktasına göre yakınsamalı [19]. Bu bölümde, sıklıkla kullanılan aktivasyon fonksiyonları açıklanmıştır.

Sigmoid

Sigmoid aktivasyon fonksiyonu, lojistik fonksiyonun özel bir halidir. Doğrusal olmayan bir fonksiyondur. İkili olayların olasılığını tahmin etmek için kullanılır ve [0,1] arasında bir olasılık değeri oluşturur. Türevlenebilen bir fonksiyondur ve bu sayede öğrenmeyi gerçekleştirebilir. Sigmoid fonksiyonunun grafiksel gösterimi Şekil 3.4'te, fonksiyonel gösterimi Eş. 3.2'de gösterilmiştir.

$$\sigma(z) = \frac{1}{1 + e^z}$$
(3.2)

Şekil 3.4. Sigmoid fonksiyonu grafiksel gösterimi

<u>ReLU</u>

Derin öğrenmede yaygın olarak kullanılan ReLU aktivasyon fonksiyonunun matematiksel gösterimi Eş. 3.3'te ve grafiği Şekil 3.5'teki gibidir.

$$ReLU(x) = max(0, x)$$
(3.3)

Şekil 3.5. ReLU fonksiyonu gösterimi

ReLU, negatif değer üreten sinir ağları için sıfır değerini alır. ReLU sayesinde aynı anda tüm sinir ağları aktif edilmez, böylece daha hızlı çalışabilir. Negatif olmayan değer için aldığı değeri döndürür.

Sızıntı ReLU

Sızıntı ReLU'da negatif değer alan sinir ağları sıfıra çok yakın değer alır ama tam olarak sıfıra eşit değildir. Böylece bu fonksiyonun türevi sıfır dışında değer alabilir. Türevin sıfır olmaması sebebiyle geri yayılımda da öğrenme negatif alanda gerçekleşebilir. Sızıntı ReLU denklemi Eş. 3.4'teki gibi ve grafiği Şekil 3.6'daki gibidir.

$$LeakyReLU(x) = max(0.1 * x, x)$$
(3.4)

Şekil 3.6. Sızıntı ReLU fonksiyonu gösterimi

Parametrik ReLU

Parametrik ReLU fonksiyonu da negatif değerlerde belirlenen katsayıya (α_i) göre öğrenebilir. Sızıntı ReLU' dan farklı olarak, 0,1 yerine farklı bir katsayı kullanmasıdır. Parametrik ReLU fonksiyonunun formülü Eş. 3.5'te ve grafiği Şekil 3.7'de gösterilmiştir.

$$PReLU(x) = x, x \ge 0; \ \alpha_i * x, x \le 0$$
(3.5)

Şekil 3.7. PReLU grafiği

<u>Tanh</u>

Tanh fonksiyonu sigmoid fonksiyonu ile benzerlik taşır. Tanh da fonksiyon aralığı (-1,1) olarak tanımlanır. Türevinin daha dik olması ile daha çok değer alabilir durumdadır, bu özelliği ile sigmoid fonksiyonundan avantajlıdır. Daha hızlı öğrenme ve kategorize etme işlemi için daha geniz aralığa sahiptir. Tanh aktivasyon fonksiyonun grafiği Şekil 3.8' de gösterilmiştir.

Şekil 3.8. Tanh fonksiyonu grafiksel gösterimi

3.1.2. Evrişimli sinir ağları katmanları

Evrişimli Sinir Ağı temel olarak evrişim katmanı, havuzlama katmanı, tam bağlantı katmanı ve düğüm seyreltme katmanlarından oluşur [16].

Evrişim Katmanı

Evrişim katmanı, evrişimsel sinir ağlarının temel katmanıdır. Evrişim katmanının amacı, girdi verilerine uygulanan filtre matrisi ile öznitelik matrisinin oluşturulmasıdır. Uygulanan fitre matrisinin ağırlıkları ağı eğitirken verilir. Öznitelik haritası ile giriş verilerindeki belirgin veya farklı özellikler çıkarılır ve eğitilen ağın karmaşıklığı azaltılarak eğitme işlemi kolaylaştırılır.

Evrişim katmanında girdi verilere 3x3, 5x5 gibi filtre matrisleri uygulanır. Bu filtreler sayesinde, görüntüdeki belirgin öznitelikler çıkarılıp yeni bir görüntü oluşturulur. Farklı filtre matrisleri aynı girdi verisi için farklı öznitelik matrisleri oluşturur. Şekil 3.9'da bir girdi verisine uygulanan 3x3 filtre matrisi ve sonuç olarak çıkan öznitelik matrisi gösterilmektedir.

1	0	1	1	1									
0	1	0	1	0]	1	0	1		5	3	5	
1	1	1	1	1		0	1	0		1	5	1	
0	1	0	1	0		1	0	1		5	3	5	
1	0	1	1	1		3x3	3 mat	tris	-	Öznit	elik n	natri	si
	Giro	di ve	risi										

Şekil 3.9. Evrişim katmanı basit bir hesaplama gösterimi

Havuzlama Katmanı

Т

Havuzlama katmanı görüntünün boyutunu küçültme işlemi yapar. Bu katmanın amacı görüntüdeki gereksiz olan bilgileri çıkarmaktır. Bu sayede önemli bilgiler korunur. Havuzlama katmanı modelin ezber yapmasının önüne geçer ve işlem yükünü azaltır. Havuzlama katmanında en çok kullanılan çeşit maksimum havuzlamadır. Şekil 3.10'da maksimum havuzlama ile oluşturulan matris gösterilmiştir.

5	12	142	90		
29	30	78	56	30	
1	0	23	13	7	
7	5	101	97		

Şekil 3.10. Maksimum havuzlama işlemi

<u>Tam Bağlantı Katmanı</u>

Tam bağlantı katmanında, her sinir ağı bir sonraki katmandaki her sinir ağıyla birbirine bağlıdır. Tam bağlantı katmanı ile sınıflandırma işlemleri yapılır. Şekil 3.11'de tam bağlantı katmanı gösterilmektedir.

Şekil 3.11. Tam bağlantı katmanı örneği

Düğüm Seyreltme

Tam bağlantı katmanı ile ağda aşırı öğrenme meydana gelebilmektedir. Aşırı öğrenme ya da ağın ezberlemesinin önüne geçmek için düğüm seyreltme katmanı kullanılmaktadır.

Düğüm seyreltme katmanı ile gereksiz öğrenmenin önüne geçilerek ağın performansı artırılır. Düğüm seyreltme katmanı örneği Şekil 3.12'de gösterilmiştir.

Şekil 3.12. Düğüm seyreltme katmanı [17]

3.2. ResNet

Artık ağlar, derin modellerin eğitiminde önemli bir rol oynar. Artık ağ ile bir katmandan diğer katmada direk bağlantı kurmak yerine, iki veya daha fazla katman atlanarak bağlantı kurulur. Böylece sığ ağlara kıyasla iyi bir performansta çok fazla evrişim katmanına sahip ağlar oluşturulabilir [7].

4. TEK GÖRÜNTÜ SÜPER ÇÖZÜNÜRLÜK

Bu bölümde tez çalışması kapsamında kullanılan EDSR ve DCSCN yöntemler ele alınmıştır.

4.1. EDSR

Derin öğrenme tabanlı yöntemler arasında artık ağ olarak kategorize edilen EDSR [12] yöntemi NTIRE 2017 yarışmasında birincilik elde ederek dikkat çekmiştir.

EDSR, ResNet ve SRResNet yöntemlerinde bulunan evrişimli artık bloklar üzerinde yapılan değişiklik sonucu oluşturulmuş bir modeldir. Şekil 4.1' de ResNet (a), SRResNet (b) ve EDSR (c) modellerinde kullanılan yapıların karşılaştırılması gösterilmiştir.

Şekil 4.1. ResNet(a), SRResNet(b) ve EDSR(c) modellerinde kullanılan yapılar [12]

ResNet mimarisinde son katmanda yapılan ReLU işlemi SRResNet mimarisinde kaldırılmıştır. EDSR mimarisinde ise evrişim katmanlarından sonra kullanılan küme normalizasyon katmanları kaldırılmıştır. Bu işlem ile GPU bellek kullanımı azaltılmıştır. Şekil 4.2'de EDSR mimarisi gösterilmektedir.

Şekil 4.2. EDSR mimarisi [12]

DIV2K veri seti ile eğitilen EDSR ve SRResNet modellerinin PSNR ve SSIM değerleri Çizelge 4.1 gösterilmiştir[12].

Çizelge 4.1. EDSR ve SRResNet modelleri PSNR ve SSIM kıyaslaması [12]

	EDSR	SRResNet
PSNR	34,40	35,03
SSIM	0,9662	0,9695

4.2. DCSCN

DCSCN modeli iki ardışık blok içeren evrişimli bir sinir ağıdır. Ardışık bloklar, özellik çıkarma ağı ve yeniden yapılandırma ağından oluşur [13].

Özellik çıkarma ağı, 7 set 3x3 CNN, bias ve parametrik ReLU birimlerinden oluşur. Birimlerin çıktısı bir sonraki birime iletilir ve yeniden yapılandırma ağına geçilir. Özellik çıkarma ağı, ağın boyutunu küçültmek ve yanıt süresini hızlandırmak için kullanılır.

Yeniden yapılandırma ağına gelen veriler burada bir araya geldiği için boyutları büyüktür. Bu nedenle yeniden yapılandırma ağında, yüksek çözünürlüklü pikseller oluşturulmadan önce giriş boyutunu azaltmak için 1x1 CNN katmanı kullanılır. Yeniden yapılandırma ağı, 1x1 CNN, 3x3 CNN, bias ve parametrik ReLU birimlerinden oluşur. Çıkıştaki mavi ile gösterilen 1x1 CNN katmanı 4 kanal üretir. Modelin sonunda, düşük çözünürlüklü görüntü ve bikübik yukarı örneklenmiş orijinal giriş görüntüsü ile yüksek çözünürlüklü bir görüntü oluşturulur. DCSCN mimarisi Şekil 4.3'te gösterilmiştir.

Şekil 4.3. DCSCN modeli [13]

Farklı veri setleri ile eğitilen SRCNN, VDSR ve DSCN modellerinin PSNR/SSIM değerleri Çizelge 4.2'de gösterilmiştir [13].

Cizelge 4.2. SRCNN, VDSR ve DCSCN modelleri PSNR;SSIM değerler	i [13]
--	--------

Veri Seti	SRCNN	VDSR	DCSCN
Set5	36,66;0,9542	37,53;0,9587	37,62;0,9590
Set14	32,45;0,9063	33,03;0,9124	33,05;0,9126
BSD100	31,36;0,8879	31,90;0,8960	31,91;0,8956

5. ÇOK GÖRÜNTÜ SÜPER ÇÖZÜNÜRLÜK

Bu bölümde tez çalışması kapsamında çok görüntü süper çözünürlük yöntemlerinden DBVSR yöntemi ele alınmıştır.

5.1. DBVSR

DBVSR, hareket bulanıklığı tahmini, gizli görüntü restorasyonu ve hareket alanı tahmini bölümlerinden oluşan etkili bir CNN modelidir. Bu modelin en önemli özelliği bulanık pikselleri modelleyerek video süper çözünürlükteki bozulma sürecinin ayrıntılarını yakalayabilir. Bu özellik sayesinde çok daha net videolar üretebilir. DBVSR modeli Şekil 5.1'de gösterilmiştir [14].

Şekil 5.1. DBVSR modeli [14]

DBVSR modeli girdi olarak 3 adet video çerçevesi alır.

Hareket bulanıklığı tahmini için, tamamen bağlı iki katmanlı bir CNN modeli kullanır. Tamamen bağlı katmanlardan biri ReLU aktivasyon fonksiyonu, ikincisi ise Softmax fonksiyonudur.

Gizli görüntü restorasyonu bölümünde, yüksek çözünürlüklü görüntü ters evrişim modeli ile tahmin edilir. Daha sonra gizli görüntülerdeki gürültü ve bozulmaları gidermek için derin CNN modelleri kullanılır.

Optik akış restorasyonu bölümünde, bitişik görüntü karelerini referans görüntü karesine oturtmak ve daha güvenilir sonuç elde etmek için kullanılır. Optik akış tahmin algoritması olarak, yeterli performans ve küçük model boyutu sebebiyle PWC-Net [20] kullanılmıştır. Optik akış hesaplaması için ilk girdi olarak düşük çözünürlüklü görüntünün bikübik örneklenmiş hali kullanılmıştır.

Farklı veri setleri ile eğitilen Bikübik, RCAN, SPMC ve DBVSR modellerinin PSNR;SSIM değerleri Çizelge 5.1Çizelge 4.2'de gösterilmiştir [14].

Çizelge 5.1. Bikübik, RCAN, SPMC ve DBVSR modelleri PSNR;SSIM değerleri [14]

Veri Seti	Bikübik	RCAN	SPMC	DBVSR
Vid4	21,91;0,5825	24,03;0,7206	24,39;0,7534	25,35;0,7868
SPMCS	25,16;0,6962	28,60;0,8253	28,19;0,8164	29,54;0,8532

6. DENEYSEL SONUÇLAR VE TARTIŞMA

Tez kapsamında çalıştırılan tüm modeller, Intel Core i7-7700HQ CPU, 16GB RAM, dahili 8GB GPU ve harici 4GB GPU (NVDIA GeForce GTX 1050) özelliklerine sahip bilgisayar ile eğitilmiştir.

6.1. Tek Görüntü Süper Çözünürlük Yöntemlerinin Uygulanması

EDSR ve DCSCN modellerini eğitmek için ultrason veri seti kullanılmıştır [21]. Veri artırımı yöntemi ile ultrason veri setindeki veriler 90°, 180°, 270° derece döndürülmüştür. Daha sonra, döndürülen veriler kırpılarak toplamda 12000 ultrason verisi ile modeller eğitilmiştir.

12000 veri seti içerisinden rastgele seçilen 1480 adeti test verisi, geriye kalan 10520 adeti eğitim verisi olarak kullanılmıştır.

10520 adet ultrason görüntüsü ile eğitilen EDSR ve DCSCN modelleri daha sonra önceden ayrıştırılan 1480 adet ultrason görüntüsü ile test edilmiştir.

Şekil 6.1. Performans analizi için test verilerinin kullanılması

Buradaki her bir ultrason görüntüsü 100x100 piksel olup, EDSR ve DCSCN modellerine verilmeden önce 50x50 pixel çözünürlüğüne düşürülmektedir. Modellerimiz 50x50 piksel çözünürlüklü giriş imajlarına karşılık gelen 100x100 pixel çıkış imajları üretecek şekilde eğitilmiştir.

Modellerin performanslarını kıyaslamak için PSNR ve SSIM değerleri hesaplanırken Şekil 6.1'de görüldüğü gibi elimizdeki 1480 adet 100x100 piksellik test ultrason görüntüleri önce düşük çözünürlüklü 50x50 piksellik görüntülere çevrilmiş, daha sonra EDSR ve DSCSN modellerine verilmiştir. Model çıktıları ile orijinal görüntü arasındaki benzerlikler hesaplanmıştır.

EDSR modeli eğitilirken Ek-1'de yer alan Çizelge 'deki parametreler kullanılmıştır. DCSCN modeli eğitilirken Ek-2'de yer alan Çizelge 2.2.1, Çizelge 2.2, Çizelge 2.3, Çizelge 2.4, EK-2. (*devam*) DCSCN Eğitiminde Kullanılan Parametreler

Çizelge 2.5, Çizelge 2.6, Çizelge 2.7, Çizelge 2.8'deki parametreler kullanılmıştır.

Her bir test verileri için hesaplanan SSIM ve PSNR değerlerinin EDSR ve DCSCN modelleri için ortalama ve standart sapma değerleri Çizelge 6.1'de sunulmuştur. Buna göre hem PSNR hem de SSIM bakımından DCSCN modelinin ortalamada daha başarılı olduğu görülmüştür.

PSNR/SSIM	DCSCN	EDSR
PSNR Ortalama	37,89	36,01
PSNR Standart Sapma	6,88	3,05
SSIM Ortalama	0,96	0,94
SSIM Standart Sapma	0,02	0,03

Çizelge 6.1. EDSR ve DCSCN modelleri PSNR/SSIM değerleri

Şekil 6.2 ve Şekil 6.3'te EDSR modeli için iterasyon sayısına bağlı olarak Loss ve PSNR değerleri gösterilmiştir.

Şekil 6.2. EDSR modeli loss grafiği

Şekil 6.3. EDSR modeli PSNR grafiği

Şekil 6.4 ve Şekil 6.5'te DCSCN modeli için epoch sayısına bağlı olarak Loss ve PSNR grafiği gösterilmiştir.

Şekil 6.4. DCSCN modeli loss grafiği

Şekil 6.5. DCSCN modeli PSNR grafiği

6.2. Çok Görüntü Süper Çözünürlük Yöntemlerinin Uygulanması

DBVSR modelini eğitmek için ultrason video veri seti (Vocal Tract Ultrasound Videos with Audio) kullanılmıştır.

483 veri seti içerisinden rastgele seçilen 383 adeti test verisi, geriye kalan 100 adeti eğitim verisi olarak kullanılmıştır. Video süper çözünürlük için kullanılan veri setinin beklenenden az olma sebebi, kullanılan donanımın yetersizliği ve buna bağlı olarak eğitim süresinin çok uzun olmasındandır.

Şekil 6.6'te DBVSR modelinin epoch sayısına göre loss değeri gösterilmiştir. Bu değerlere bakıldığında, epoch 12'den sonra loss değerinde etkili bir azalma görülmemiştir.

Şekil 6.6. DBVSR modeli loss grafiği

Şekil 6.7'te DBVSR modelinin epoch sayısına göre PSNR değeri gösterilmiştir. Bu değerlere bakıldığında, PSNR değerinin 34'leri bulduğu görülmüştür.

Şekil 6.7. DBVSR modeli PSNR grafiği

DBVSR modeli test verileri için hesaplanan SSIM ve PSNR ortalama ve standart sapma değerleri Çizelge 6.2'de sunulmuştur. Bu çizelgeye göre DBVSR modelinin hem PSNR hem de SSIM bakımından başarılı olduğu görülmüştür.

Çizelge 6.2 DBVSR modeli PSNR/SSIM değerleri

PSNR/SSIM	DBVSR
PSNR Ortalama	37,63
PSNR Standart Sapma	1,54
SSIM Ortalama	0,95
SSIM Standart Sapma	0,05

DCSCN modeli eğitilirken Ek-3'te yer alan Çizelge 2.3.1, Çizelge 2.2, Çizelge 2.3, Çizelge 2.4 ve EK-2. (*devam*) DCSCN Eğitiminde Kullanılan Parametreler

Çizelge 2.5'teki parametreler kullanılmıştır.

7. SONUÇLAR VE ÖNERİLER

Öğrenme tabanlı süper çözünürlük yöntemleri medikal görüntülemede kullanılan popüler yöntemlerdendir. Kullanılan yöntemler, medikal alanda çalışan kişilere, hastalıkların erken tanı ve tedavisi gibi alanlarda yardımcı olması konusunda etkin rol oynamaktadır.

Tez çalışmasında, tek görüntü süper çözünürlük yöntemlerinden EDSR ve DCSCN modelleri ultrason görüntüleri ile eğitilmiş, daha sonra performansları kıyaslanmıştır. Başarımları kıyaslanırken hem PSNR hem de SSIM değerleri baz alınmıştır. Bu kıyaslamaya yakından bakıldığında, kullanılan veri seti ile DCSCN modelinin EDSR modeline kıyasla başarımının yüksek olduğu görülmüştür.

Yine tez çalışması kapsamında çok görüntü süper çözünürlük yöntemi olan DBVSR modeli, ultrason video veri seti kullanılarak eğitilmiş ve sonuçları paylaşılmıştır. DBVSR modeli sonuçları PSNR değeri baz alınarak grafiksel olarak gösterilmiştir. Çıkan sonuçlar baz alındığında, DBVSR modelinin başarısı yadsınamaz seviye olduğu gözlemlenmiştir. Donanımsal eksiklikler giderilerek daha iyi sonuçlar elde edilebileceği öngörülmüştür.

Devam eden çalışmalarda kullanılan modellerin daha büyük veri setleri ile eğitilerek geliştirilmesi hedeflenmiştir.

KAYNAKLAR

- 1. Nasrollahi, K. ve Moeslund, T. B. (2014). Super-resolution: A comprehensive survey, *Machine Vision and Applications*, 25(6), 1423-1468.
- 2. Anwar, S, Khan, S., ve Barnes, N., (2020). A Deep Journey into Super-resolution: A Survey. *ACM Computing Surveys*, 53(3), 1-34.
- 3. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J. H. ve Liao, Q. (2019). Deep Learning for Single Image Super-Resolution: A Brief Review. *IEEE Transactions on Multimedia*, 21(12), 3106-3121.
- 4. Dong, C., Loy, C. C., He, K. ve Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. *IEEE Transactions on Pattern Analysis and Machine Intelligance*, 38(2), 295-307.
- 5. Dong, C., Loy, C. C., He, K. ve Tang, X. (2014). *Learning a deep convolutional network for image super-resolution*. Europian Conference on Computer Vision. Zurich, 184-199
- 6. Dong, C., Loy, C. C., He, K. ve Tang, X. (2016). Accelerating the super-resolution convolutional neural network. Europian Conference on Computer Vision. Amsterdam, 391-407
- 7. He, K., Zhang, X., Ren, S. ve Sun, J. (2016, 27-30 Haziran). *Deep residual learning for image recognition*. Conference on Computer Vision and Pattern Recognition. Las Vegas.
- 8. Ledig C., Theis, L. Huszar, F. ve Cabellero, J., (2017, 21-26 Temmuz). *Photorealistic single image super-resolution using a generative adversarial network*," Conference on Computer Vision and Pattern Recognition. Honolulu.
- 9. Kappeler, A., Yoo, S., Dai, Q. ve Katsaggelos, A. K. (2016). Video Super-Resolution With Convolutional Neural Networks. *IEEE Transactions on Computional Imaging*. 2(2), 109-122.
- 10. Shi, W., Caballero, J., Huszar, F., ve Totz, J., (2016, 27-30 Haziran). *Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network*, Conference on Computer Vision and Pattern Recognition. Las Vegas.
- 11. Temiz, H. (2020). Ultrason Görüntülerinde Derin Öğrenme Yaklaşımı ile Süper Çözünürlük, Doktora Tezi, Fen Bilimleri Enstitüsü, Ankara, 7-27.
- 12. Lim, B., Son, S., Kim, H., Nah, S. ve Lee, K. M. (2017, 21-26 Temmuz). *Enhanced Deep Residual Networks for Single Image Super-Resolution*, Conference on Computer Vision and Pattern Recognition. Honolulu.

- 13. Yamanaka, J., Kuwashima, S. ve Kurita, T. (2017, 4-9 Aralık). *Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network*, International Conference on Neural Information Processing. Guangzhou.
- 14. Pan, J., Bai, H., Dong, J., Zhang, J., ve Tang, J. (2021, 10-17 Ekim). *Deep Blind Video Super-resolution*. International Conference on Computer Vision (ICCV)., Monteal.
- 15. Aparna, K. V., ve Lisha, P. P. (2016). A Survey on Super-Resolution Techniques, *International Research Jurnal of Engineering and Technology*. 3(12), 1035-1039.
- 16. Yamashita, R., Nishio, M., Do, R.K.G. ve Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. *Insights Imagging*, 9(4),611-629.
- 17. Nagaraj, P., Muneeswaran, V., Veera Reddy, L., Upendra, P. and Reddy M.V.V., (2020, 13-15 Mayıs). *Programmed Multi-Classification of Brain Tumor Images Using Deep Neural Network*, International Conference on Intelligent Computing and Control Systems. Madurai.
- Lucas, A., Iliadis, M., Molina, R. ve Katsaggelos, A. K. (2018) Using Deep Neural Networks for Inverse Problems in Imaging, *IEEE Signal Processing Magazine*. 35(1), 20-36.
- 19. Qian, H. ve Ding, J. Z. B. (2018, 9-11 Haziran). Activation Function and Their Characteristics in Deep Neural Networks, Chinese Control and Decision Conference. Shenyang.
- 20. Sun, D., Yang, X., Liu, M. Y. ve Kautz, J. (2018, 18-23 Haziran). *PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume*, IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City.
- 21. Al-Dhabyani, W., Gomaa, M., Khaled, H. ve Fahmy, A. (2019, 12-13 Kasım) *Dataset of breast ultrasound images*. Data of Breast Ultrasond images. Cairo.

EKLER

EK-1. EDSR Eğitiminde Kullanılan Parametreler

Model parametreleri	Değer	Açıklama
imgsize	100	resimlerin boyutu
scale	2	ölçek
layers	32	katman sayısı
featuresize	256	özellik boyutu
batchsize	10	grup boyutu
iterations	1000	tekrar sayısı

	Çizelge	1.1.	EDSR	Model	Parametre	leri
--	---------	------	------	-------	-----------	------

Model ağ parametreleri	Değer	Açıklama
scale	2	Süper Çözünürlük için ölçek faktörü (2 veya daha fazla olmalıdır)
layers	12	Özellik çıkarıcı CNN'lerinin katman sayısı
filters	196	İlk özellik çıkarıcı CNN'lerin filtre sayısı
min_filters	48	Son özellik çıkarıcı CNN'lerin filtre sayısı
filters_decay_gama	1.5	CNN filtrelerinin sayısı, bu gamma tarafından [filtrs]'den [min_filters]'a indirgenir
use_nin	DOĞRU	Ağı Ağda Kullan
nin_filters	64	Yeniden Yapılanma ağındaki A1'deki CNN filtrelerinin sayısı
nin_filters2	32	Yeniden Yapılanma ağında B1 ve B2'deki CNN filtrelerinin sayısı.
cnn_size	3	CNN filtrelerinin boyutu
reconstruct_layers	1	CNN Katmanlarını Yeniden Yapılandırma Sayısı. (0 olabilir.)
reconstract_filters	32	Yeniden Yapılandırılan CNN Filtrelerinin Sayısı
dropout_rate	0.8	Çıkış düğümleri bu olasılıkla tutulmalıdır. 1 ise, bırakma katmanını kullanmaz.
activator	prelu	Aktivatör [relu, sızıntı_relu, prelu, sigmoid, tanh, selu] olabilir
pixel_shuffler	DOĞRU	Aktarılan CNN yerine Pixel karıştırıcı kullan
pixel_shuffler_filters	0	Pixel karıştırıcı çıkış kanallarının sayısı. 0, girişle aynı kanalları kullanacak anlamına gelir.
self_ensemble	8	Self ensemble yöntemini kullanma sayısı. [1 - 8]
batch_norm	YANLIŞ	Her CNN'den sonra toplu normalleştirmeyi kullan
depthwise_separable	YANLIŞ	bunun yerine her CNN katmanı için derinlemesine ayrılabilir kıvrımlar kullanın

Çizelge 2.1. DCSCN Model Ağ Parametreleri

Çizelge 2.2. DCSCN Eğitim Parametreleri

Eğitim parametreleri	Değer	Açıklama
bicubic_init	DOĞRU	x2 için ilk girdi olarak bikübik enterpolasyon değerlerini yap
clipping_norm	5	Degrade kırpma için norm. <= 0 ise, degrade kırpma kullanmayız.
initializer	he	Ağırlıklar için başlatıcı [uniform, stddev, xavier, he, identity, zero] olabilir
weight_dev	0.01	Başlangıç ağırlığı stddev (he veya xavier başlatıcıyı kullandığınızda kullanılmaz

Eğitim parametreleri	Değer	Açıklama
12_decay	0.0001	12_decay
optimizer	adam	Optimize edici [gd, momentum, adadelta, adagrad, adam, rmsprop] olabilir
beta1	0.9	Adam Optimizer için Beta1
beta2	0.999	Adam Optimizer için Beta2
epsilon	1.00E-08	Adam Optimizer için epsilon
momentum	0.9	Momentum Optimizer ve rmsprop Optimizer için momentum
batch_num	20	Eğitim için mini-grup (mini-batch) görüntü sayısı
batch_image_size	48	Mini-grup için görüntü boyutu
stride_size	0	Mini-grup için adım boyutu. 0 ise, batch_image_size öğesinin yarısını kullanır
training_images	24000	Her çağdaki (epoch'daki) eğitim sayısı
use_l1_loss	YANLIŞ	Kayıp işlevi olarak MSE Hatası yerine L1 Hatasını kullan.

Çizelge 2.2. (devam) DCSCN Eğitim Parametreleri

Çizelge 2.3. DCSCN Eğitimdeki Öğrenme Hızı Kontrol Parametreleri

Eğitimdeki öğrenme hızı kontrol parametreleri	Değer	Açıklama
initial_lr	0.002	İlk öğrenme hızı oranı
lr_decay	0.5	Öğrenme hızı oranının azalma oranı
lr_decay_epoch	9	Bu çağlar (epoch'lar) tamamlandıktan sonra öğrenme oranı lr_decay kadar azalacaktır.
end_lr	2e_5	Eğitimi sonlandırma öğrenme oranı. Mevcut öğrenme oranı bu değerin altına düşerse eğitim tamamlanmış olur.

Veri seti ve diğerleri	Değer	Açıklama
dataset	bsd200	Eğitim veri kümesi dizini. [yang91, general100, bsd200, other]
test_dataset	set5	Test veri kümesi için dizin [set5, set14, bsd100, urban100, all]
tests	1	Eğitim seti sayısı
do_benchmark	YANLIŞ	Eğitimden sonra set5, set14 ve bsd100 performansını değerlendir.

Görüntü işleme	Değer	Açıklama	
max_value	255	Görüntü piksel değerini normalleştirmek için kullanılır	
channels	1 Kullanılan görüntü kanalı sayısı. Şimdilik 1 olmalıdır. YCbCr'den sadece Y kullanılır.		
psnr_calc_border_size	-1 PSNR'yi hesaplamak için kenarlardan kırpılaca boyut. < 0 ise, varsayılan olarak 2 + ölçeğ kullanır.		
build_batch	YANLIŞ	Önceden işlenmiş girdi grubu oluşturur. Eğitimi önemli ölçüde daha hızlı hale getirir, ancak yamalar ızgarada olmak üzere sınırlıdır.	
input_image_width	-1	Giriş görüntüsünün genişliği. Sabit bir giriş boyutuna sahip olmak istemiyorsanız -1 koyun	
input_image_height	-1	Giriş görüntüsünün yüksekliği. Sabit bir girdi boyutuna sahip olmak istemiyorsanız -1 koyun	

Çizelge 2.5. DCSCN Görüntü İşleme Değerleri

Çizelge 2.6. DCSCN Çevre Değerleri

Çevre	Değer	Açıklama	
checkpoint_dir	models	Kontrol noktaları için dizin	
graph_dir	graphs	Grafikler için dizin	
data_dir	data	Orijinal resimler için dizin	
batch_dir	batch_data	Grup görüntüleri eğitmek için dizin	
output_dir	output	test görüntüleri çıktıları için dizin	
tf_log_dir	tf_log	Tensorboard günlüğü için dizin	
log_filename	log.txt	günlük dosyası adı	
model_name		kaydetme dosyaları ve tensorboard günlüğü için model adı	
load_model_name		Başlamadan önce model yüklemenin dosya adı [filename or 'default']	

Çizelge 2.7. DCSCN Hata Ayıklama ve Loglama Değerleri

Hata ayıklama ve loglama	Değer	Açıklama	
initialize_tf_log	DOĞRU	Başlamadan önce tüm tensorboard günlüğünü temizle	
enable_log	DOĞRU	tensorboard günlüğünü etkinleştirir. Kaybı kaydet.	
save_weights	DOĞRU	Ağırlıkları ve bias'lari/gradyanları kaydedin	
save_images	YANLIŞ	CNN ağırlıklarını görüntü olarak kaydedin	

EK-2. (devam) DCSCN Eğitiminde Kullanılan Parametreler

Hata ayıklama ve loglama	Değer	Açıklama
save_images_num	20	Kaydedilen CNN görüntülerinin sayısı
save_meta_data	YANLIŞ	
gpu_device_id	0	Hesaplamak için kullanılacak GPU'ların cihaz kimliği.

Çizelge 2.7. (devam) DCSCN Hata Ayıklama ve Loglama Değerleri

Çizelge 2.8. DCSCN Donmuş Model Ayarları

Donmuş model ayarları	Değer	Açıklama
frozenInference	YANLIŞ	Değerlendirilecek modelin dondurulup dondurulmadığını işaretler.
frozen_graph_path	/model_to_freeze/frozen_model_optimized.pb	ondan çıkarım yapılıyorsa donmuş bir modele giden dizin

EK-3. DBVSR Eğitiminde Kullanılan Parametreler

Donanım özellikleri	Değer	Açıklama
		veri yükleme için iş parçacığı
n_threads	0	say1s1
сри	store_true	sadece işlemci kullan
n_GPUs	1	GPU sayısı
seed	1	rastgele seed

Çizelge 3.1. DBVSR Donanım Özellikleri

Çizelge 3.2. DBVSR Veri Özellikleri

Veri özellikleri	Değer	Açıklama
patch_size	64	çıktı yama boyutu
		ağ girişinin boyutu bu sayıyı
size_must_mode	1	değiştirmelidir
rgb_range	1	maksimum RGB değeri
		kullanılacak renk kanalı
n_colors	3	sayısı
no_augment	store_true	veri büyütmeyi kullanma
		test ederken dolgu kullan,
		daha sonra çıktıdan ekstra
test_padding	0	parçayı (dolguyu) kırp
		her yinelemenin sıra
n_sequences	3	numarası
		her videoda kullanılan
n_frames_per_video	45	görüntü sayısı
scale	4	modelin ölçek faktörü

Çizelge 3.3. DBVSR Model Özellikleri

Model özellikleri	Değer	Açıklama
model	RCAN	model adı
n_resgroups	10	kullanılan res groups sayısı
n_resblocks	20	kullanılan res blocks sayısı
		özellikte kullanılan kanal
n_feats	64	sayısı
reduction	16	indirgeme faktörü
res_scale	1	indirgeme ölçeği

Eğitim özellikleri	Değer	Açıklama
test_every	100	her N parti için test yap
epochs	50	eğitilecek cag (epoch) sayısı
batch_size	1	eğitim için girdi grup boyutu
		modeli test etmek için bu
test_only	store_true	seçeneği ayarlayın

Çizelge 3.4. DBVSR Eğitim Özellikleri

Optimizasyon		
özellikleri	Değer	Açıklama
		kayıp fonksiyonu
loss	1*L1	konfigürasyonu
		yeniden yapılandırma ağı ve
		çekirdek ağının öğrenme
lr	1 e-4	oranı
pwc_lr	1 e-6	akış ağının öğrenme hızı
		N dönem başına öğrenme hızı
lr_decay	2	düşüşü
		adım bozulma için öğrenme
gamma	0.5	hızı bozulma faktörü
beta1	0.9	ADAM beta1
beta2	0.999	ADAM beta2
		Sayısal kararlılık için ADAM
epsilon	1 e-8	epsilon
weight_decay	0	ağırlık kaybı
mid_loss_weight	1	eğiticide orta kaybın ağırlığı

GAZİ GELECEKTİR...