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Real-Time Prefetching and Buffer Management
for Parallel Multimedia I/0 Systems

Ozgiir Ertug

Abstract

Continuous media servers are increasingly used to support a number of appli-
cation domains, e.g., entertainment industry, library information systems, ed-
ucational applications etc. Objects of continuous media data type are large in
size and their retrieval and display are subject to real-time constraints. Servers
are required to accommodate these objects and ensure their continuous dis-
play. In this thesis, we introduce a model for resource scheduling of a video
storage server delivering continuous media VBR video data with real-time re-
quirements. The video streams are assumed to be stored in CDL format and
distributed across multiple disks. Within a server-network-client model, our
framework translates the requirements imposed by video and resource avail-
ability into constraints on prefetching in the real-time domain.

We present a novel algorithm RT-OPT for optimally prefetching blocks into
the server buffer. We show that if the schedule created by RT-OPT fails to meet
the deadline of any block, then no feasible schedule is possible for the same
buffer size, data placement and single-disk scheduling policy. Simulations with
MPEG traces show that RT-OPT achieves high scalability by dynamically mul-
tiplexing the buffer among different clients and disks optimally. The number of
clients supported is shown to be uniformly superior to intuitive but suboptimal
algorithms like GREED-EDF that aggressively keep the disks busy fetching in
order of deadlines.
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Chapter 1

Introduction

For decades, analog technology was used in the production of audio and video.
Audio and video systems throughout the world are witnessing a transition to
digital video technology . Advances in computer and communications technolo-
gies have stimulated the integration of digital continuous media with comput-
ing resulting in multimedia systems. Multimedia systems will revolutionize
current life styles, especially those aspects associated with education, enter-
tainment, medicine and commerce. To illustrate, in distance learning, a mul-
timedia system may store lectures, educational videos, as well as an entire li-
brary thus enabling schools, universities and businesses to share a wide range
of educational materials. An entertainment system may store a rich set of
movies, sitcoms and video games, and permit users to view or play any of these
videos and games on demand. Such systems are typically termed video-on-
demand (VOD) servers. The effective support of continuous media is essential
to the success of multimedia systems. This crucial task is performed by con-
tinuous media servers, thus making them an indispensable part of multimedia
systems. Continuous media servers consist of three major components: contin-
uous media objects, continuous media storage and the retrieval scheduler.
Continuous media objects are typically large in size. For example, digital
component video based on CCIR-601 standard requires 270 Megabits per sec-
ond for its continuous display. If a continuous media server delivers a clip
at a rate lower than its prespecified rate without special precautions, the user
might observe frequent disruptions and delays with video or random noise with
audio. These artifacts are collectively termed hiccups. Due to redundancy in
data, the bandwidth requirement of a clip along with its size can be reduced
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Figure 1.1 : Video-on-demand server-network-client system architecture

by using compression techniques such as digital video interactive (DVI), joint
photographic expert group (JPEG) and motion pictures expert group (MPEG).

Video-on-Demand (VOD) systems are distributed server-network-client ar-
chitectures (Figure 1.1) that provide interactive or non-interactive video ser-
vice to multiple clients with specified quality of service (QoS) guarantees in
real-time. The video server that stores the video data and delivers it to the
network consists of either a high-volume single disk or a parallel disk array
[8] on which the data of different video clips are distributed in some fashion.
Video data is a three-dimensional digital signal with two dimensions in the
spatial domain and one dimension in the temporal domain. It is composed of
a sequence of frames, each consisting of NxM pixels, ordered in time and regu-
larly spaced by the inverse of the frame rate. Typical frame rates in use today
are 24 and 30 frames per second [28]. Raw video data requires an enormous
amount of storage (megabytes per second of video) and a correspondingly large
time to transmit across the network to a client. Consequently, the data is usu-
ally stored in compressed form on magnetic storage at the server using either
MPEG-1 or MPEG-2 video compression formats [12, 13, 28, 29].

MPEG (Motion Picture Experts Group) (see Appendix A) video compres-
sion format is one of the widely used compression formats today. The MPEG
compression algorithm uses three types of frame coding to remove the spa-

tial and temporal correlations in the video sequence. The I or intra-coded se-



quences are coded to remove the spatial correlation within the frame by DFT
(Discrete Fourier Transform), quantization and run-length entropy coding of
the two-dimensional pixel domain, as in JPEG (Joint Pictures Expert Group)
image compression format [29]. The motion correlation between consecutive
frames is used to remove the temporal redundancy using predictive motion-
based inter-frame decorrelation and compression. The P and the B frames are
the predictively inter-coded frames. The P frames are inter-coded with respect
to the previous I or P frame, and the B frames are motion-compensated with
an interpolation of the previous and the next I or P frame. The coded frame
sizes of the frame types are in general I, P and B in decreasing order. The
frames are coded in a specific order repeating continually along the video se-
quence; the repeating unit called GOP (group of pictures), such as “IBBPBB”
or “'BBPBBPBBPBB” [29].

The video data compressed in MPEG format inherently results in a variable
bit rate (VBR) stream. VBR coded video results in improved picture quality
over a constant-bit-rate encoding (CBR), but places additional stress on the
server in meeting the real-time constraints of individual frames. The unit of
storage of VBR coded bit streams on the disk and the units in which they are
are accessed are important factors in the design of the video server [6, 5].

Two main types of storage and retrieval schemes for VBR video are con-
stant data length (CDL) and constant time length (CTL) (see Figure 1.2). In
CDL storage scheme video data is stored and read in constant-size blocks. This
simplifies disk storage allocation, avoids fragmentation, and eases buffer man-
agement by performing I/O in fixed-size units. However, CDL resulits in differ-
ent number of frames stored in each block; therefore each block has a different
playback duration in real-time. In CTL storage for VBR video, each block has
a different size, but the playback duration for each block is the same since the
number of frames in each block are equal. For flexibility in achieving guaran-
teed QoS, CDL is generally preferred [5] and many recent papers have dealt
with issues in CDL-based retrieval [2, 3, 5, 6].

The network connecting the server and the geographically distributed
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Figure 1.2 : CDL and CTL storage schemes

clients is in general a local area network (LAN) or a wide area network (WAN)
based on ATM cell relay or IP packet-switching protocols; it may include other
types of common shared mediums for broadband access such as cable and
ADSL networks or satellite channels [24]. The server distributes the requested
blocks to the clients over the network in real-time in compressed form to save
transmission bandwidth, and upon reception the client decompresses and dis-
plays the frames in the received datagrams stored in its processing queue. The
main goal of a VOD server is to store the large volurhe of video data from dif-
ferent video clips in its secondary storage and to deliver them to the clients
in a timely manner by honoring specific QoS guarantees such as delay, delay
jitter and maximum frame-loss probability. Given a fixed set of resources such
as disk baqdwidth, storage volume, and main memory for buffering, the video
server can deliver a limited number of streams at the specified QoS guaran-
tees. A design goal is to maximize the number of clients (streams) that can be
concurrently served with the guaranteed QoS.

A VOD system incorporates several subsystems: a high-volume secondary
storage subsystem for storage of video data, main memory for buffering, high-
speed processors at the server, a high-speed network connecting the server and
the clients, and client-end computing and display devices. The storage sub-
system is in general the bottleneck for real-time delivery of video due to the
high I/O latencies incurred by secondary storage devices. The use of multiple



disks to build a parallel I/O subsystem has been advocated to increase 1/O per-
formance. However harnessing the raw increased disk bandwidth afforded by
multiple disks to decrease the latency seen by the individual blocks requires
sophisticated prefetching and caching techniques [1, 18, 19, 32]. The problem
is compounded by the necessity for real-time guarantees in a VOD server. In
a parallel I/O system, idle disks can be used to prefetch video blocks concur-
rently with demand I/Os from other disks. These prefetched blocks are held
in the buffer until their deadlines, when they can be transferred to the client.
However, deciding which blocks to prefetch is a non-trivial task. Blocks that
are prefetched long before their deadline occupy buffer space wastefully, re-
ducing the effective buffer size, and decreasing the number of clients that the
server can handle; on the other hand delaying a prefetch potentially wastes
disk bandwidth, causing blocks downstream to miss their deadlines and violat-
ing the QoS guarantees. To use the increased disk bandwidth effectively, the
design of prefetching and buffer management algorithms that ensure the most
useful blocks are fetched and retained in the buffer is crucial.

1.0.1 Continuous Media Server Overview

Continuous media is distinguished from traditional textual and record-based
media in two ways. First the retrieval and display of continuous media are
subject to real-time constraints. These real-time constraints affect not only the
storage, retrieval scheduling and delivery of data through the interconnection
network, but also the manner in which multiple users may share resources.
If the real-time constraints are not satisfied, then the display may suffer from
disruptions and delays. Second, objects of continuous media type are large in
size. For instance, the size of the three minutes of uncompressed CD quality au-
dio with a 1,4 Megabits-per-second bandwidth requirement, is 31.5 Megabytes.
A two hour MPEG-2 encoded video with a 4 Mbps bandwidth requirement is
3.6 Gigabytes in size. During the past few years, several studies have investi-
gated the design issues involved in a continuous media server [31, 33,9, 7, 11].

Some of these studies have focused on a single-disk continuous-media server
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architecture to support a high number of simultaneous displays accessing the
server.

Figure 1.3 shows the continuous media server architecture that we focus
on. As shown in the figure, a multi-disk architecture with round-robin striping
of data blocks [26, 31] is a common approach that is used in media servers. We
adopt the same data placement technique as well.

Scheduling in a continuous media server can be divided into two categories;
deterministic and statistical. In traditional round-based deterministic schedul-
ing, an object X is partitioned into n blocks Xy, X1, ..., X,_; (Figure 1.3). A block
is assumed to be the unit of transfer from the disk to main memory. The dis-
play time of a block is termed a time period. To support simultaneous display of
several objects, a time period is divided into slots, with each slot corresponding
to the retrieval time of a block from a disk. When a request references object
X, the server stages X, from its corresponding disk into memory and initiates
its display. Prior to completion of a time period, it initiates the retrieval of X,
from the next disk into memory in order to ensure a continuous display. This
process is repeated until all blocks of an object have been displayed.



In statistical scheduling, each client submits its block retrieval request to
the operating system with a deadline that must be respected in order to support
a hiccup-free display. Continuous media servers which use this kind of scheme,
make probabilistic guarantees with regard to meeting the deadline. Disks in
this scheme are not synchronized at the end of each time period. In this the-
sis, we focus on deterministic scheduling of variable bit rate continuous media
with the design goal of maximizing the number of concurrent streams sup-
ported. However, unlike traditional round-based schemes, we globally sched-
ule the streams, so that high demands for a client at some time can be traded
off against low demand from another client dynamically.

1.0.2 Related Work

There have been a number of different approaches for storage and retrieval
of real-time video data. Disk-head scheduling algorithms for real-time mul-
timedia scheduling of single-disk systems were analyzed in {22, 23]. Three
algorithms SCAN, EDF and a hybrid of the two were evaluated for different
buffer sizes. Non-contiguous disk allocation of streams was proposed and ad-
mission control based on constrained layout designs were analyzed in [20]. A
disk-head scheduling algorithm, GSS (group sweeping scheme), with the objec-
tive of minimizing buffer space and access time was presented in [36]. For the
SPIFFI video-server, [14] proposed a real-time priority-based disk scheduling
algorithm that partitions requests into priority classes based on the nearness
of their deadlines, and compares it with GSS. These algorithms are concerned
with the scheduling of a single disk. For multiple-disk parallel disk arrays, sim-
ple reading of an entire stripe is proposed as a means of obtaining high paral-
lelism. However, it is well known that such an approach is potentially wasteful
of buffer memory, and an approach that schedules the multiple disks globally
can perform significantly better [1, 18, 19, 32, 34]. However the scheduling
algorithms proposed in these studies have no notion of real-time and cannot
account for deadlines imposed by real-time requirements.

In [2, 3, 6, 5] all admission and resource allocation algorithms for VBR-
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CDL video streams are studied in a single-disk system based on the concept
of fetching in rounds. Based on desired QoS guarantees and the characteris-
tics of the video streams, the buffer is partitioned among the different clients.
The partitioning of the buffer memory simplifies the round-based admission
control algorithms, but under utilizes the buffer by failing to multiplex the
buffer dynamically. By assuming that the worst-case buffer requirements of
the clients occur simultaneously, the number of clients that can be supported
is greatly reduced. In [21], caching methods to reuse blocks of popular movies
were proposed and analyzed. None of these works attempts to optimize the
use of buffer in a multiple-disk situation among multiple disks nor, with the
exception of {21], dynamically among multiple clients.

1.0.3 Contribution

The main novelty of the work reported in this thesis is that in our framework,
the buffer is dynamically multiplexed among the clients and disks to maxi-
mize its utilization. Such dynamic sharing greatly improves the performance
of VBR-CDL systems since there is wide variance in the deadlines for different
blocks. This variance causes the load to dynamically shift from one client to
another and from one disk to some other. For any given amount of buffer mem-
ory and choice of low-level disk-arm scheduling on a single disk, our scheduler
maximizes the number of client streams that can be serviced. We create an
abstract model in which to pose the real-time scheduling problem precisely. Al-
though our abstract problem may superficially resemble many problems solved
in the real-time system community , none of these were found to apply to the
particular problem of parallel disk scheduling. The specific differences in our
requirements are the use of multiple resources (disk and buffer) and the bind-
ing of blocks to specific disks.



1.0.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 concentrates on hiccup-
free continuous display of VBR video clips. Chapter 3 describes our real-time
model for prefetching and buffer management within the parallel disk model.
Chapter 4 describes the algorithm RT-OPT within our real-time framework for
prefetching and buffer management. Chapter 5 provides comparative simula-
tion studies of RT-OPT with other intuitive but suboptimal algorithms such as
GREED-EDF. The simulation uses public-domain MPEG traces from several
popular movies, and uses a Zipfian distribution to model viewer preference for
different movie clips. Chapter 6 presents the conclusions.
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Chapter 2

Fundamentals of Continuous Media Display and
Magnetic Disk Drives

2.1 Continuous Media Display Overview

To support continuous display of a video object X, several studies have pro-
posed partitioning X into n equal-sized blocks: X, X;...,X,- [31, 7]. The
display time of a block and its transfer time from the disk are a fixed func-
tion of the display requirements of an object and the transfer rate of the disk,
respectively. Using this information, the system stages block X, from the disk
into main memory prior to completion of the display of X,. This ensures a
smooth transition between the two blocks in order to support a continuous dis-
play. This process is repeated until all blocks of X have been retrieved and
displayed. The system needs to estimate the disk service time in order to stage
a block into memory in a timely manner to avoid starvation of data i.e, hiccups.
Section 2.4 describes techniques to model the characteristics of disk drives to
obtain the necessary service time estimates. Most multi-disk designs utilize
striping to assign data blocks of each CM file to individual disks. With strip-
ing, a file is broken into (fixed) striping units which are assigned to the disks
in a round-robin manner. There are two basic ways to retrieve striped data (a)
in parallel to utilize the aggregate bandwidth of all the disks (this is typically
done in RAID systems), or (b) in a cyclic fashion to reduce the buffer require-
ments (this method is sometimes referred to as simple striping or RAID level
0). Both scheduling techniques can also be combined in a hierarchical fashion
by forming several clusters of disks. Data retrieval proceeds in parallel within
a cluster and in cycles across the clusters. When identical disks are used, all

the above techniques feature perfect load-balancing during data retrieval and
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Figure 2.1 : Continuous Display of Multiple Objects

on average equal amount of data is stored on every disk. Level 1 and above
of RAID systems have only been analyzed for homogeneous disk arrays, since
their performance depends critically on the slowest disk drive (parity informa-
tion must be calculated from the data of all disks, and read or written for each
I/O operation to complete [15]). Note that display time of a block is in general
significantly longer than its transfer time from the disk drive assuming a com-
pressed video object. Thus the bandwidth of a disk drive can be multiplexed
among several displays referencing different objects (Figure 2.1).

A magnetic disk drive is a mechanical device. Multiplexing it among sev-
eral displays causes it to incur mechanical positioning delays. The source of
these delays is described in Section 2.3, which provides an overview of the in-
ternal operation of disk drives. Such overhead is wasteful and it reduces the
number of simultaneous displays supported by the system. Section 2.2 details
how advanced scheduling policies can minimize the impact of these wasteful
operations.

2.1.1 Target Environment

An illustration of our target hardware platform is provided in Figure 2.2. A
high performance system bus with nanosecond latency and transfer rates in
excess of 100 Mbytes per second, neglecting the arbitration overhead, is con-
sidered. It connects all the major components of the computer system; the
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Figure 2.2 : Storage Subsystem Architecture

memory, the CPU (central processing unit), and any attached devices, such as
display, network and storage subsystems. Within the storage subsystem each
individual device e.g., a disk or a tape, is attached to the I/O bus which in turn
is connected to the system bus through a host adapter. The host adapter trans-
lates the I/0 bus protocol into the system bus protocol and it may improve the
performance of the overall system by providing caching, and off-loading func-
tions from the main processor. The disk subsystem is central to this study and
is detailed in the next section.

2.1.2 Modern Disk Drives

Magnetic disk-drive technology has benefited from more than two decades of
research and development. It has evolved to provide storage with relatively
low latency (in the order of milliseconds) and a low cost per MByte of storage
(few cents per MByte). Magnetic disk drives are commonly used for a wide
variety of storage purposes in almost every computer system. To facilitate
their integration and compatibility with a wide range of host hardware and
operating systems, the interface that they present to the rest of the system is
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well defined and hides a lot of complexities of the actual internal operation.
For example, the popular SCSI (Small Computer System Interface) standard
presents a magnetic disk drive to the host system as a linear vector of stor-
age blocks (usually of size 512 bytes each). When an application requests the
retrieval of one or several blocks, the data will be returned after some time
but there is no explicit mechanism to inform the application exactly how long
such an operation will take. In many circumstances such a best effort approach
is reasonable because it simplifies program development by allowing the pro-
grammer to focus on the task at hand instead of the physical attributes of the
disk drive. However, for a number of data intensive applications, for exam-
ple continuous media servers, exact timing information is crucial to satisfy the
real-time constraints imposed by the requirement for a jitter-free delivery of
audio and video streams. Fortunately, with a model that imitates the inter-
nal operation of a magnetic disk drive, it is possible to predict service times at
the level of accuracy that is needed to design and configure CM server storage
systems.

2.1.3 Internal Operation

A magnetic disk drive is a mechanical device, operated by its controlling elec-
tronics. The mechanical parts of the device consist of a stack of platters that ro-
tate in unison on a central spindle. Presently, a single disk contains one, two or
as many as fourteen platters (see Figure 2.3). Each platter surface has an asso-
ciated disk head responsible for reading and writing data. The minimum stor-
age unit on a surface is a sector (which commonly holds 512 bytes of user data).
The sectors are arranged in multiple, concentric circles termed tracks. A single
stack of tracks across all the surfaces at a common distance from the spindle is
termed a cylinder. To access the data stored in a series of sectors, the disk head
must first be positioned over the correct track. The operation to reposition the
head from the current track to the target track is termed a seek. Next, the disk
must wait for the desired data to rotate under the head. This time is termed

the rotational latency. In their quest to improve performance, disk manufac-
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turers have introduced methods such as zone-bit recording, partial-response
maximum likelihood, and high spindle speeds. Some manufacturers also re-
designed disk internal algorithms to provide uninterrupted data transfer (e.g.
to avoid lengthy thermal recalibrations) specifically for CM applications. Many
of these technological improvements have been introduced gradually with new
disk generations entering the market place every year. To date, disk drives of
many different performance levels with capacities ranging from 1 up to 18 gi-
gabytes are commonly available. The next section details disk modeling tech-
niques to identify the physical characteristics of a magnetic disk in order to
estimate its service time.

Arm
Track

Platter Spindle or Py
“\ |
_//
= }
el
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Figure 2.3 : Disk Drive Internals

2.1.4 Disk Drive Modeling

Disk drive simulation models can be extremely helpful to investigate perfor-
mance enhancements or trade-offs in storage subsystems. Hence a number of
techniques to estimate disk service times have been proposed in the literature
[35, 4, 10]. These studies differ in the level of detail that they incorporate
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into their models. The level of detail should depend largely on the desired ac-
curacy of the results. More detailed models are generally more accurate,but
they require more implementation effort and more computational power. Sim-
ple models may assume a fixed time for I/O or they may select times from a
uniform distribution. However, to yield realistic results in simulations that
imitate real-time behavior more precise models are necessary. The most de-
tailed models include all the mechanical positioning delays (seeks, rotational

latency), as well as on-board disk block caching, I/O bus arbitration, controller
overhead and defect management.
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Chapter 3

Real-Time Model

The system model of a video server that we consider in a server-network-client
architecture is shown in Figure 3.1. The server consists of an array of D paral-
lel disks and a main memory of size M blocks to buffer the prefetched blocks. A
block is the unit of storage and access from the disks. Video streams are VBR
encoded and stored in CDL format so that blocks are of fixed size, and therefore
the number of frames per block is variable. Each video clip is assumed to be
striped across all the disks in a round-robin fashion, a common data placement
method used in video servers. (For other data-placement schemes based on
random assignment or partitioning of the disks into groups see [36, 30]). Our
framework places no restriction on the placement of the blocks; for specificity
and for empirical simulation we assumed round-robin striping at the granu-
larity of 64KB blocks. As the number of frames per block is different due to
VBR-CDL encoding, for a given playback rate (assumed to be 24 frames per
second) the playback times of blocks at a client are different. The clients are
assumed to have buffers to hold the current block being decoded and played
back, and to mask network delays.

To take into account the real-time dynamics in which the video server op-
erates, several delay components must be considered. By incorporating the
time spent on the different subsystems, the model forms a basis for real-time
scheduling of parallel I/O. Each block has associated with it a playback dead-
line which is the time at which the first frame in the block must be played back.
Based on the time required by the client for decompression and display prepro-
cessing, and for transmission delay in the network, this places a deadline by
which the block must be transmitted by the server into the network; in turn
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this places a deadline on the latest time an I/O for the block can be initiated
by the disk system. Due to the VBR encoding into fixed-size blocks the spacing
between playback deadlines of individual blocks is variable. The I/O times of
individual blocks are influenced by variable seek and rotational latencies and
the disk-head scheduling employed at individual disks, and are also variable.
The network delay for the transfer of each block and the processing delay for
decompression at the client may also vary significantly.

The temporal evolution of each block in our real-time framework is mod-
eled by a time line. The lifetime of a block is represented by its time line and
indicates the state of the block between the start of its I/O and the end of its
playback as shown in Figure 3.2 (a). The time line consists of six adjacent
time intervals, respectively: disk I/O, server-buffer residence, network trans-
mission, client-buffer residence, processing-decompression, and playback. The
playback deadline for each block, PB Start, is fixed and set by the frame rate
and encoding of the previous blocks. The decompression and playback interval
is also fixed and depends on the frame rate and encoding of that block. The
network transmission interval in general depends on network load and char-
acteristics; for our purpose it is assumed to be known for every client. That
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Figure 3.2 : Time line of a Block

is the network provides a guaranteed upper-bound on the latency of any block
delivered to a specific client. The I/O interval is determined by the disk-head
scheduling policy for that disk and the disk characteristics.

From the viewpoint of the server the model can be simplified by incorporat-
ing the network delay and client-side decompression and processing into the
playback interval, by shifting the PB Start time earlier by the sum of the times
of the two intervals. Figure 3.2 (b) shows the four states of a block with the
modified PB Start time. PB Start sets a deadline by which time the I/O for
that block should complete; that is IO End cannot be delayed past PB Start.
In turn, based on the disk I/O time for the block this sets a latest deadline for
IO Start, by which time the I/O of the block must begin. The I/O for a block
may begin (and end) earlier than its deadline at which time it is said to be
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prefetched. A prefetched block stays in the server buffer until it is transmit-
ted to the network, a variable-length interval depending on how early it was
prefetched. Similarly there is an interval, of possibly zero length, during which
the block resides in the client buffer while previous blocks are being played out.
To stress the server we assume minimal client features; a client only buffers
the frames of the current block, so all prefetching is buffered at the server
memory. Hence, the time line is further qualified to make the client-buffer res-
idence time zero. Figure 3.2 (c) shows the time line with only three distinct
states: disk I/0, Server Buffer Residence, and Playback.

The input to the scheduling algorithm RT-OPT is a string of blocks B;, each
with its associated disk access time L; (I0 End - IO Start), and deadline D;,
the latest time at which the block can complete its I/0. Note that D; is PB
Start for that block. A block for which 10 End is less than D; stays in the
server buffer till D; at which time it is transferred to the client. Each disk
is assumed to be serviced using some fixed disk-head scheduling policy (say
SCAN, EDF or SCAN-EDF [23] for instance) so that disk access times L; for
each block can be estimated a-priori. The scheduling algorithm RT-OPT then
determines the time at which each block should begin its /O (10 Start). If RT-
OPT fails to find a schedule in which all blocks meet their deadlines D;, then it
will be shown (in chapter 4) that no other algorithm using the same individual
disk-head scheduling can meet the deadlines. As an admission control method
the algorithm RT-OPT will determine whether a schedule exists in which each
block meets its deadline D;. If so, the new client is admitted, else it is refused.

To illustrate some of the issues involved we first consider a simple, intuitive
algorithm GREED-EDF to schedule the I/Os. This algorithm tries to maximize
disk concurrency by fetching a block from each disk (whenever possible) on an
I/O as done by algorithms based on disk striping. However, while disk strip-
ing fetches consecutive blocks from the same data stream from all disks in a
parallel /O, GREED-EDF gives priority to the block on a disk with the earliest
deadline. Thus a striped I/O in GREED-EDF consists of the earliest-required
block from each disk, and the entire stripe is read in parallel. If the available
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Algorithm GREED-EDF

At any time ¢
For each disk 7 in I(t) let B; denote the block from disk i with
the earliest deadline D;.
Initiate I/Os to fetch F(t) blocks
from {B,, B,, - - -} with the earliest deadlines.

Figure 3.3 : Algorithm GREED-EDF
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Figure 3.4 : Illustration of GREED-EDF and RT-OPT

buffer at any time is less than the number of disks so that an entire stripe
cannot be fetched, it fetches from the disks containing blocks with the earliest
deadlines. The blocks that cannot meet their deadline are dropped.

Figure 3.3 shows the pseudo-code of GREED-EDF. In the description, at any
time t, I(t) represents the set of idle disks, and F(t) = min{N(t), |I(¢)|}, where
N(t) is the number of free blocks in the server buffer.

Figure 3.4 illustrates the working of GREED-EDF. Let the I/O system con-
sist of 3 disks and buffer of capacity 2 blocks. Let 3 blocks be requested by a
client, one from each disk,: a;, b;, and ¢, with deadlines 1, 3 and 4 respectively.
Let the I/O time for blocks a; and b, be 1 each while that of ¢, be 4. Since the
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deadline of b, (3) is earlier than that of ¢, (4), GREED-EDF fetches blocks a,
and b, initially. Thus an I/O for ¢, cannot start before time 1, which causes it
to miss its deadline. On the other hand we could initiate an I/O for ¢, at time
0 and start fetching b; only at time 1 which can allow all deadlines to be met.
This schedule is constructed by RT-OPT.
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Chapter 4

Algorithm RT-OPT

Algorithm RT-OPT is used to schedule a set of blocks {B;,i = 1,---N}. Each
block B; has a disk access time L; and deadline for I/O completion D; associ-
ated with it. The disk access time are obtained by assuming a particular order
of accessing the blocks on a single disk. RT-OPT will schedule each disk in
accordance with that policy. As shown by the example of GREED-EDF in chap-
ter 4 it is non-trivial to decide when to initiate the I/Os on the different disks.
RT-OPT provides an optimal scheduling method: if it fails to find a schedule
whereby all blocks meet their deadlines then no such schedule exists with the
given buffer size and access ordering of individual disks.

RT-OPT operates as follows. Initially the server buffer residence times are
set to zero for all blocks. The blocks are first tentatively scheduled so that
each block’s IO End time coincides with its deadline. Figure 4.1 illustrates an
example of scheduling four blocks A, B, C and D using 2 disks and 2 clients.
Blocks A and B are consecutive blocks of a stream destined for client 1, and C
and D are consecutive blocks destined for client 2. Blocks A and C are on disk
1 and blocks B and D on disk 2. The deadlines for blocks A, B, C and D are 3,
5, 4 and 7 respectively. Note that consecutive blocks of a client have a small
overlap in playback durations due to network delay and client-side processing.
The disk access times for the blocks are as shown in the figure; blocks A, C
and D requires 2 time units, block B requires 4 units. The shared buffer size
is assumed to be of size 2 blocks. When an I/O is initiated for a block, space is
also reserved for it in the shared buffer.

Next RT-OPT iteratively runs through the set of blocks ordered in time in
order to resolve conflicts. The first type of conflict occurs due to overlapping
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Figure 4.1 : Initial step of Algorithm RT-OPT
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Figure 4.2 : RT-OPT following the removal of disk-access conflicts

disk access intervals on a single disk. Since only one I/O can be in progress
from a single disk at any time, the disk access interval of one of these blocks
must be moved earlier in time to remove the overlap. The chosen order of
access from the disk determines which will stay and which will be prefetched
by pushing it back. The pushing back of the disk access interval for a block,
creates a server-buffer residency for the block. The block is pushed back the
minimal amount, so that its I0 End coincides with the IO Start of the next
block to be fetched from that disk. In Figure 4.1, the disk accesses for blocks A
and C from disk 1 overlap between times 2 and 3. The IO Start time for block
A is pushed back so that its I0 End time coincides with the IO Start time of
block C. Since the blocks on disk 2, B and D, already have disjoint disk access
intervals, these are not changed. Figure 4.2 shows the modified schedule after
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Figure 4.3 : RT-OPT following the removal of buffer conflicts

the IO Start time of block A is pushed forward to 0. Between times 2 and 3, the
block remains in the server buffer.

Finally RT-OPT checks for buffer violations in the schedule. At any time the
total number of blocks being fetched or which are in the server-buffer-residence
state cannot exceed M, the size of the server buffer. The blocks are scanned
in increasing order of time, and blocks whose I/O initiation would violate the
buffer constraint are dropped. For instance in Figure 4.3, at time 2, I/Os for
blocks A and B are already in progress, and assuming M = 2, the I/O for block
C cannot be accommodated. The I/O for C cannot be deferred without violating
its deadline, and hence the block is dropped. The next I/O initiation for block
D at time 5 is permitted since there is buffer available.

The pseudo-code for algorithm RT-OPT is shown in Figure 4.4. In the de-
scription, StartPB(b) denotes the playback start time PB Start for block b; sim-
ilarly StartIO(b) and EndIO(b) denote IO Start and IO End times for block b.
As used previously, at any time ¢ let I(t) represent the set of idle disks, and
F(t) = min{N(t),|I(t)|}, where N(t) is the number of free blocks in the server
buffer.

RT-OPT's policy of fetching blocks as late as possible to meet the deadlines
minimizes the buffer occupancy of each block and consequently the probability
of buffer overflow for a given buffer size. We prove below that RT-OPT is opti-
mal in the sense that if it drops some blocks then every other algorithm must
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Algorithm RT-OPT

for d=1 to Number of disks /* Initialization */
for b = 1 to last block on disk d
StartIO(b) « StartPB(b) — IOTime(b); EndIO(b) «+ StartPB(b)
call PushDisk(d, b)
At any time ¢
For each disk 7 in I(t) let B; denote the block with
the earliest I/O start time such that ¢ + IOTime(B;) < StartPB(B;)
Initiate I/Os to fetch F'(¢) blocks from
{By, Bs, - - -} with earliest IO Start times.

Procedure PushDisk(disk d, block b)

if b # 1 and EndIO(b — 1) > StartlO(b) then
EndIO(b — 1) « StartIO(b)
StartIO(b — 1) « EndIO(b — 1) — IOTime(b — 1)
call PushDisk(d,b — 1)

Figure 4.4 : Algorithm RT-OPT

also drop at least one block for the same data placement, buffer size and single
disk-head scheduling policy. By minimizing the buffer occupancy of each block
and consequently the probability of buffer overflow, RT-OPT provides maximal
opportunity for other blocks to schedule their I/Os, increase I/O parallelism and
meet their deadlines.

Definition 1 The Block-Sequence of disk d is the ordered sequence of blocks
fetched from disk d. It is determined by the disk-head scheduling algorithm for
the disk.
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Theorem 1 Given the Block-Sequence for each disk, if in the schedule created
by RT-OPT any block misses its deadline then there is no schedule in which all
blocks meet their deadline.

Proof : If a block is dropped by RT-OPT then there must be some time ¢
and a block b such that StartIO(b) = t, after initialization, and the number of
blocks in the buffer at time ¢ is M. Consider the earliest such time ¢’ and the
corresponding block ¥'.

For the sake of contradiction, assume that there is a schedule S such that
no blocks are dropped. Let the set of blocks in the I/O buffer at time ¢’ be
B(t'). By Lemma 1 for each block b in B(t') schedule S fetches it earlier than
StartIO(b) < t'. Hence, considering schedule S, the number of blocks in the
buffer is at least |B(t')] = M. Hence block ¥ cannot be fetched at time t' =
StartIO(¥) in schedule S. This contradicts Lemma 1 as S claims to schedule all
requests without dropping any. a

Lemma 1 Given a disk sequence for a disk d, if after the initialization step in
RT-OPT StartlO(b) = t, then no other schedule with the same Block-Sequence

can fetch b later than time t and still service all requests.

Proof : Proof by induction on the requests in the disk sequence. Let there
be n requests in the disk sequence. Consider the last request, b,, in the disk
sequence. ¢t = StartIO(b,) = StartPB(b,) — IOTime(b,). Hence if in any schedule
b, is fetched after time t it will clearly miss its deadline. Let us assume that
the lemma holds for all requests b;, k < i < n.

Consider block  b_,. By construction, EndIO(b-,) =
min{StartIO(b;), StartPB(b;_;)}. Two cases are now possible
Case 1: EndIO(b;-;) = StartPB(bc-,). Similar to the base case, if in an
alternative schedule b;_, is fetched after time StartIO(b;_;), then it will miss
its deadline.
Case 2: EndIO(b;_;) = StartlO(b;). In this case if in some other schedule b;_,
is fetched after time StartIO(b;_,) then the I/O for block b, which is from the
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same disk, cannot start till after EndIO(b;-,). By the induction hypothesis,
this is not possible without violating the deadline of some other block. O
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Chapter 5

Simulations

For the performance evaluation of RT-OPT, a trace-driven simulator in C++
based on our real-time model was developed. We used public-domain video
traces described in [25]. These are obtained from real MPEG compressed video
clips and form a representative and a realistic set of MPEG compressed VBR
(variable bit rate) video data traces. These were preprocessed and stored on
the simulated disks using CDL format.

The frame rate for the traces is 24 frames per second and each trace con-
tains 40000 frames corresponding to 28 minutes of video. Using the data on
the coded frame sizes for each of the video sequences, we created constant data
length blocks of 64 Kbytes from 5 representative streams: Bond, Terminator,
Lambs, Dino and Starwars. The blocks were then striped across the disks in a
round-robin fashion.

To model the probabilistic access structure of clients we used the Zipf dis-
tribution [37], which assigns a discrete probability P, = ‘(T(_'_‘gy to the ith video
clip for any client’s access request; here © = 0.271 is the skewness factor that
reflects the popularity of a clip. Clients were assumed to access the chosen clip
from a randomly chosen starting frame; at the end of the stream, every client
views the same clip from the beginning till the end of the simulation which is
chosen to be the access of 50000 blocks. We assumed EDF scheduling at in-
dividual disks, and the I/O times were uniformly distributed between 16 and
44ms.

For different number of users, we varied the shared buffer size and the
number of disks and obtained the maximum number of users that could be sup-
ported without dropping any blocks. Both GREED-EDF and RT-OPT schedul-
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Figure 5.1 : Number of Users Serviced vs. Number of Disks

ing algorithms were simulated. The number of users supported was averaged
over several Monte Carlo trials, to smooth out the effects of randomization in
the choice of the frame in the formation of the reference string.

The scalability of the algorithms RT-OPT and GREED-EDF with number
of disks is illustrated by the graphs in Figure 5.1. The scalability of RT-OPT
in the number of disks is superior to that of GREED-EDF and very close to
linear at all buffer sizes M = 32, 64, 128 and 256. At M = 32, the scalability of
RT-OPT is saturated at higher number of disks and diverges from linearity due
to memory limitations; however it is almost linear in the number of disks with
higher buffer sizes of M = 64, 128 and 256, while the scalability of GREED-EDF
saturates very quickly. Furthermore, the difference in the number of clients
supported by RT-OPT and GREED-EDF is maximal when the buffer size is
small at M = 32 due to the optimal fetching policy of RT-OPT; however the
difference in the number of clients serviced between RT-OPT and GREED-EDF
decreases as the buffer size gets larger such as M = 64, 128 or 256. When the
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Figure 5.2 : Number of Clients Serviced at Zero Dropping Probability vs. Buffer
Size

buffer size is large and the number of disks is small in which case the fetching
policy is not a significant factor in determining the number of clients serviced,
the performance of RT-OPT and GREED-EDF are very close. Nonetheless, the
trend is evident that for larger parallel disk configurations, RT-OPT supports
a substantially larger number of clients with very modest buffer requirements.

Another important metric for the video server is the concurrent number of
clients it can service at a specific average block dropping probability. Figure 5.2
shows the the number of clients serviced at zero dropping probability versus
buffer size for the number of disks 8, 16, 32 and 64. RT-OPT does substantially
better with respect to GREED-EDF in terms of the number of clients serviced
at zero average block dropping probability for all number of disks and buffer
sizes. When the buffer size gets large for a given number of disks, the fetch-
ing policy is not as significant performance of both RT-OPT and GREED-EDF
converge.
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Figure 5.3 : Number of Users Serviced vs. Drop Probability

Finally in Figure 5.3 the two algorithms are compared by determining the
number of clients that can be supported with a given block dropping probabil-
ity. The maximum drop rate permitted was fixed at 2%, and M was fixed at
256. In all cases the superiority of RT-OPT over GREED-EDF is evident. As
expected the improvement is greatest with larger number of disks when the
need for efficient buffer management becomes more acute.
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Chapter 6

Conclusions

We introduced a framework for incorporating real-time constraints on block ac-
cesses in a parallel I/O system. The framework was used to design prefetching
and scheduling algorithms for real-time playback of multiple video streams in
a multiple-disk, parallel I/O based video server.

Our real-time model is based on a distributed server-network-client archi-
tecture that allows one to incorporate the real-time constraints imposed by the
delivery requirements of continuous video data to the clients over the networks,
and the resource constraints such as CPU/memory/network bandwidth. These
can be translated into constraints on the prefetching and I/O scheduling and
dealt with in an integrated manner.

We introduced a scheduling algorithm RT-OPT for optimally fetching blocks
into the server buffer. We showed that if the schedule created by RT-OPT fails
to meet the deadline of block, then no feasible schedule is possible for the same
buffer size, data placement and single-disk scheduling policy. Thus RT-OPT is
optimal in the sense that if it drops a block then every other algorithm drops
at least one block.

Using traces from MPEG compressed video clips we simulated RT-OPT and
empirically observed its performance. By dynamically multiplexing the buffer
among different clients and disks optimally, RT-OPT was shown to be highly
scalable with the number of disks with only modest buffer requirements. The
number of clients supported was shown to be uniformly superior to intuitive
but suboptimal algorithms like GREED-EDF that attempt to keep the disks
busy and fetch in order of deadlines.
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Appendix A

MPEG Overview

The Moving Pictures Experts Group (MPEG) committee was founded in late
1988. It is a joint committee of the International Standards Organization
(ISO) and International Electrotechnical Commission (IEC).MPEG standards
are generic and universal in the sense that they only specify a compressed bit-
stream syntax.MPEG has developed MPEG-1 and MPEG-2 standards [12, 13].
MPEG-1 is used to represent the progressive (non-interlaced) signals. MPEG-2
is designed to represent the progressive signals and the interlaced (broadcast
signals). While MPEG-1 can only directly represent two channels of sound,
MPEG-2 is designed to provide the extension to 3/2 multichannel audio (3
front/2 surround loudspeakers channels) and an optimal low frequency en-
hancement channel [16]. MPEG specifications consists of three main parts,
systems, audio, and video [17].

A.0.5 Systems

The systems part of the MPEG specifications resolves the problem of multi-
plexing the video and audio streams into a single system stream [17]. This
is achieved by providing a syntax for transporting packets of video and audio
bit-streams over digital channels and storage mediums and by providing a syn-
tax for synchronizing video and audio streams. The synchronization of video
and audio is achieved by timing information which is important to synchronize
the playback of the stream by the decoder without any overflow or underflow
of the decoder buffers. The synchronization is done in the MPEG standard
through two parameters: the System Clock Reference (SCR) and the Presenta-
tion Timestamp (PTS). An SCR is a snapshot of the encoder system clock. The
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Figure A.1: Flow of the MPEG System Stream

time snapshot is put into the system layer of the bit-stream which is used by
the decoder to update its system clock counter.

A PTS is a snapshot of the encoder system clock that is associated with
audio and video presentation units. A presentation unit refers to a decoded
video picture or a decoded audio time sequence. The PTS is used to denote the
time at which the video picture is to be displayed or the beginning playback
time for the audio time sequence. Figure A.1 depicts the flow of the MPEG
system stream.

Audio

The audio part explains the syntax and semantics for three coding schemes,
termed Layer 1, Layer 2, and Layer 3 coding [16, 27]. The MPEG standard
defines an MPEG audio stream as series of packets. Each audio packet con-
sists of an audio packet header and one or more audio frames. These frames
are coded based on one of the tree layers. Each layer is more complex than
the previous and provides better compression. These layers are based in part

on subband coding and quantization and are upward compatible. Layer 1 is
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applied in Sony MiniDisc and Philips Digital Compact Cassette (DCC). Layer
2 is used in satellite broadcasting and compact disc video. Layer 3 is applied in
ISDN, satellite, and Internet audio applications.

Video

In this part, the syntax and semantics of the video streams are defined. The
MPEG standard defines a video stream, like an MPEG audio stream, as a se-
ries of packets. Each video packet consists of a video packet header and one or
more video frames. Video hierarchical structure and video compression algo-
rithm are described next.

A.0.6 Video Hierarchical Structure

An MPEG standard defines the video as a series of nested layers, which include
video sequence, group of pictures (GOP), picture, slice, macroblock, and block.
Figure A.2 shows this hierarchy.
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Video Sequence

A video sequence starts with a sequence header, may contain additional se-
quence headers, and includes one or more group of pictures. The sequence
ends with an end of sequence code, and the sequence may contain information
about quantization tables which are needed to decode all the following group
of pictures

Group of Pictures(GOP)

A group of pictures consists of header and a series of one or more pictures and
is intended to allow random access into the video sequence. Group of pictures
size refers to the total number of pictures that are contained in a GOP. A GOP
is considered an independently decodable sequence of frames if the frames are
closed, the B frames start and end with either an I or P frame. For example,
a GOP with the pattern IBBPBBP is closed, but with the pattern IBBPBB
is not. An MPEG video stream consists of one or more GOPs. GOPs within
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a video stream do not have to follow a fixed pattern. Each frame can be of
any type as will be explained next. However, a static pattern is often used
throughout the entire video stream for simplicity. The most commonly used
patterns of GOPs are shown in Figure A.3 and are of GOP size of 12 and 15.
Figure A.4 depicts the order of the display and the storage order. In the storage
order, frames within a GOP are rearranged in a way that an MPEG decoder
can decompress them with minimum frame buffering and minimum processing
overheads during the display. The choice of a GOP pattern is provided by the
encoder and is based on the applications need for random accessibility and
location of scene cuts in the video stream. The choice is also based on factors
such as the amount of memory needed in the encoder and the characteristics
of the movie being encoded.

Picture(Frame)

A picture is considered the basic unit of display and corresponds to a single
frame in a video sequence. It is divided into 16x16 macroblocks. There are
three types of pictures, termed intra-pictures, predicted pictures, and bidirec-
tional pictures. Each GOP must start with an intra-picture. Intra-pictures
usually have up to 3 times as many bits as predicted pictures. Predicted pic-
tures have about 5 times as many bits as bidirectional pictures. Within a GOP,
similar picture types may not have same sizes. Even though GOPs have the

same number of frames, they may not have exact number of bits.
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Intra-Pictures

Intra-pictures, called I-pictures or I-frames, are encoded utilizing only the in-
formation existing within the picture itself. Thus, I-pictures can be displayed
by itself. The main purpose of I-pictures is to provide random access points into
the compressed video stream. I-pictures provide moderate compression since
they are encoded independently of other pictures.

Predicted-Pictures

Predicted pictures, called P-pictures or P-frames, are encoded with respect to
the nearest previous I-picture or P-picture. This process is known as forward
prediction and is shown in Figure. I-pictures and P-pictures are called ref-
erence pictures since they can be referenced by predicted pictures and bidi-
rectional pictures. A P-picture cannot be displayed without the existence of
the previous reference frame. P-pictures provide better compression than I-

pictures, but can propagate coding errors since they are predicted from previ-
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ously referenced picture.

Bidirectional-Pictures

Bidirectional pictures, called B-pictures or B-frames, are encoded with respect
to both the previous and the following I-picture and P-picture. This process is
called bidirectional prediction and is shown in Figure A.6. To be able to de-
code a B-picture, the previous and the following reference frames are required.
B-pictures provide the most compression, when compared to I-pictures and P-
pictures. Unlike P-pictures, B-pictures do not propagate errors since they are
not referenced. B-pictures also minimize the effect of noise by taking the aver-
age of the two referenced pictures.

Slice

A slice consists of one or more contiguous macroblocks and can be as big as
an entire picture. Each slice is considered as an independently decodable unit.
The macroblocks inside a slice are ordered from left to right and top to bottom.
Slices are increased for noisy transmission so that errors are more recoverable;
however, increasing the number of slices might slightly worsen the compres-

sion.
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Figure A.7 : Chrominance Format for Macroblocks

Macroblock

A macroblock consists of 16x16 pixels in a picture. It contains a luminance (Y)
component, a red chrominance (Cr) component and a blue chrominance (Cb)
component. There are three chrominance formats for a macroblock, namely
the 4:2:0,4:2:2,4:4:4 formats as shown in Figure A.7. The numbers represent
the order of the blocks in a video stream.

Block

A block is an 8x8 pixel matrix in a picture and is the basic coding unit in
the MPEG standard. It can be either luminance, red chrominance, or blue
chrominance.

A.0.7 Video Compression Algorithm

The MPEG video compression algorithm provides a high-degree of compression
by exploiting the large temporal and spatial redundancies which exist within
an image. Figure A.8 depicts the major steps of transform coding and motion
compensation involved in the MPEG video compression algorithm.
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Transform Coding

Transform coding consists of three main steps: discrete cosine transform
(DCT), quantization, and run-length encoding. Blocks are the units of trans-
form coding. All I-pictures blocks and error blocks which come from the motion
compensation step are fed into the transform coding as shown in Figure A.8.
The blocks are first transformed from a spatial domain into a frequency do-
main using DCT. The coefficient in the upper left corner of a block, called the
direct current (DC) coefficient, which captures the average brightness of the
block , is encoded relative to the DC coefficients of the previous block. Differ-
ential coding is used to encode the DC coefficients of successive blocks. The
remaining 63 coefficients in the block, called alternating current (AC),which
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capture the detail within the block, are quantized to eliminate high frequency
coefficients. They are then scanned in a zig-zag manner to produce long-runs
of zeros. Finally, they are run-length and entropy coded.

Motion Compensation

Motion compensation is a technique for improving video compression of P-
pictures and B-pictures by removing temporal redundancy. Macroblocks are
the units for motion compensation. Each macroblock of P-pictures and B-
pictures is temporally interpolated from the corresponding reference pictures.
An error macroblock, which contains only the difference between the match-
ing macroblock and the macroblock to be encoded, is produced. The motion
compensation process computes up to two motion vectors for each macroblock,
which indicate the positions of the encoded macroblcok in the matching refer-
ence picture. Each error macroblock is partitioned into six blocks, four lumi-
nance and two chrominance, and passed to the transform coding step. How-
ever, motion vectors are encoded using differential and entropy coding. If a
macroblock in P-pictures or B-pictures cannot be efficiently encoded by motion
compensation, the macroblock is encoded in the same way as a macroblock in

an I-picture, using transform coding.



