

GELİŞMİŞ MODEL KULLANILAN FV DİZİLERDE META SEZGİSEL ALGORİTMALAR İLE KISMİ GÖLGELENME KOŞULLARINDA MGNT OPTİMİZASYONUNUN GERÇEKLEŞTİRİLMESİ

Kezban KOÇ

YÜKSEK LİSANS TEZİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ANA BİLİM DALI

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

HAZİRAN 2022

ETİK BEYAN

Gazi Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

Kezban KOÇ 23/06/2022

GELİŞMİŞ MODEL KULLANILAN FV DİZİLERDE META SEZGİSEL ALGORİTMALAR İLE KISMİ GÖLGELENME KOŞULLARINDA MGNT OPTİMİZASYONUNUN GERÇEKLEŞTİRİLMESİ (Yüksek Lisans Tezi)

Kezban KOÇ

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Haziran 2022

ÖZET

Fotovoltaik (FV) sistemler, güneş enerjisinden elektrik enerjisi üretmek için kullanılmaktadır. FV dizilerin dönüşüm verimleri düşüktür. Dolayısıyla bu dizilerin veriminin arttırılması için çeşitli çalışmalar yapılmaktadır. FV sistemin tasarım ve uzun dönem çalıştırılmasına yönelik hesaplanmasını yapabilmek için öncelikle bu sistemlerin modellenmesi gerekir. FV modül ve hücrelerin detaylı olarak modellenmesi ve parametrelerinin doğru olarak tahmin edilmesi önemli bir konudur. FV sistemlerinin verimini arttırmak için kullanılan en yaygın yöntem, tahmin edilen parametreler yardımıyla oluşturulan sistemin en yüksek verimde çalıştığı noktayı belirleyip daha sonra sistemi sürekli bu noktada çalışmasını sağlamaktır. Bu yöntem, maksimum güç noktası takibi (MGNT) olarak isimlendirilir. Bu tez çalışmasında, gelişmiş model kullanılan FV dizinlerde meta sezgisel algoritmalar ile kısmi gölgelenme koşullarında MGNT optimizasyonu gerçekleştirilmiştir. Bunun için bir FV sistem, MATLAB/Simulink yazılımında detaylı olarak modellenmiştir. Tez çalışması FV parametre çıkarımı ve MGNT olmak üzere iki aşamadan oluşmaktadır. Birinci aşamada, altı meta sezgisel algoritma seçilmiş ve bu algoritmalar ile FV parametre çıkarımı yapılmıştır. FV dizilerin parametreleri, yapay ekosistem tabanlı optimizasyon algoritması (YEO), gri kurt optimizasyon algoritması (GKO), Runge Kutta optimizasyon algoritması (RUN), vektörlerin ağırlıklı ortalama optimizasyon algoritması (INFO), yapay sinek kuşu algoritması (YSKA) ve sürüngen arama algoritmasıyla (SAA) belirlenmiştir. İkinci aşamada ise dinamik ve dinamik olmayan gölgelenme senaryoları planlanmış ve seçilen dört meta sezgisel algoritma ile FV sistemlerde gölgelenme etkisi incelenmiştir. Parçacık sürü optimizasyon algoritması (PSO), GKO, INFO ve YSKA, gölgelenme koşulları altında sistemin maksimum verimde çalışabilmesi için kullanılmıştır. FV parametre çıkarımı ve MGNT'nin sonuçları, hem değerlendirme metrikleri hem de Friedman istatiksel test ile yorumlanmıştır. Sonuç olarak, FV parametre çıkarımı ve MGNT optimizasyonları başarıyla gerçekleştirilmiş olup FV parametre çıkarımında INFO algoritması ile ve MGNT' de ise YSKA algoritması ile en başarılı sonuçlar elde edilmiştir.

Bilim Kodu	:	90504
Anahtar Kelimeler	:	MGNT, kısmi gölgelenme, parametre çıkarımı, YEO, GKO, RUN, INFO, YSKA, SAA, PSO, Friedman test
Sayfa Adedi	:	181
Danışman	:	Doç. Dr. Mehmet DEMİRTAŞ

IMPLEMENTATION OF MPPT OPTIMIZATION IN PARTIAL SHADING CONDITIONS WITH METAHEURISTIC ALGORITHMS IN PV ARRAYS USING ADVANCED MODEL (M. Sc. Thesis)

(IVI. SC. THESIS)

Kezban KOÇ

GAZİ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

June 2022

ABSTRACT

Photovoltaic (PV) systems are used to produce electrical energy from solar energy. The conversion efficiency of PV arrays is low. Therefore, various studies are carried out to increase the efficiency of these arrays. In order to calculate the design and long-term operation of the PV system, these systems must first be modeled. Detailed modeling of PV modules and cells and accurate estimation of their parameters is an important issue. The most common method used to increase the efficiency of PV systems is to determine the point at which the system created with the help of the estimated parameters operates at the highest efficiency and then to ensure that the system operates at this point continuously. This method is called maximum power point tracking (MPPT). In this thesis, MPPT optimization was carried out in partial shadowing conditions with metaheuristic algorithms in PV arrays using advanced model. For this, a PV system is modeled in detail in MATLAB/Simulink software. The thesis study consists of two stages, PV parameter extraction and MPPT. In the first stage, six metaheuristic algorithms were selected and PV parameter extraction was performed with these algorithms. Parameters of PV arrays were determined by artificial ecosystem-based optimization algorithm (AEO), gray wolf optimization algorithm (GWO), Runge Kutta optimization algorithm (RUN), weighted mean of vector (INFO), artificial hummingbird algorithm (AHA) and reptile search algorithm (RSA) was determined. In the second stage, dynamic and non-dynamic shading scenarios were planned and the shading effect in PV systems was examined with four selected metaheuristic algorithms. Particle swarm optimization algorithm (PSO), GWO, INFO and AHA have been used to ensure that the system can operate at maximum efficiency under shading conditions. The results of PV parameter extraction and MPPT were interpreted with both evaluation metrics and Friedman statistical test. As a result, PV parameter extraction and MPPT optimizations were performed successfully, and the most successful results were obtained with INFO algorithm in PV parameter extraction and AHA algorithm in MPPT.

Science Code	: 90544
Key Words	: MPPT, partial shading, parameter extraction, AEO, GWO, RUN, INFO, AHA, RSA, PSO, Friedman test
Page Number	: 181
Supervisor	: Assoc. Prof. Dr. Mehmet DEMİRTAŞ

TEŞEKKÜR

Tez çalışmam sürecinde bilgi ve tecrübesini benden esirgemeyen, yaşadığım zorluklara karşı bir çıkar yol sunan, maddi ve manevi tüm konularda desteğini hissettiğim tez danışmanım sayın Doç. Dr. Mehmet DEMİRTAŞ' a, yenilikçi fikirleriyle bana yol gösteren, takıldığım kısımlarda çözüm önerisi sunan ve inancımı kaybettiğim zamanlarda beni destekleyen sayın Arş. Gör. Dr. İpek ÇETİNBAŞ' a, bu zorlu süreçte her zaman yanımda hissettiğim, tüm nazımı, stresimi çeken çok sevgili arkadaşlarım Esra DEMİR AYDIN, Hüseyin Celal AYDIN, Fatih KOÇAK ve kardeşim Umut Arif KOÇ' a, bu çalışmayı tamamlayabilmem için elinden gelenin fazlasını yapan, bana sonsuz sabır gösteren, yan yana çalışmaktan mutluluk duyduğum hem meslektaşım hem de çok yakın arkadaşım Arş. Gör. Aynur KOÇAK' a, teşekkürü bir borç bilirim. Tezimin her aşamasında benden sevgilerini, desteklerini esirgemeyen, tüm kararlarımda yanımda olan değerli aileme sonsuz şükranlarımı sunarım. Tüm hayatım boyunca hüznümü, sevincimi paylaştığım, bana inançlarını asla kaybetmeyen sevgili babam Cavit KOÇ ve sevgili annem Nejla KOÇ' a tezimi armağan ediyorum.

İÇİNDEKİLER

ÖZET	iv
ABSTRACT	v
TEŞEKKÜR	vi
İÇİNDEKİLER	vii
ÇİZELGELERİN LİSTESİ	X
ŞEKİLLERİN LİSTESİ	xvi
SİMGELER VE KISALTMALAR	1
1. GİRİŞ	1
2. FOTOVOLTAİK SİSTEMLER	9
2.1. FV Hücrelerin Elektriksel Modeli	9
2.2.1. Tek diyotlu FV hücre modeli	9
2.2.2. Çift diyotlu FV hücre modeli	10
2.2.3. FV modül modeli	11
2.2. FV Hücrelerin Akım, Gerilim ve Güç Karakteristikleri	13
2.2.1. Işınım ve sıcaklığın FV hücresine etkisi	13
2.3. Maksimum Güç Noktası ve Gölgelenme	15
2.3.1. Gölgelenme	15
3. FV PARAMETRE ÇIKARIMI	17
3.1. Yapay Ekosistem Tabanlı Optimizasyon Algoritması	17
3.1.1. Üretim operatörü	18
3.1.2. Tüketim operatörü	18
3.1.3. Ayrıştırma operatörü	20
3.2. Gri Kurt Optimizasyon Algoritması	22

3.2.1. GKO'nun sosyal hiyerarşisi	22
3.2.2. Avın çerçevelenmesi	22
3.2.3. Avlanma	23
3.2.4. Ava saldırı	23
3.2.5. Av arayışı	24
3.3. Runge Kutta Optimizasyon Algoritması	26
3.3.1. Başlangıç adımları	26
3.3.2. Arama mekanizmasını kökü	26
3.3.3. Çözümlerin güncellenmesi	29
3.3.4. Gelişmiş çözüm kalitesi	30
3.4. Vektörlerin Ağırlıklı Ortalamasına Dayalı Optimizasyon Algoritması	32
3.4.1. Başlangıç aşaması	33
3.4.2. Güncelleme kuralı	33
3.4.3. Vektörlerin birleşimi	36
3.4.4. Yerel arama	36
3.5. Yapay Sinek Kuşu Algoritması	38
3.5.1. Başlangıç aşaması	38
3.5.2. Yönlendirilmiş yiyecek arama	39
3.5.3. Bölgesel yiyecek arama	40
3.5.4. Yiyecek aramada göç	41
3.6. Sürüngen Arama Algoritması	43
3.6.1. Başlangıç fazı	43
3.6.2. Kuşatma fazı	43
3.6.3. Avlanma fazı	45

ix

4.	MAKSİMUM GÜÇ NOKTASI TAKİBİ YÖNTEMLERİ	47
	4.1. Parçacık Sürü Optimizasyon Algoritması	47
	4.2. Gri Kurt Optimizasyon Algoritması	49
	4.3. Vektörlerin Ağırlıklı Ortalamasına Dayalı Optimizasyon Algoritması	50
	4.4. Yapay Sinek Kuşu Algoritması	51
5.	SİSTEMİN MODELLENMESİ	53
	5.1. Tek Diyotlu Eşdeğer Devrenin Modellenmesi	53
	5.1.1. Foton akımının modellenmesi	53
	5.1.2. Diyot akımının modellenmesi	54
	5.2. Çift Diyotlu Eşdeğer Devrenin Modellenmesi	56
	5.2.1. Diyot akımlarının modellenmesi	56
	5.3. Yükseltici DA-DA Dönüştürücünün Tasarımı ve Modellenmesi	56
6.	BENZETİM ÇALIŞMALARI	59
	6.1. FV Parametre Çıkarımı Optimizasyonu	59
	6.1.1. Parametre çıkarımı optimizasyonu sonuçları	61
	6.1.2. Değerlendirme metriklerine göre FV parametre çıkarımı optimizasyonu sonuçları	67
	6.1.3. Friedman testine göre FV parametre çıkarımı optimizasyonunun değerlendirilmesi	74
	6.2. MGNT Optimizasyonu	77
	6.2.1. MGNT optimizasyonunun sonuçları	81
	6.2.2. Temel sistem sonuçları	81
	6.2.3. Temel sistemin değerlendirme metriklerine göre MGNT optimizasyonu sonuçları	87
	6.2.4. Temel sistemin Friedman testine göre MGNT optimizasyonunun değerlendirilmesi	91

6.2.5. Dinamik olmayan gölgelenme sonuçları	93
6.2.6. DOG senaryoları için değerlendirme metriklerine göre MGNT optimizasyonu sonuçları	112
6.2.7. DOG senaryoları için Friedman testine göre MGNT optimizasyonunun değerlendirilmesi	122
6.2.8. Dinamik gölgelenme sonuçları	127
6.2.9. DG için değerlendirme metriklerine göre MGNT optimizasyonu sonuçları	148
6.2.10. DG senaryoları için Friedman testine göre MGNT optimizasyonu sonuçları	163
7. SONUÇ VE ÖNERİLER	173
KAYNAKLAR	175
ÖZGEÇMİŞ	181

ÇİZELGELERİN LİSTESİ

Çizelge	Sayfa
Çizelge 1.1. Araştırmada kullanılan oturakların özellikleri	3
Çizelge 6.1. Seçilen ticari FV modüllerin model, marka ve tip bilgileri	59
Çizelge 6.2. FV parametre çıkarımı için algoritmaların kontrol parametreleri	60
Çizelge 6.3. Karar değişkenlerin alt limitleri	60
Çizelge 6.4. Karar değişkenlerin üst limitleri	61
Çizelge 6.5. TDM-M1 modülünün parametre çıkarımı sonuçları	62
Çizelge 6.6. ÇDM-M1 modülünün parametre çıkarımı sonuçları	63
Çizelge 6.7. TDM-M2 modülünün parametre çıkarımı sonuçları	64
Çizelge 6.8. ÇDM-M2 modülünün parametre çıkarımı sonuçları	65
Çizelge 6.9. TDM-M3 modülünün parametre çıkarımı sonuçları	66
Çizelge 6.10. ÇDM-M3 modülünün parametre çıkarımı sonuçları	67
Çizelge 6.11. Algoritmaların TDM modellerine göre RMSE değerlendirme metriği sonuçları	69
Çizelge 6.12. Algoritmaların ÇDM modellerine göre RMSE değerlendirme metriği sonuçları	70
Çizelge 6.13. Algoritmaların RMSE değerlendirme metriğine göre toplam sıralama sonuçları	71
Çizelge 6.14. Algoritmaların TDM modellerine göre hesaplama zamanı değerlendirme metriği sonuçları	72
Çizelge 6.15. Algoritmaların ÇDM modellerine göre hesaplama zamanı değerlendirme metriği sonuçları	73
Çizelge 6.16. Algoritmaların hesaplama zamanı değerlendirme metriğine göre toplam sıralama sonuçları	74
Çizelge 6.17. Algoritmaların TDM modellerinin Friedman test sonuçları	75
Çizelge 6.18. Algoritmaların ÇDM modellerinin Friedman test sonuçları	76
Çizelge 6.19. Algoritmaların Friedman testine göre sıralama sonuçları	77

Çizelge

Çizelge 6.20. Modüllerin STK altındaki parametre değerleri	78
Çizelge 6.21. Yükseltici DA-DA dönüştürücü parametreleri	79
Çizelge 6.22. MGNT için algoritmaların kontrol parametreleri	79
Çizelge 6.23. Temel sistem için algoritmaların modellere göre MGNT sonuçları	82
Çizelge 6.24. Basit sistem için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	88
Çizelge 6.25. Basit sistem için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları	89
Çizelge 6.26. Basit sistem için algoritmaların modellere göre MGN izleme zamanı değerlendirme metrikleri sonuçları	90
Çizelge 6.26. Basit sistem için algoritmaların MGN izleme zamanı değerlendirme metriğine göre toplam sıralama sonuçları	91
Çizelge 6.28. Basit sistem için algoritmaların Friedman test sonuçları	92
Çizelge 6.29. Algoritmaların basit modelde Friedman testine göre sıralama sonuçları	93
Çizelge 6.30. Dinamik olmayan gölgelenme senaryoları	93
Çizelge 6.31. DOG-S1 için algoritmaların modellere göre MGNT sonuçları	99
Çizelge 6.32. DOG-S2 için algoritmaların modellere göre MGNT sonuçları	105
Çizelge 6.33. DOG-S3 için algoritmaların modellere göre MGNT sonuçları	111
Çizelge 6.34. DOG-S1 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	113
Çizelge 6.35. DOG-S2 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	114
Çizelge 6.36. DOG-S3 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	115
Çizelge 6.37. DOG-S1 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları	116
Çizelge 6.38. DOG-S2 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları	116

xiii

Çizelge	S	Sayfa
Çizelge 6.39.	DOG-S3 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları	116
Çizelge 6.40.	DOG-S1 için algoritmaların modellere göre MGN izleme zamanının değerlendirme metriği sonuçları	118
Çizelge 6.41.	DOG-S2 için algoritmaların modellere göre MGN izleme zamanının değerlendirme metriği sonuçları	119
Çizelge 6.42.	DOG-S3 için algoritmaların modellere göre MGN izleme zamanının değerlendirme metriği sonuçları	120
Çizelge 6.43.	DOG-S1 için algoritmaların MGN izleme zamanının değerlendirme metriğine göre toplam sıralama sonuçları	121
Çizelge 6.44.	DOG-S2 için algoritmaların MGN izleme zamanının değerlendirme metriğine göre toplam sıralama sonuçları	121
Çizelge 6.45.	DOG-S3 için algoritmaların MGN izleme zamanının değerlendirme metriğine göre toplam sıralama sonuçları	121
Çizelge 6.46.	DOG-S1 için algoritmaların Friedman test sonuçları	123
Çizelge 6.47.	DOG-S2 için algoritmaların Friedman test sonuçları	124
Çizelge 6.48.	DOG-S3 için algoritmaların Friedman test sonuçları	125
Çizelge 6.49.	Algoritmaların DOG-S1 modelde Friedman testine göre sıralama sonuçları	126
Çizelge 6.50.	Algoritmaların DOG-S2 modelde Friedman testine göre sıralama sonuçları	126
Çizelge 6.51.	Algoritmaların DOG-S3 modelde Friedman testine göre sıralama sonuçları	127
Çizelge 6.52.	Dinamik gölgelenme senaryoları	128
Çizelge 6.53.	DG-S1-TDM-M1 için algoritmaların modellere göre MGNT sonuçları	133
Çizelge 6.54.	DG-S1-ÇDM-M1 için algoritmaların modellere göre MGNT sonuçları	134
Çizelge 6.55.	DG-S1-TDM-M2 için algoritmaların modellere göre MGNT sonuçları	135

Cizelge

Çizelge	S	Sayfa
Çizelge 6.56.	DG-S1-ÇDM-M2 için algoritmaların modellere göre MGNT sonuçları	136
Çizelge 6.57.	DG-S1-TDM-M3 için algoritmaların modellere göre MGNT sonuçları	137
Çizelge 6.58.	DG-S1-ÇDM-M3 için algoritmaların modellere göre MGNT sonuçları	138
Çizelge 6.59.	DG-S2-TDM-M1 için algoritmaların modellere göre MGNT sonuçları	143
Çizelge 6.60.	DG-S2-ÇDM-M1 için algoritmaların modellere göre MGNT sonuçları	144
Çizelge 6.61.	DG-S2-TDM-M2 için algoritmaların modellere göre MGNT sonuçları	145
Çizelge 6.62.	DG-S2-ÇDM-M2 için algoritmaların modellere göre MGNT sonuçları	146
Çizelge 6.63.	DG-S2-TDM-M3 için algoritmaların modellere göre MGNT sonuçları	147
Çizelge 6.64.	DG-S2-ÇDM-M3 için algoritmaların modellere göre MGNT sonuçları	148
Çizelge 6.65.	DG-S1-M1 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	150
Çizelge 6.66.	DG-S1-M2 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	151
Çizelge 6.67.	DG-S1-M3 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	152
Çizelge 6.68.	DG-S2-M1 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	153
Çizelge 6.69.	DG-S2-M2 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	154
Çizelge 6.70.	DG-S2-M3 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları	155
Çizelge 6.71.	DG-S1 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları	156

Çizelge

Çizelge 6.72.	DG-S2 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları	156
Çizelge 6.73.	DG-S1-M1 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları	157
Çizelge 6.74.	DG-S1-M2 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları	158
Çizelge 6.75.	DG-S1-M3 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları	159
Çizelge 6.76.	DG-S2-M1 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları	160
Çizelge 6.77.	DG-S2-M2 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları	161
Çizelge 6.78.	DG-S2-M3 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları	162
Çizelge 6.79.	DG-S1 için algoritmaların MGN izleme zamanı değerlendirme metriğine göre toplam sıralama sonuçları	163
Çizelge 6.80.	DG-S2 için algoritmaların MGN izleme zamanı değerlendirme metriğine göre toplam sıralama sonuçları	163
Çizelge 6.81.	DG-S1-M1 için algoritmaların Friedman test sonuçları	164
Çizelge 6.82.	DG-S1-M2 için algoritmaların Friedman test sonuçları	165
Çizelge 6.83.	DG-S1-M3 için algoritmaların Friedman test sonuçları	166
Çizelge 6.84.	DG-S2-M1 için algoritmaların Friedman test sonuçları	167
Çizelge 6.85.	DG-S2-M2 için algoritmaların Friedman test sonuçları	168
Çizelge 6.86.	DG-S2-M3 için algoritmaların Friedman test sonuçları	169
Çizelge 6.87.	Algoritmaların DG-S1 modelde Friedman testine göre sıralama sonuçları	170
Çizelge 6.88.	Algoritmaların DG-S2 modelde Friedman testine göre sıralama sonuçları	171

ŞEKİLLERİN LİSTESİ

Şekil	ayfa
Şekil 2.1. Tek diyotlu FV hücresinin elektriksel eşdeğer modeli	10
Şekil 2.2. İki diyotlu FV hücresinin elektriksel eşdeğer modeli	11
Şekil 2.3. Tek diyot tabanlı FV modülün elektriksel eşdeğer modeli	12
Şekil 2.4. Çift diyot tabanlı FV modülün elektriksel eşdeğer modeli	12
Şekil 2.5. Bir FV hücresinin I-V ve P-V grafikleri	13
Şekil 2.6. Değişen ışınımda FV modülün I-V ve P-V karakteristiği	14
Şekil 2.7. Değişen sıcaklıkta FV modülün I-V ve P-V karakteristiği	14
Şekil 2.8. Kısmi gölgelenme koşullarında FV dizinin I-V ve P-V grafikleri	16
Şekil 3.1. Parametre çıkarımı probleminin çözümü için kullanılan YEO algoritmasının akış diyagramı	21
Şekil 3.2. Parametre çıkarımı probleminin çözümü için kullanılan GKO algoritmasının akış diyagramı	25
Şekil 3.3. Parametre çıkarımı probleminin çözümü için kullanılan RUN algoritmasının akış diyagramı	32
Şekil 3.4. Parametre çıkarımı probleminin çözümü için kullanılan INFO algoritmasının akış diyagramı	37
Şekil 3.5. Parametre çıkarımı probleminin çözümü için kullanılan YSKA algoritmasının akış diyagramı	42
Şekil 3.6. Parametre çıkarımı probleminin çözümü için kullanılan SAA algoritmasının akış diyagramı	46
Şekil 4.1. MGNT için PSO algoritmasının akış diyagramı	48
Şekil 4.2. MGNT için GKO algoritmasının akış diyagramı	49
Şekil 4.3. MGNT için INFO algoritmasının akış diyagramı	50
Şekil 4.4. MGNT için YSKA algoritmasının akış diyagramı	51
Şekil 5.1. Foton akımının MATLAB/Simulink modeli	53
Şekil 5.2. Tek diyotlu eşdeğer devrenin MATLAB/Simulink modeli	54

Şekil	ayfa
Şekil 5.3. Diyot akımının MATLAB/Simulink ortamındaki modeli	55
Şekil 5.4. Çift diyotlu eşdeğer devrenin MATLAB/Simulink modeli	56
Şekil 6.1. TDM-M1 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri	62
Şekil 6.2. ÇDM-M1 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri	63
Şekil 6.3. TDM-M2 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri	64
Şekil 6.4. ÇDM-M2 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri	65
Şekil 6.5. TDM-M3 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri	66
Şekil 6.6. ÇDM-M3 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri	67
Şekil 6.7. FV sistem	80
Şekil 6.8. TDM-M1 modelinin güç-zaman grafiği	83
Şekil 6.9. ÇDM-M1 modelinin güç-zaman grafiği	84
Şekil 6.10. TDM-M2 modelinin güç-zaman grafiği	84
Şekil 6.11. ÇDM-M2 modelinin güç-zaman grafiği	85
Şekil 6.12. TDM-M3 modelinin güç-zaman grafiği	86
Şekil 6.13. ÇDM-M3 modelinin güç-zaman grafiği	86
Şekil 6.14. DOG-S1 için TDM-M1 modelinin güç-zaman grafiği	94
Şekil 6.15. DOG-S1 için ÇDM-M1 modelinin güç-zaman grafiği	95
Şekil 6.16. DOG-S1 için TDM-M2 modelinin güç-zaman grafiği	96
Şekil 6.17. DOG-S1 için ÇDM-M2 modelinin güç-zaman grafiği	96
Şekil 6.18. DOG-S1 için TDM-M3 modelinin güç-zaman grafiği	97
Şekil 6.19. DOG-S1 için ÇDM-M3 modelinin güç-zaman grafiği	98

Şekil	ayfa
Şekil 6.20. DOG-S2 için TDM-M1 modelinin güç-zaman grafiği	100
Şekil 6.21. DOG-S2 için ÇDM-M1 modelinin güç-zaman grafiği	101
Şekil 6.22. DOG-S2 için TDM-M2 modelinin güç-zaman grafiği	102
Şekil 6.23. DOG-S2 için ÇDM-M2 modelinin güç-zaman grafiği	102
Şekil 6.24. DOG-S2 için TDM-M3 modelinin güç-zaman grafiği	103
Şekil 6.25. DOG-S2 için ÇDM-M3 modelinin güç-zaman grafiği	104
Şekil 6.26. DOG-S3 için TDM-M1 modelinin güç-zaman grafiği	106
Şekil 6.27. DOG-S3 için ÇDM-M1 modelinin güç-zaman grafiği	107
Şekil 6.28. DOG-S3 için TDM-M2 modelinin güç-zaman grafiği	108
Şekil 6.29. DOG-S3 için ÇDM-M2 modelinin güç-zaman grafiği	108
Şekil 6.30. DOG-S3 için TDM-M3 modelinin güç-zaman grafiği	109
Şekil 6.31. DOG-S3 için ÇDM-M3 modelinin güç-zaman grafiği	110
Şekil 6.32. DG-S1 için TDM-M1 modelinin güç-zaman grafiği	129
Şekil 6.33. DG-S1 için ÇDM-M1 modelinin güç-zaman grafiği	130
Şekil 6.34. DG-S1 için TDM-M2 modelinin güç-zaman grafiği	130
Şekil 6.35. DG-S1 için ÇDM-M2 modelinin güç-zaman grafiği	131
Şekil 6.36. DG-S1 için TDM-M3 modelinin güç-zaman grafiği	132
Şekil 6.37. DG-S1 için ÇDM-M3 modelinin güç-zaman grafiği	132
Şekil 6.38. DG-S2 için TDM-M1 modelinin güç-zaman grafiği	139
Şekil 6.39. DG-S2 için ÇDM-M1 modelinin güç-zaman grafiği	140
Şekil 6.40. DG-S2 için TDM-M2 modelinin güç-zaman grafiği	141
Şekil 6.41. DG-S2 için ÇDM-M2 modelinin güç-zaman grafiği	141
Şekil 6.42. DG-S2 için TDM-M3 modelinin güç-zaman grafiği	142
Şekil 6.43. DG-S2 için ÇDM-M3 modelinin güç-zaman grafiği	143

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklamalar
I _{ph}	Foton akımı
Id	Diyot akımı
Io	Diyot ters yönde doyma akımı
I _{SC}	Kısa devre akımı
q	Elektron yükü
k	Boltzmann sabiti
Rs	Seri direnç
R _p	Paralel direnç
Т	Hücre sıcaklığı
V	FV hücresinin çıkış gerilimi
Vd	Diyot gerilimi
Voc	Açık devre gerilimi
VT	Termal gerilim
Kısaltmalar	Acıklamalar
	,
ÇDM	Çift diyotlu model
FV	Fotovoltaik
GKO	Gri kurt optimizasyon algoritması
INFO	Vektörlerin ağırlıklı ortalama optimizasyonu
MGN	Maksimum güç noktası
MGNT	Maksimum güç noktası takibi
PSO	Parçacık sürü optimizasyon algoritması
RMSE	Hata kareler ortalamasının karakökü
RUN	Runge Kutta optimizasyon algoritması
SAA	Sürüngen arama algoritması

Kısaltmalar	Açıklamalar
STK	Standart test koşulları
TDM	Tek diyotlu model
ÜDM	Üç diyotlu model
YEO	Yapay ekosistem tabanlı optimizasyon algoritması
YSKA	Yapay sinek kuşu algoritması

1. GİRİŞ

Enerji, insanlığın hayatını devam ettirebilmesi için en gerekli ihtiyaçtır. Elektrik enerjisi, diğer enerji çeşitlerine kolayca dönüştürülebilmesi, tüm enerji çeşitlerinden elektrik enerjisinin elde edilebilmesi, ulaşımının kolay, depolanabilir olması gibi birçok avantajından ötürü dünyada en yaygın olarak kullanılan enerji çeşididir [1]. Dünya nüfusunun artması ve teknolojinin gelişmesiyle birlikte elektrik enerjisine olan talep artmaktadır. Elektrik enerjisinin artan talebinin karşılanması sebebiyle yapılan çalışmalar ülkeleri ortak bir paydada birleştiren temel problemdir.

Hidroelektrik, fosil kaynaklar ve nükleer enerji, elektrik enerjisi üretimi için en çok tercih edilen yöntemlerdir [2]. Özellikle fosil kaynakların tükenebilir olması, kullanımı sırasında çevreye karbon salımı yapması gibi birçok dezavantaja sahip olduğundan yeni, güvenilir, sürdürülebilir elektrik enerji kaynağı arayışı başlamıştır [3]. Bu nedenle yenilenebilir enerji kaynaklarının kullanımı büyük oranda artmıştır. Türkiye İstatistik Kurumu'nun verilerine göre 2010 yılında toplam kurulu gücün %1,2'si yenilenebilir enerji kaynaklarından sağlanıyorken bu oran 2020 yılında %16,8'e yükselmiştir [4].

Yenilenebilir enerji kaynaklarından olan güneş enerjisinin kullanımı son yıllarda büyük bir süratle artmaktadır. Güneş enerjisinden elektrik üretimi için kullanılan en yaygın yapılar FV hücre/pillerdir. FV hücreler birbirleriyle seri ve paralel bağlanarak FV dizi oluştururlar. FV sistemler en basit haliyle FV diziler, dönüştürücü devresi ve yükten oluşmaktadır [3]. FV sistemler, sonsuz kaynak ile sürdürebilir enerji sağlaması, kolay kurulumu, günden güne maliyetinin azalması, çevreye zararlı bir etkisinin olmaması ve doğrudan güneş enerjisini elektrik enerjisine dönüştürebilmesi gibi kazançları sebebiyle son yıllarda araştırmacıların ve yatırımcıların ilgi odağı haline gelmiştir [5]. Güneş büyük bir enerji potansiyeline sahip olmasına karşın, bu potansiyel tam olarak elektrik enerjisine dönüştürülememektedir. Ortalama bir FV dizinin verimi %20'nin altındadır. FV sistemler üzerine çalışan araştırmacıların büyük çoğunluğu bu dönüşüm oranını arttırmayı hedeflemektedir.

Sıcaklık, ışınım, gölge ve kullanılan malzemenin cinsi gibi FV dizilerin verimi etkileyen birden fazla faktör vardır. FV dizilerde verimi arttırmak için en sık kullanılan yöntem, dizinin maksimum güçte çalıştığı noktanın tespit edilerek, diziyi bir algoritma yardımıyla sürekli bu noktada çalıştırmaktır. Belirlenen bu nokta maksimum güç noktası (MGN) olarak isimlendirilir. MGN noktasında çalışması için kullanılan yöntemlere MGNT yöntemleri denir. MGNT yöntemleri FV sistemlerin dönüştürücü devresinin görev oranına etki ederek sistemin maksimum güçte çalışmasını sağlar [6].

FV sistemlerde MGNT, sistem tasarımı ve optimizasyon gibi konularda çalışma yapabilmek için ilk olarak sistemin modellenmesi gerekmektedir. FV sistemi en uygun şekilde tasarlamak ya da var olan bir FV sistemin performansını doğru tahmin edebilmek kritik öneme sahiptir [7]. FV sistemler dış ortamlarda çalışırlar. Değişen atmosferik koşullar altında FV sistemin izlenmesi, hata tespiti, sistem kontrolü, üretilen elektrik enerjisinin tahmini, pratik verimlilik, şebeke filtre tasarımı, eleman seçimi ve güç dönüştürücü tasarımı gibi temel amaçlara cevap verebilmek için FV sistemin detaylı modellenmesine ihtiyaç duyulmaktadır.

Bu çalışmada, ilk olarak FV sistemin detaylı modellenmesi MATLAB/Simulink yazılımında gerçekleştirilmiştir. Doğru FV modelleme için üretici sayfasından alınan bilgiler yeterli olmadığından FV hücre eşdeğer devre parametreleri meta sezgisel algoritmalar ile tahmin edilmiş ve birçok algoritma ile sonuçlar karşılaştırılmıştır. Daha sonra literatürde sıklıkla tercih edilen meta sezgisel MGNT teknikleri ile ilk defa bu çalışmada kullanılan yeni meta sezgisel MGNT tekniklerinin benzetim çalışmaları MATLAB/Simulink yazılımında gerçekleştirilmiş ve kullanılan algoritmalar istatiksel testler ile karşılaştırılmıştır.

Tezin özgün değeri

Bu çalışmada, tek diyot ve çift diyot FV modelleri çalıştırılmıştır. Türkiye'de, güneş enerjisi ile ilgili yapılan çalışmaların sayısının artmasına karşın, FV sistemlerin modellenmesi için gerekli olan eşdeğer devre modellerinde bilinmeyen parametrelerin tespit çalışması azdır. Bu tez çalışmasında; YEO, RUN, INFO, YSKA ve SAA olmak üzere literatürde daha önce parametre çıkarımında kullanılmayan beş yeni meta sezgisel algoritma ile parametre tahmini gerçekleştirilmiş ve algoritmaların performansları değerlendirme metrikleri ve istatistiksel test ile karşılaştırılmıştır.

Meta sezgisel MGNT yöntemlerinden literatürde daha önce kullanılan PSO ve GKO ile daha önce kullanılmamış olan INFO ve YSKA olmak üzere toplamda dört farklı algoritma ile maksimum güç takibi gerçekleştirilmiştir. Tüm algoritmalar dinamik ve dinamik olmayan gölgelenme modellerine göre çalıştırılıp sonuçlar karşılaştırılmıştır. MGN için yapılan çalışmalarda algoritmalar daha önce literatürde istatiksel olarak karşılaştırılmamıştır. Bu tez çalışmasında, dört algoritmanın MGNT performansları tüm gölgelenme senaryoları değerlendirme metrikleri ve istatiksel test ile karşılaştırılmıştır.

Literatür özeti

Bu tezde iki temel çalışma gerçekleştirilmiştir. Dolayısıyla bu bölüm parametre tahmini yöntemleri ve MGNT yöntemleri olmak üzere iki alt başlıkta incelenmiştir.

FV hücreler için parametre tahmini yöntemleri

FV sistemleri modelleyebilmek için öncelikli olarak kullanılacak eşdeğer devre modelinin seçilmesi gerekir. Literatürde yaygın olarak kullanılan üç eşdeğer devre modeli bulunmaktadır. Bunlar; tek diyotlu model (TDM), çift diyotlu model (ÇDM) ve üç diyotlu modeldir (ÜDM). Bu modellerde, TDM için tahmin edilmesi gereken parametre sayısı 5, ÇDM için 7 ve ÜDM için ise 9 adettir. Dolayısıyla diyot sayısının artması, eşdeğer devre modellerindeki denklemlerin sayısını ve karmaşıklığını arttır. Geçmiş yıllarda yapılan çalışmalar detaylı incelendiğinde; FV hücrelerin bilinmeyen parametrelerin tespiti için kullanılan yöntemler üç ana başlık altında toplanabilir. Bunlar; analitik yöntemler, nümerik yöntemler ve meta sezgisel yöntemlerdir.

Analitik yöntemler, bir FV hücre/modülün akım-gerilim eğrisinden birkaç temel noktayı temel almasının yanı sıra eşdeğer devre denklemlerini basitleştirmek adına bazı kabullenmeler yapan, iteratif olmayan tekniklerdir. Bu yöntemlerin en önemli avantajı hesaplama hızıdır [8]. Analitik yöntemlerin performansı tek diyotlu modeller üzerinde oldukça yüksektir [9]. Literatürde parametre çıkarımı için yapılan ilk çalışma Phang ve ark. tarafından gerçekleştirilmiştir [10]. Eşdeğer devre olarak TDM'yi seçip, önerdikleri yöntemle bilinmeyen beş parametre, beş denklem ile çözülmüştür. Peng ve ark. Lambert W fonksiyonunu ve polinom eğri uydurma yöntemlerini kullanan yeni bir metot önermişlerdir [11]. Yapılan çalışmada kullanılan FV modelin tipi TDM, ticari hücre/modül tipi ise R.T.C. France cell ve PWP-201 seçilmiştir. Sera ve ark. TDM modelinde paralel bağlı direnci ihmal edip, foton akımının değeri üretici firmanın katalog sayfasında yer alan kısa devre akımına

eşit olduğunu varsaymışlardır [12]. Önerilen yöntemde dört parametre belirlenmiştir. Saloux ve ark. TDM modelinde seri ve paralel dirençleri ihmal ederek diyot idealite faktörü, diyot ters doyma akımını ve foton akımının değerlerini belirlemişlerdir [13]. Dirençler ihmal edildiği için önerilen yöntem en basit analitik yöntem olarak değerlendirilir. [14-19] numaralı çalışmalar FV hücre/modül parametre değerlerini analitik yaklaşımlar ile elde edip, başarılı sonuçlarını literatüre sunmuşlardır.

Nümerik diğer adıyla sayısal yöntemler; doğrusal olmayan denklemleri çözmek için kullanılan yinelemeli tekniklerdir [8]. Analitik yöntemlere göre daha iyi sonuç üretirler. Doğruluğu başlangıç olarak seçilen değerlere bağlıdır [20]. Nümerik yöntemlerinin en büyük problemi yakınsama sorunudur [21]. [22-27] numaralı çalışmalar FV hücre/modül parametre değerlerini nümerik yaklaşımlar ile elde etmişlerdir.

Analitik ve nümerik yaklaşımların yanı sıra özellikle son yıllarda FV hücre/modül parametre çıkarımı problemi için meta sezgisel algoritmalar kullanılmaktadır. Meta sezgisel algoritmaların temel avantajları, problem kısıtlamasının olmaması, kolay kullanımı, çok boyutlu optimizasyon problemlerine hızlı cevap vermesi ve güvenilir sonuçlar üretmesidir [28]. Algoritmalar en basit şekilde verilen bir amaç fonksiyonunu minimuma ya da maksimuma götürmeye çalışırlar. Bu nedenle meta sezgisel algoritmalar ile parametre tahmininin yapılabilmesi için FV eşdeğer devre modelinin seçilmesinin yanı sıra amaç fonksiyonunu da seçilmesi gerekmektedir. Literatürde bu problem için en sıklıkla kullanılan amaç fonksiyonları, hata kareler ortalaması (mean squared error-MSE), hata kareler ortalamasının karekökü (root mean squared error-RMSE) ve hatanın mutlak ortalamasılır (mean absolute error-MAE). Bu tez çalışmasında FV parametre çıkarımı için kullanılan tüm algoritmaların amaç fonksiyonları RMSE seçilmiştir. Bu bağlamda anlatılan çalışmaların tümünün amaç fonksiyonları RMSE' dir.

R.T.C. France (bir hücre) ve PhotoWatt PWP-201 (36 hücre) ticari modüller parametre çıkarımı için en sık kullanılan modüllerdir. Yapılan çalışmaları karşılaştırabilmek adına, literatür bu modeller özelinde bahsedilecektir. R.T.C. France ticari modeli tek bir FV hücreyi temsil eder. PhotoWatt PWP-201 ticari modeli ise 36 adet poli-kristal hücreden oluşur. Her iki model de TDM ve ÇDM olarak literatürde modellenmiştir. Bu ticari modellerin akım ve gerilim deneysel ölçümleri Easwarakhanthan ve ark. tarafından 1985 yılında

gerçekleştirilmiştir [29]. Deneysel ölçümler R.T.C. France için1000 W/m² radyasyon ve 33 °C, PhotoWatt PWP-201 için 1000 W/m² radyasyon ve 45 °C altında kaydedilmiştir.

R.T.C. France hücresinin TDM ve ÇDM parametrelerinin çıkarımı için; denge optimizasyon algoritması [30], geliştirilmiş balina optimizasyon algoritması [31], geliştirilmiş Lozi haritası tabanlı kaotik optimizasyon algoritması [32], kalıcı trigonometrik farklılıklar ile adaptif harris hawks optimizasyon algoritması [33], kedi sürüsü optimizasyon algoritması [34], iyileştirilmiş karmaşık evrim algoritması [35], geliştirilmiş guguk kuşu algoritması [36], esnek parçacık sürü optimizasyonu [37], değiştirilmiş JAYA algoritması [38], geliştirilmiş adaptif kelebek optimizasyonu algoritması [39], çakal optimizasyonu algoritması [40], stokastik fraktal arama optimizasyonu [41], geliştirilmiş karınca aslan optimizasyon algoritması [42] ve çiçek tozlaşma algoritması [43] kullanılmıştır. Bu algoritması [40] ve çiçek tozlaşma algoritması [43] üretmiş olup, RMSE değeri 7,7301E-04'tir. Yine bu algoritmalar içinde ÇDM parametrelerini en iyi RMSE sonucunu çakal optimizasyonu algoritması üretmiştir, ilgili RMSE değeri 7,3265E-04'tür.

PhotoWatt PWP-201 modülünün TDM parametrelerinin çıkarımı için, düzeltilmiş yığın tabanlı optimizasyon algoritması [44], kalıcı trigonometrik farklılıklar ile adaptif harris hawks optimizasyon algoritması [33], geliştirilmiş guguk kuşu algoritması [36], geliştirilmiş adaptif kelebek optimizasyonu algoritması [39], çakal optimizasyonu algoritması [40], geliştirilmiş karınca aslan optimizasyon algoritması [42] ve çiçek tozlaşma algoritması [43] kullanılmıştır. Bu algoritmalar içerisinde en iyi RMSE sonucunu çakal optimizasyonu algoritması üretmiş olup, RMSE değeri 2,052961E0-03'tür. PhotoWatt PWP-201 modülünün ÇDM parametrelerinin çıkarımı için, düzeltilmiş yığın tabanlı optimizasyon algoritması [44] ve balçık kalıp algoritması [45] kullanılmış olup en iyi RMSE sonucunu balçık kalıp algoritması üretmiştir.

Literatürde farklı ticari modülleri kullanan çalışmalarda mevcuttur. Benkercha ve ark. IsofotonI-100 ticari modülünü TDM ve ÇDM eşdeğer devre modellerinin parametrelerini belirlemek için motife edilmiş çiçek algoritmasını kullanmışlardır [46]. Her iki devrenin sonuçlarını, benzetilmiş tavlama algoritması, genelleştirilmiş evrimsel yürüteç algoritması, çiçek algoritması ve yıldırım arama algoritmasıyla karşılaştırmışlardır. Her iki model için de en iyi RMSE sonucunu önerilen algoritma elde etmiştir. Ayrıca bu çalışmada önerilen algoritmanın simülasyon sonuçları, farklı ışınım ve sıcaklıkta alınan deneysel veriler ile karşılaştırılmıştır. Qais ve ark. Kyocera KC200GT ve MSX60 ticari modüllerinin ÜDM parametrelerini bulmak için çakal optimizasyon algoritmasını kullanmışlardır [47]. Önerilen algoritma bu ticari modeller için başarılı bir performans sergilemiştir.

MGNT yöntemleri

MGNT yöntemleri mekanik ve elektriksel özelliklere göre sınıflandırılır. Mekanik MGNT yöntemleri, FV dizinin yönünü, gün boyunca önceden belirlenmiş güneş açısına göre manuel ya da otomatik olarak ayarlar. Elektriksel MGNT yöntemleri ise FV dizinin güç-gerilim eğrisini kullanarak maksimum güç noktasını takip etmeye çalışır. Bu yöntemler için güç elektroniği dönüştürücülerine ihtiyaç vardır [48]. Elektriksel MGNT yöntemleri en temel şekilde üç sınıfa ayrılabilir. Bunlar, geleneksel yöntemler, yapay zekâ tabanlı yöntemler ve hibrit yöntemler.

Geleneksel yöntemlerde, FV dizinin MGN'sini elde etmek için FV akımı, gerilimi, sıcaklık gibi gerçek zamanlı algılanan bilgilere ihtiyaç duyar. Bu yöntemlerin uygulanması diğer yöntemlere göre oldukça basittir. FV dizinin P-V eğrisi doğrusal olmadığından geleneksel yöntemler birden fazla MGN noktasının oluştuğu durumlarda başarısız olmaktadır. Bu durumlarda akıllı yöntemler ve geleneksel ve akıllı yöntemlerin birleştiği hibrit yöntemler daha başarılıdır. Bu tez çalışmasında kısmi gölgelenme şartları altında meta sezgisel algoritmalar ile çalışıldığından burada bahsedilecek literatür araştırmasının tamamı kısmi gölgelenme durumunda yapılan çalışmaları kapsamaktadır.

Ghamrawi ve ark. hızla değişen gölgelenme koşulları altında maksimum gücü bulmak için kuantum tavlama metodunu önermişlerdir. Yerel maksimum noktalarının daha derin olduğu durumlarda, küresel maksimum noktayı bulmada önerilen yöntem başarılı sonuç göstermiştir [49].

Etarhouni ve ark. kısmi gölgeleme sorunlarının üstesinden gelmek için yeni sihirli kare gelişmiş yapılandırma algoritması önermişlerdir. Bu yöntem ile gölgeleme etkilerini tüm dizi yüzeyi üzerinde daha eşit bir şekilde dağıtarak, baypas diyot işleminden kaynaklanan iletim kayıpları azaltılmıştır [50].

Javed ve ark. kısmi gölgelenme koşulları altında PSO algoritmasının yeni varyantlarının detaylı analizlerini gerçekleştirmişlerdir. Kullanılan algoritma stokastik bir yapıda olduğu için her bağımsız çalışmada aynı sonucu göstermeyebilir. Bu nedenle çalışma uzunluğu dağılımı testine tabi tutulmuştur. İstatiksel test sonucuna göre algoritmalar başarılı sonuç üretmiştir [51].

Chai ve ark. kısmi gölgelenme durumunda küresel maksimum noktayı bulabilmek için PSO ve havai fişek algoritmalarını birleştirerek yeni bir hibrit algoritma önermişlerdir. Önerilen algoritmayı dört farklı senaryo ile analiz ederek hibrit algoritmanın daha başarılı olduğunu ortaya koymuşlardır [52].

Ali M. Eltamaly gölgelenme koşulları altında MGN için müzikal sandalye algoritmasını önermiştir. Bu algoritmanın en önemli özelliği hedefe yaklaştıkça popülasyon sayısının azalmasıdır. Bu özellik sayesinde MGN izleme süresinin, kıyaslanan beş farklı algoritmadan %20-50 aralığında daha kısa olduğu ve kararlı durumdaki salınımların da %20 civarında azaldığı görülmüştür [53].

Srinivasan ve ark. MGNT için Meerkat optimizasyon algoritmasını önermişlerdir. Önerilen algoritmanın performansını üç farklı gölgelenme senaryosunda test etmişlerdir. Algoritmanın sonuçlarını PSO ve diferansiyel evrimsel algoritmalarıyla karşılaştırıp %98 oranında daha hızlı izleme verimliliği elde etmişlerdir [54].

Zafar ve ark. parçacıklı gölgelenme altında MGN' yi bulmak için arama ve kurtarma optimizasyon algoritmasını önermişlerdir. Algoritma, çekirge optimizasyon algoritması, GKO, PSO, guguk kuşu algoritması ve parçacık sürü optimizasyon yerçekimi araması algoritmalarıyla karşılaştırılmıştır. Önerilen algoritma karşılaştırılan algoritmalara göre %8 daha fazla güç elde ederken, takip süresini %72 oranında kısaltmıştır [55].

Özgenç MGN noktasını bulmak için simbiyotik organizma arama ve balina optimizasyon algoritmalarını kullanmıştır. Şebeke bağlantılı sistemde çalışma yapan Özgenç, sisteme batarya grubunu ekleyerek FV sistemlerin kayıpları optimize etmiştir [56].

Atıcı MGNT olarak GKO algoritmasını kullanmıştır. Algoritmanın performansını PSO ve geleneksel yöntemlerden olan değiştir gözle yöntemiyle karşılaştırmış olup, önerilen algoritmanın daha hızlı ve kararlı olduğu sonucu üretilmiştir [57].

2. FOTOVOLTAİK SİSTEMLER

Dünya üzerinde güneş enerji ile elektrik üretimi için kullanılan yapıların çoğu FV tabanlıdır. FV sistemler güneş enerjisini doğrudan elektrik enerjisine çeviren yapılar olup birden fazla bileşenin bir araya getirilmesiyle oluşur. Bu sistemlerin en küçük yapı taşı FV pillerdir. FV piller ile güneş enerjisi direkt olarak doğru akım şeklinde üretilirken, FV sistemlere evirici eklenerek üretilen enerji alternatif akıma dönüştürülebilir.

2.1. FV Hücrelerin Elektriksel Modeli

Bir güneş santralinin izlenmesi ya da bir FV panelin tasarımının yapılabilmesi için FV sistemleri matematiksel bir alt yapıya dökmek gerekmektedir. FV hücrenin elektriksel eşdeğer modelleri teorik denklemlere dayanmaktadır [58]. FV hücrelerinin modellenmesi; güneş sistemlerinin tasarımı, simülasyonu, analizi, yönetimi, optimizasyonu ve MGNT için gereklidir. Birden fazla elektriksel model literatürde ortaya koyulmuştur [59]. En yaygın olarak kullanılan eşdeğer devre modelleri tek diyotlu model ve çift diyotlu modeldir.

2.1.1. Tek diyotlu FV hücre modeli

Tek diyotlu FV eşdeğer devre modeli bir akım kaynağı, diyot, seri direnç ve paralel dirençten oluşmaktadır. Literatürde bu modele bir diyot iki direnç (*1D2R*) modeli de denmektedir [59]. Model üzerindeki akım kaynağı foton akımına denk gelir ve bu akım güneş radyasyonu ile doğru orantılıdır. FV hücreler yarı iletken malzeme olduğu için modele diyot eklenir [60]. Burada iletken iç direnci, kontak ve bağlantı noktasındaki kayıpları temsil etmesi için seri bir direnç (R_s) bağlanır. FV hücrelerde kaçak akımları temsil etmek için de paralel direnç (R_p) eklenir. Paralel direnç aynı zamanda sızıntı akımının kayıplarını ifade eder. Şekil 2.1'de elektriksel modeli verilmiştir. Bu eşdeğer devre, Kirchhoff kurallarına göre analiz edilirse çıkış akımı ve devreye ait diğer matematiksel ifadeler "Eş. (2.1)"de verilmiştir.

$$I = I_{ph} - I_0 x \left[e^{\frac{q x (V+I x R_s)}{\alpha x k x T}} - 1 \right] - \frac{v + I x R_s}{R_p}$$
(2.1)

Şekil 2.1. Tek diyotlu FV hücresinin elektriksel eşdeğer modeli

Buradaki denklemlerde; V hücrenin çıkış gerilimi, I_{ph} foton akımını, I_d diyot akımı, I_o diyotun ters yönde doyma akımı ya da ölçek akımı, V_d diyot üzerindeki gerilimi temsil etmektedir. V_T termal geriliminin denkleminde k, Boltzmann sabiti olup değeri 1,38x10⁻²³J/K'dir, q; elektron yüküdür ve değeri 1,6x10⁻¹⁹C'dur, α diyot idealite veya kalite faktörü, T ise hücrenin yani p-n eklemi arasındaki sıcaklıktır ve Kelvin cinsindendir.

Bu modelde seri direncin değeri, paralel direnç değeri, diyot idealite faktörünü, ters doyma akımını ve foton akımı bilgilerini panel üretici tarafından sağlanamamaktadır. Bu modelde toplamda ihtiyaç duyduğumuz beş bilgi vardır. Bu nedenle bu elektriksel modele beş parametreli model de denilmektedir [61].

2.1.2. Çift diyotlu FV hücre modeli

Beş parametreli modele paralel diyot eklenerek oluşturulmuştur. Beş parametreleri model belirli bir seviye de doğruluk sağlayabilir fakat rekombinasyon kayıplarını işleme katmaz. Rekombinasyon, iletim bandındaki yarı-kararlı elektron enerji seviyesi azalınca valans bandı düşerek bir deliğin yok olmasına denir. Rekombinasyon kayıplarını hücre modeline eklemek için paralel bir diyot eklenir [62]. Bu eşdeğer devre modelinde bir akım kaynağı, iki diyot, seri direnç ve paralel dirençten oluşmaktadır. Literatürde bu modele iki diyot iki direnç (*2D2R*) modeli de denmektedir. Şekil 2.2'de çift diyotlu FV hücresinin elektriksel eşdeğer devre modeli verilmiştir. Bu devre modeli Kirchhoff yasalarına göre incelenirse hücrenin çıkış akımı ve hücreye ait diğer parametreler "Eş. (2.2)"de verilmiştir.

$$I = I_{ph} - I_{o1} x \left[e^{\frac{q x (V+I x R_s)}{\alpha_1 x k x T}} - 1 \right] - I_{o2} x \left[e^{\frac{q x (V+I x R_s)}{\alpha_2 x k x T}} - 1 \right] - \frac{V+I x R_s}{R_p}$$
(2.2)

Şekil 2.2. İki diyotlu FV hücrenin elektriksel eşdeğer modeli

Burada I_{d1} ve I_{d2} , I_{o1} ve I_{o2} , α_1 ve α_2 sırasıyla birinci ve ikinci diyotların akımlarını, ters doyma akımlarını ve idealite faktörlerini ifade etmektedir. İki diyotlu FV hücre modelinde foton akımı, birinci ve ikinci diyotların ters doyma akımları, yine bu iki diyotların idealite faktörleri, seri ve paralel dirençler olmak üzere toplamda yedi tane üretici firmadan temin edilemeyen parametreler bulunmaktadır. Bu nedenle bu modele yedi parametreli model de denmektedir.

2.1.3. FV modül modeli

FV hücrelerin birbirleriyle seri veya paralel bağlanmasıyla modüller oluşturulur. Bu modülleri tek diyot tabanlı veya çift diyot tabanlı eşdeğer devreler yardımıyla sembolize edilebilir. Bir modülde seri bağlı hücre sayısı artarsa modülün çıkış gerilimi artar, paralel bağlı hücre sayısı artarsa modülün çıkış akımı artar. Bu nedenle FV sistemlerde modüller, modüllerin bir araya getirilmesiyle oluşan diziler kullanılır [63].

Tek diyot tabanlı FV modül

Tek diyot tabanlı FV modül modelinin elektriksel eşdeğer devre modeli Şekil 2.3'de verilmiştir. Bu tez çalışmasında tek diyot tabanlı modüle bağlı hücrelerin tümünün seri bağlandığı kabul edilmiştir. Paralel hücre bağlantısının olmadığı varsayılmıştır. Bu modelin çıkış akımı "Eş. (2.3)"de verilmiştir.

$$I = I_{ph} - I_o x \left[e^{\frac{q x (V + I x R_s x N_s)}{\alpha x k x T x N_s}} - 1 \right] - \frac{V + I x R_s x N_s}{R_p x N_s}$$
(2.3)

Burada N_s seri bağlı hücre sayısını belirtmektedir. Tek diyot tabanlı FV modül modelinde; foton akımı, diyot idealite faktörü, diyot ters doyma akımı, seri ve paralel dirençler olmak üzere toplamda beş tane bilinmeyen parametre vardır.

Şekil 2.3. Tek diyot tabanlı FV modülün elektriksel eşdeğer modeli

Çift diyot tabanlı FV modül

Çift diyot tabanlı FV modülünün elektriksel eşdeğer devre modeli Şekil 2.4'de gösterilmiştir. Tek diyot tabanlı FV modülde olduğu gibi bu modül modelinde de hücrelerin hepsinin seri bağlı olduğu varsayılmıştır. Paralel bağlı hücrenin olmadığı varsayılmıştır. Bu modelin çıkış akımı "Eş. (2.4)" de verilmiştir.

Şekil 2.4. Çift diyotlu tabanlı FV modülün elektriksel eşdeğer devre modeli

$$I = I_{ph} - I_{o1} x \left[e^{\frac{q x (V+I x R_S x N_S)}{\alpha_1 x k x T x N_S}} - 1 \right] - I_{o2} x \left[e^{\frac{q x (V+I x R_S x N_S)}{\alpha_2 x k x T x N_S}} - 1 \right] - \frac{V+I x R_S x N_S}{R_p x N_S}$$
(2.4)

Bu denklemlerde yer alan I_{o1} ve I_{o2} , α_1 ve α_2 sırasıyla birinci ve ikinci diyotların ters doyma akımlarını ve idealite faktörlerini temsil etmektedir. Çift diyotlu hücre modelinde olduğu

gibi bu modelde diyotların ters doyma akımları, diyotların idealite faktörleri, foton akımı, seri ve paralel dirençler olmak üzere toplamda yedi adet bilinmeyen parametreye sahiptir.

2.2. FV Hücrelerin Akım, Gerilim ve Güç Karakteristikleri

FV hücrelerin akım-gerilim ve güç-gerilim ilişkisi ifade edebilmek için bir hücrenin önce kısa devre edilmesi daha sonra da aynı hücrenin çıkışlarını yük bağlamayarak açık devre şeklinde çalıştırılması gerekmektedir [64]. FV hücresinin çıkış uçları kısa devre edildiğinde devrenin çıkış akımı artık kısa devre akımı (I_{SC}) olarak adlandırılmaktadır. Devrenin çıkış gerilimi de sıfırdır. FV hücresinin uçları açık devre şeklinde çalıştırıldığında devrenin çıkış gerilimi artık açık devre gerilimi (V_{OC}) isimlendirilir. Bu durumda da devrenin çıkış akımı sıfırdır. . Bir FV hücresinin kısa devre durumunda maksimum akım elde edilirken, açık devre durumunda ise maksimum gerilim elde edilir. Hücrenin çalışma aralığı, kısa devre akımı ve açık devre gerilimi aralığında değişmektedir. Şekil 2.5'de FV hücresinin I-V ve P-V grafiklerine bakıldığında FV hücrenin lineer bir yapıda olmadığı görülmektedir. Her iki eğride belirli bir değere kadar lineer şekilde hareket ediyor olmasına rağmen çıkış akımının belirli bir değerden sonra artamaması gücün düşmesine sebep olmaktadır.

Şekil 2.5. Bir FV hücresinin I-V ve P-V grafikleri

2.2.1. Işınım ve sıcaklığın FV hücresine etkisi

Işınım ve sıcaklık FV sistemlerin verimini etkileyen en önemli etkenlerdir. FV sistemlerin verimlilik analizi için standartlaşan bir koşul bulunmaktadır, bu standart test koşulu (STK) olarak adlandırılmaktadır [65]. FV panel üreticilerin katalog sayfasında yer alan panel

bilgileri STK altında ölçülen değerlerdir. FV sistemlerin en verimli şekilde çalışabilmesi için ortamın STK standardında olmalıdır. STK'da ortam sıcaklığı 25°C, güneş ışınımının değeri de 1000 W/m² olarak kabul görmektedir.

Işınım ve sıcaklık, hücrenin akım ve gerilimini dolayısıyla da hücrenin çıkış gücünü değiştirir. Şekil 2.6'da sabit sıcaklıkta değişen ışınımda bir FV panelinin akım-gerilim ve güç-gerilim grafikleri, Şekil 2.7'de ise sabit ışınımda değişen sıcaklıkta FV hücrenin akım-gerilim ve güç-gerilim grafikleri verilmiştir. Grafikler incelendiğinde ışınım büyük oranda akımı etkilemektedir. Gerilimdeki değişim akıma göre daha azdır. Sıcaklık ise gerilimde büyük değişikliklere sebep olurken akım üzerindeki etkisi azdır. Sıcaklık arttıkça gerilim azalmakta, dolayısıyla güçte azalmaktadır.

Şekil 2.6. Değişen ışınımda FV modülün I-V ve P-V karakteristiği

Şekil 2.7. Değişen sıcaklıkta FV modülün I-V ve P-V karakteristiği

2.3. Maksimum Güç Noktası ve Gölgelenme

FV hücreler akım-gerilim eğrisi üzerinde kısa devre akımı ve açık devre gerilimi arasında çalışmaktadırlar. FV hücresinin akımı ve gerilimi arasında lineer olmayan bir ilişki mevcuttur. Bir FV hücresinde belirli bir noktaya kadar gerilim arttıkça akım da artmaktadır. Bir noktadan sonra gerilimin artmasına rağmen akım artmamaktadır. Lineerliğin bozulduğu bu noktadan hemen önceki son nokta, maksimum güç noktası olarak isimlendirilir. Maksimum verim için FV hücre veya modül bu noktaya denk gelen akım ve gerilim değerlerinde çalıştırılmalıdır [66].

FV hücrenin maksimum güç noktasındaki akım I_{MGNT} , gerilim V_{MGNT} , güç ise P_{MGNT} olarak ifade edilir. MGNT; FV modülün sürekli bu noktada çalışmasını sağlamak için kullanılır. Genellikle FV sistemleri doğrudan yüke bağlayan DA-DA dönüştürücüler ya da FV sistemlerin şebeke bağlantısını gerçekleştiren eviriciler aracılığıyla uygulanır. MGNT, dönüştürücülerin görev oranı değiştirerek sistemin maksimum güçte çalışmasını sağlar.

2.3.1. Gölgelenme

FV sistemlerin verimini etkileyen en önemli unsurlardan biri FV hücre/modül üzerine düşen gölgedir. Bulutlar, binalar veya ağaçlar gölgelenmeye sebep olur. Gölge, FV sistem genelinin aynı ölçüde ışınım almasına engel olur. Dolayısıyla sistemin verimi oldukça düşer [67]. Gölgeli hücreden geçen akım STK'ya göre oldukça düşüktür. FV bir dizide sadece bir hücre üzerinde gölgelenme olsa bile tüm dizinin çıkış gücü büyük oranda azalır [78].

Gölgelenme faktörü homojen gölgelenme ve parçalı gölgelenme olmak üzere iki ana başlık altında incelenir. Homojen gölgelenme seri FV modüllerin hepsinin aynı düzeyde gölgelenmesidir. Parçalı veya kısmi gölgelenme ise bina, bulut, ağaç gibi herhangi bir engelden ötürü FV panelin sadece bir kısmında oluşan gölgelenmedir. Bir FV dizide birden fazla farklı ışınım ve sıcaklık değerinin olmasına kısmı gölgelenme denmektedir [79].

Kısmi Gölgelenme Altında FV Pillerin Çıkış Karakteristiği

STK altında, FV modülün sadece bir MGN' si vardır. Kısmi gölgelenme altında birden fazla MGN oluşmaktadır. Bu noktalardan sadece birini küresel MGN iken diğer noktalar yerel

MGN olarak adlandırılır. Kısmi gölgelenme etkisindeki bir FV dizinin maksimum güç üretebilmesi için küresel maksimum güç noktasına denk gelen akım-gerilim değerlerinde çalıştırılmalıdır. Şekil 2.8'de kısmi gölgelenme altında çalışan bir FV panelin I-V ve P-V grafikleri verilmiştir.

Şekil 2.8. Kısmi gölgelenme koşullarında FV dizinin I-V ve P-V grafikleri
3. FV PARAMETRE ÇIKARIMI

Gerçek bir sisteminin benzetim çalışması yapabilmek için öncelikle sistemin modellenmesi gerekir. Modelleme ne kadar doğru olursa, benzetim çalışma sonuçları gerçek sistemi daha iyi taklit edeceğinden, yapılan çalışmalar daha başarılı olur. Bu tez çalışmasında FV sistemlerde maksimum güç takibi yapıldığından, sistemi modellemeye FV hücre/modüllerden başlamak gerekmektedir. FV modül üreticilerden alınan bilgiler STK altında gerçekleşen deneysel verileri içerdiğinden modelleme için yeterli olmamaktadır. FV'lerin doğası gereği doğrusal bir yapıda olmaması nedeniyle FV sistemlerinin modellenmesi karmaşık bir işlemdir.

FV hücre ve modülün yaygın olarak kullanılan elektriksel modelleri bölüm 2'de anlatılmıştır. Eşdeğer devre modellerinde diyot sayısının artması sistemin karmaşıklığını ve belirlenmesi gereken parametrelerinin sayısını arttırır. Tek diyotlu modelde beş, iki diyotlu modelde yedi, üç diyotlu model de ise dokuz adet tahmin edilmesi gereken parametre vardır. FV hücrelerin eşdeğer devre modelleri matematiksel denklemlerle oluşturulur. Bu denklemlerde kullanılan parametre değerlerinin doğruluğu; performansı incelenen FV tabanlı sistemler için oldukça önemlidir [70]. Bu parametre değerlerinin bulunması için üreticiden gelen bilgiler yeterli olmadığından bu lineer olmayan denklemler üzerinden bazı yaklaşımlar yapılarak parametre tahminin yapılması gerekmektedir. FV modeller için parametre tahmini için kullanılan yöntemler genelde üç gruba ayrılır. Bunlar; analitik yöntemler, nümerik yöntemler ve meta sezgisel optimizasyon yöntemleridir [5]. Her bir yöntemin kendi içinde avantaj ve dezavantajı vardır [72]. Bu tez çalışmasında FV modüllerin parametreleri meta sezgisel algoritmalarla tahmin edilmiştir. Dolayısıyla bu bölümde kullanılan algoritmalar verilmiştir.

3.1. Yapay Ekosistem Tabanlı Optimizasyon Algoritması

YEO algoritması 2019 yılında ortaya çıkmış olup, güncel bir algoritmadır [73]. Bu algoritma canlı ve cansız varlıkların birbirleriyle ilişkisini inceleyen ekolojik sistemi taklit etmeye çalışır. Üretim, tüketim ve ayrışma olmak üzere algoritmanın üç temel operatörü vardır. Tüm algoritmalarda bulunan keşif ve sömürü fazları arasındaki dengeyi kurmak ilk operatörün

ana görevidir. İkinci operatör algoritmanın keşif yeteneğini attırmaya çalışırken, üçüncü operatör ise algoritmanın sömürü aşamasına etki eder.

3.1.1. Üretim operatörü

Bir ekosistemde üretici; karbondioksit, su, güneş ışığı ve ayrıştırıcı tarafından sağlanan beslenme ile gıda enerjisi üretebilir. YEO'da üretici (en kötü birey), arama uzayının alt ve üst limitleri ayrıştırıcı (en iyi birey) tarafından güncellenmelidir. Güncellenen birey farklı bölgeleri aramak için popülasyondaki tüm bireylere rehberlik yapmalıdır. Üretim operatörü, YEO'nun en iyi birey ile arama alanında otomatik olarak oluşturulan bir birey arasında bir öncekini değiştirerek rastgele yeni bir birey üretmesine izin verir. Üretim operatörünün matematiksel ifadesi "Eş. (3.1-3.3)" verilmiştir.

$$x_1(t+1) = (1-a)x_n + ax_{rand}(t)$$
(3.1)

$$a = (1 - \frac{t}{T})r_1 \tag{3.2}$$

$$x_{rand} = r(U - L) + L \tag{3.3}$$

Burada *n* bir popülasyonun boyutudur, *T* maksimum yineleme sayısıdır. *L* ve *U* sırasıyla alt ve üst sınırlardır, r_1 [0, 1] aralığında rastgele bir sayı, *r* yine bu aralıkta rastgele bir vektördür. *a* doğrusal bir ağırlık katsayısıdır ve x_{rand} arama uzayında rastgele üretilen bir bireyin konumudur. "Eş. (3.1)"de ağırlık katsayısı, iterasyonlar arttıkça bireyi rastgele üretilen bir konumdan en iyi bireyin konumuna doğru doğrusal olarak sürüklemek için kullanılır.

3.1.2. Tüketim operatörü

Üretim operatörünü tamamlandıktan sonra, tüm tüketiciler tüketim operatörünü gerçekleştirmelidirler. Besin enerjisi elde etmek için, her tüketici ya daha düşük enerji düzeyine sahip rastgele seçilmiş bir tüketiciyi ya da bir üreticiyi ya da her ikisini birden yiyebilir.

Matematiksel bir operatör olarak Levy uçuşu; guguk kuşu, aslan, geyik gibi birçok hayvanın yiyecek aramasını taklit eder. Levy uçuşu rastgele bir yürüyüştür, küresel optimumu bulma konusunda yetenekli olduğu için doğadan ilham alınan algoritmalara eklenmiştir. YEO'da tüketim faktörü, LEVY uçuşuna benzer, parametresiz rastgele bir yürüyüşü ifade etmektedir ve denklemleri "Eş. (3.4-3.5)" de verilmiştir.

$$C = \frac{1}{2} \frac{v_1}{|v_2|} \tag{3.4}$$

$$v_1 \sim N(0,1), v_2 \sim N(0,1)$$
 (3.5)

Burada N(0,1) ortalaması sıfır, standart sapması bir olan normal bir dağılımdır. Tüketim operatörü, her tüketicinin yiyecek aramasına yardımcı olabilirken, farklı tüketici türlerine, farklı tüketim stratejileri uygular. Bir tüketici otobur olarak rastgele seçilirse, sadece üreticiyi yiyebilir. Otoburların bu tüketim davranışının matematiksel olarak denklemi "Eş. (3.6)"da verilmiştir.

$$x_i(t+1) = x_i(t) + C.(x_i(t) - x_1(t)), \quad i \in [2, ..., n]$$
(3.6)

Bir tüketici etobur olarak rastgele seçilirse, sadece daha yüksek enerjili bir tüketiciyi rastgele yiyebilir. Etoburların bu tüketim davranışının matematiksel olarak denklemi "Eş. (3.7)"de sunulmuştur.

$$x_{i}(t+1) = x_{i}(t) + C.(x_{i}(t) - x_{j}(t)), \quad i \in [3, ..., n]$$

$$j = r \text{ and } i([2 i - 1])$$
(3.7)

Bir tüketici hepçil olarak rastgele seçilirse, hem daha yüksek enerjili bir tüketiciyi hem de üreticiyi rastgele yiyebilir. Hepçillerin bu tüketim davranışının matematiksel olarak denklemi "Eş. (3.8)"de verilmiştir.

$$\begin{cases} x_i(t+1) = x_i(t) + C \cdot (r_2 \cdot (x_i(t) - x_1(t))) \\ + (1 - r_2) \left(x_i(t) - x_j(t) \right), & i = 3, \dots n \\ j = r \text{ and } i([2 \ i - 1]) \end{cases}$$
(3.8)

Burada r_2 , [0, 1] aralığında rastgele bir sayıdır. Tüketim operatörü, bir popülasyondaki en kötü bireyin veya rastgele seçilen bir bireyin veya her ikisine göre arama yapan başka bir bireyin konumunu günceller.

3.1.3. Ayrışma operatörü

Ayrışma, üreticinin büyümesi için gerekli besin maddelerini sağlar. Ayrışma sırasında, popülasyondaki her birey öldüğünde, ayrıştırıcı, kalıntılarını kimyasal olarak bozacak veya parçalayacaktır. Bu operatörünün matematiksel ifadesi "Eş. (3.9-3.12)"de verilmiştir.

$$x_i(t+1) = x_n(t) + D \cdot (e \cdot x_n(t) - h \cdot x_i(t)), \quad i = 1, \dots, n$$
(3.9)

$$D = 3u, \ u \sim N(0,1) \tag{3.10}$$

$$e = r_3 \cdot r \text{ and } i(|1\,2|) - 1 \tag{3.11}$$

$$h = 2 \cdot r_3 - 1 \tag{3.12}$$

Bu denklemlerde; D ayrışma faktörü, x_n ayrıştırıcı konumu h ve e ağırlık katsayılarıdır. Parametre çıkarımı için kullanılan YEO algoritmasının akış diyagramı Şekil 3.1'de verilmiştir.

Şekil 3.1. Parametre çıkarımı probleminin çözümü için kullanılan YEO algoritmasının akış diyagramı

3.2. Gri Kurt Optimizasyon Algoritması

GKO algoritması Mirjalili ve ark. tarafından 2014 yılında ortaya atılmıştır [74]. Bu algoritma köpekgiller ailesine ait olan gri kurtların avlanma tekniği ve sosyal davranışlarını taklit eder. Algoritma, sosyal hiyerarşi, avın çerçevelenmesi, avlanma, ava saldırı ve av arayışı olmak üzere beş bölümden oluşur.

3.2.1. GKO'nun sosyal hiyerarşisi

Gri kurtlar alfa, beta, delta ve omega olmak üzere dört sosyal sınıfa bölünür. Alfa kurtlar, grubun liderleridir ve bir dişi, bir erkek olmak üzere grupta alfa kurt sayısı ikidir. Alfa kurtlar, avın seçimi, avlanma tekniğinin seçimi, grubun kalacağı konum, dinlenme zamanı, hareket zamanı gibi birçok önemli kararı alırlar. Alfalar grubun en güçlüsü değil, grubu en iyi yönetenlerdir. Sosyal grubun ikinci seviyesi betalardır. Betalar her türlü konuda alfalara yardımcı olurlar. Alfalar ile sürünün arasındaki iletişimi beta kurtlar yapar. Beta kurdu dişi veya erkek olabilir. Gelecekte alfa olmaya adaydır. Omegalar grubun en alt sınıfıdır. Kendinden üst sınıftaki tüm kurtlara boyun eğmek zorundadır. Grubun bazı durumlarda bebek bakıcılığı görevini de üstlenir. Deltalar, sürüde bu üç sınıf içerisinde olmayan kurtlardır. Alfa ve betalara boyun eğerken, omegalardan üstündür. Grubun yaşlıları, nöbetçileri, izcileri ve bebek bakıcıları bu gruptadır.

Gri kurtların sosyal hiyerarşilerini matematiksel olarak modellemek için en uygun çözüm alfa (α) olarak kabul edilir. İkinci ve üçüncü en iyi sonuçlar beta (β) ve delta (δ) olarak farz edilir. Geri kalan tüm olası çözümler omega (ω) olarak varsayılır. Alfa lider olarak değerlendirildiği için diğer kurtların pozisyon güncellemeleri alfalara göre yapılır.

3.2.2. Avın çerçevelenmesi

Gri kurtlar av sırasında avın etrafını çerçeveler. Bu davranış matematiksel olarak "Eş. (3.13-3.14)" de modellenmiştir.

$$\vec{D} = \left| \vec{C} \cdot \vec{X_P}(t) - \vec{X(t)} \right| \tag{3.13}$$

$$\vec{X}(t+1) = \vec{X}_{P}(t) - \vec{A} \cdot \vec{D}$$
(3.14)

Bu denklemlerde *t* mevcut iterasyonu gösterir \vec{A} ve \vec{C} katsayı vektörleri, $\vec{X_p}$ avın konum vektörü ve \vec{X} bir gri kurdun konum vektörünü ifade eder. \vec{A} ve \vec{C} katsayıları "Eş. (3.15-3.16)"daki gibi hesaplanır.

$$\vec{A} = 2\vec{a}\cdot\vec{r_1} - \vec{a} \tag{3.15}$$

$$\vec{\mathcal{C}} = 2 \cdot \vec{r_2} \tag{3.16}$$

"Eş. (3.15)" de \vec{a} , katsayı vektörlerini iterasyonlar boyunca 2'den 0'a doğrusal olarak azaltır ve r_1 , r_2 [0, 1] aralığında rastgele vektörlerdir.

3.2.3. Avlanma

Gri kurtların avlama hareketini alfa kurtlar yönetir. Soyut anlamda avın tam olarak konumu belli değildir. Avlanma hareketini matematiksel modellemek için alfa, beta ve delta kurtlarının olası avın konumu hakkında bilgiye sahip olduğu varsayılır ve diğer kurtların konumları bu kurtların pozisyonlarına göre güncellemeye maruz bırakılır. Avlanma aşamasının denklemleri "Eş. (3.17-3.19)" da verilmiştir.

$$\overrightarrow{D_{\alpha}} = \left| \overrightarrow{C_1} \cdot \overrightarrow{X_{\alpha}} - \overrightarrow{X} \right|, \ \overrightarrow{D_{\beta}} = \left| \overrightarrow{C_2} \cdot \overrightarrow{X_{\beta}} - \overrightarrow{X} \right|, \ \overrightarrow{D_{\delta}} = \left| C_3 \cdot \overrightarrow{X_{\delta}} - \overrightarrow{X} \right|$$
(3.17)

$$\overrightarrow{X_1} = \overrightarrow{X_{\alpha}} - \overrightarrow{A_1} \cdot \left(\overrightarrow{D_{\alpha}}\right), \ \overrightarrow{X_2} = \overrightarrow{X_{\beta}} - \overrightarrow{A_2} \cdot \left(\overrightarrow{D_{\beta}}\right), \ \overrightarrow{X_3} = \overrightarrow{X_{\delta}} - \overrightarrow{A_3} \cdot \left(\overrightarrow{D_{\delta}}\right)$$
(3.18)

$$\vec{X}(t+1) = \frac{\vec{X}_1 + \vec{X}_2 + \vec{X}_3}{3}$$
(3.19)

3.2.4. Ava saldırı

Her algoritmada olduğu gibi GKO'da sömürü ve keşif fazları bulunur. Algoritmanın sömürü aşamasını modellemek için \vec{a} vektörü [2 0] aralığında azaltılır. Bu vektörün azaltılmasıyla \vec{A} vektörü de azalır, böylece algoritma sömürü fazı modellenir. Tek başına bu katsayılar GKO'nun yerel çözümlere takılma ihtimalini arttır. Bu nedenle algoritmanın küresel çözümlere de ulaşabilmesi için başka operatörlere de ihtiyacı vardır.

3.2.5. Av arayışı

Av arayışı aşaması, keşif fazıyla ilişkilendirilebilir. Gri kurtlar alfa, beta ve delta kurtlarının konumuna göre av araması yapar. Av bulmak için birbirlerinden ayrılıp, ava saldırmak için tekrar birleşirler. Arama ajanını sürüden ayırmaya zorlamak için \vec{A} vektörü -1'den küçük veya 1'den büyük rastgele değerler almak zorunda bırakılır. Böylece algoritmanın keşif fazı vurgulanır ve GKO küresel olarak arama yapmaya başlar. GKO algoritmasının akış diyagramı Şekil 3.2'de verilmiştir.

Şekil 3.2. Parametre çıkarımı probleminin çözümü için kullanılan GKO algoritmasının akış diyagramı

3.3. Runge Kutta Optimizasyon Algoritması

RUN algoritması 2021 yılında Ahmadianfar ve ark. tarafından ortaya atılmıştır [75]. RUN, eğimi hesaplayan ve adi diferansiyel denklemleri çözmek için özel bir formülasyon olan runge kutta metodundan esinlenilmiştir. RUN ana fikri, runge kutta metodunun eğim hesaplama tekniğini kullanır. Başlangıç adımları, arama mekanizmasının kökü, çözümlerin güncellenmesi, gelişmiş çözüm kümesinin kalitesi üzere algoritma dört temel adımda ifade edilir.

3.3.1. Başlangıç adımları

Bu adımda maksimum iterasyon sayısı içerisinde çalışacak başlangıç sürüsü ayarlanır. N büyüklüğünde bir popülasyon için N adet konum oluşturulur. x_n (n = 1,2,...N), popülasyon içerisindeki tüm sürünün D boyutundaki çözüm kümesidir. "Eş. (3.20)"ye göre başlangıç pozisyonları başlatılır.

$$x_{n,l} = L_l + rand. (U_l - L_l)$$
(3.20)

Burada U_l , L_l l (l = 1, 2, ..., D)'inci değişkenin üst ve alt limitleridir. *rand* komutu [0 1] aralığında rastgele sayı üretir. Bu kural limitler içinde çözümleri başlatır.

3.3.2. Arama mekanizmasının kökü

Herhangi bir optimizasyon algoritmasının gücü, keşif ve sömürü fazlarının başarısına bağlıdır. RUN algoritması arama uzayında yüksek rastgele bir dizi çözüm kullanması keşif fazını güçlendirirken, çözüme yaklaştıkça adımların ve dalgalanmaların küçülmesi sömürü fazını güçlendirir. RUN algoritması, arama mekanizmasını belirlemek için dördüncü dereceden Runge kutta (*RK4*) yöntemini temel alır. Ağırlık katsayı olan k_1 katsayısını tanımlamak için birinci dereceden türev denklemi kullanılır. RUN algoritması, amaç fonksiyonun uygunluk değerini ($y(x_n)$) değil, pozisyonlarını (x_n) kullanır. Böylece hesaplama süresinde avantaj elde etmek amaçlanır. "Eş. (3.21)"de RK4 yönteminin temel denklemi verilmiştir.

$$y(x) = \frac{y(x+\Delta x) - y(x-\Delta x)}{2\Delta x}$$
(3.21)

Bu denklemde $(x_n + \Delta x)$ ve $(x_n - \Delta x)$, x_n pozisyonunun komşularıdır. y(x) bir minimizasyon problemi olarak düşünülürse, $(x_n + \Delta x)$ ve $(x_n - \Delta x)$ sırasıyla en kötü ve en iyi çözümdür. Popülasyona dayalı algoritma oluşturmak için $x_n + \Delta x = x_w$ (x_k etrafındaki en kötü çözüm), $x_n - \Delta x = x_b$ (x_n etrafındaki en iyi çözüm) eşitlemeleri yapılır. Ağırlık katsayısı k_1 denklemi "Eş. (3.22)"deki gibi yazılabilir.

$$k_1 = \frac{x_w - x_b}{2\Delta x} \tag{3.22}$$

Burada x_w ve x_b , her iterasyonda elde edilen en kötü ve en iyi çözümlerdir. Bunlar; popülasyon üyelerinden seçilen üç rastgele çözüme (x_{r1}, x_{r2}, x_{r3}) ve $r1 \neq r2 \neq r3 \neq n$ 'e göre belirlenir. Keşif aramasını geliştirmek ve rastgelelik davranışı oluşturmak için "Eş. (3.22)" tekrar düzenlenerek "Eş. (3.23-3.24)" elde edilir.

$$k_1 = \frac{1}{2\Delta x} (rand \times x_w - u \times x_b)$$
(3.23)

$$u = round(1 + rand) \times (1 - rand)$$
(3.24)

Genel olarak, en iyi çözüm (x_b) umut vaat eden alanları bulmada ve küresel en iyi çözüme doğru ilerlemede önemli bir rol oynamaktadır. Bu sebeple x_b 'nin önemini arttırmak için rastgele bir parametre (u) kullanılmıştır. Eş. (3.25-3.27)

$$\Delta x = 2 \times rand \times |Stp| \tag{3.25}$$

$$Stp = rand \times ((x_b - rand \times x_{avg}) + \gamma)$$
 (3.26)

$$\gamma = rand \times (x_n - rand \times (u - 1)) \times \exp(-4 \times \frac{i}{Maxi})$$
 (3.27)

Burada Δx , *Stp* parametresine bağlı konum artışını göstermektedir. *Stp* parametresi, x_b ve x_{avg} arasındaki adım boyutu, γ optimizasyon işlemi sırasında üstel olarak azalan, çözüm uzayının boyutu tarafından belirlenen bir ölçek faktörüdür. x_{avg} , her iterasyondaki çözüm

uzayının ortalamasıdır. Denklemlerde *rand* kullanılması çözümleri çeşitlendirmek içidir. Verilen bu bilgiler ışığında Runge kutta yönteminin diğer ağırlıklı katsayılarının denklemleri "Eş. (3.29-3.30)" da verilmiştir.

$$k_{2} = \frac{1}{2\Delta x} \left(rand. \left(x_{w} + rand_{1}. k_{1}. \Delta x \right) - \left(u. x_{b} + rand_{2}. k_{1}. \Delta x \right) \right)$$
(3.28)

$$k_{3} = \frac{1}{2\Delta x} \left(rand. \left(x_{w} + rand_{1} \cdot \frac{1}{2} k_{2} \cdot \Delta x \right) - \left(u \cdot x_{b} + rand_{2} \cdot \frac{1}{2} k_{2} \cdot \Delta x \right) \right)$$
(3.29)

$$k_4 = \frac{1}{2\Delta x} \left(rand. \left(x_w + rand_1. k_3. \Delta x \right) - \left(u. x_b + rand_2. k_3. \Delta x \right) \right)$$
(3.30)

Burada $rand_1$ ve $rand_2$, [0, 1] aralığında iki rastgele sayıdır. RUN algoritmasında x_w ve x_b "Eş. (3.31)"deki koşullara göre belirlenir.

$$if f(x_n) < f(x_{bi})$$

$$x_b = x_n$$

$$x_w = x_{bi}$$

$$else$$

$$x_b = x_{bi}$$

$$x_w = x_n$$

$$end$$
(3.31)

Burada x_{bi} , üç rastgele çözümden (x_{r1} , x_{r2} , x_{r3}) seçilen en iyi rastgele çözümdür. RUN'daki önde gelen arama mekanizması "Eş. (3.32-3.33)"deki gibi tanımlanır. Burada *SM* arama mekanizmasını ifade etmektedir.

$$SM = \frac{1}{6} (x_{RK}) \Delta x \tag{3.32}$$

$$x_{RK} = k_1 + 2 \times k_2 + 2 \times k_3 + k_4 \tag{3.33}$$

3.3.3. Çözümlerin güncellenmesi

RUN algoritması, optimizasyon sürecini bir dizi rastgele birey (çözüm) ile başlatır. Her iterasyonda çözümler, RK yöntemini kullanarak konumlarını günceller. Küresel (keşif) ve yerel (sömürü) aramayı sağlamak için, bir sonraki konum "Eş. (3.34)" de verilen sıralama takip edilerek oluşturulur.

iterasyon: if rand < 0.5 (keşif fazı) $x_{n+1} = (x_c) + SF \times SM + \mu \times x_s$ else $x_{n+1} = (x_m) + SF \times SM + \mu \times x_s$ end $\mu = 0.5 + 0.1 \times randn$ (3.34)

"Eş. (3.34)" de μ rasgele bir sayıdır, *randn* normal dağılıma sahip rasgele bir sayıdır. x_s , x_s , x_c ve x_m "Eş. (3.35-3.38)" de gösterilmiştir.

$$x_s = randn. \left(x_m - x_c\right) \tag{3.35}$$

$$x_{s} = randn. (x_{r1} - x_{r2}) \tag{3.36}$$

$$x_c = \varphi \times x_n + (1 - \varphi) \times x_{r1} \tag{3.37}$$

$$x_m = \varphi \times x_{best} + (1 - \varphi) \times x_{lbest}$$
(3.38)

Burada φ [0 1] aralığında rasgele sayıdır, x_{best} şimdiye kadarki en iyi çözüm, x_{lbest} her yinelemede elde edilen en iyi çözümdür. *SF* uyarlanabilir faktör olup "Eş. (3.39)"da verilmiştir.

$$SF = 2.(0.5 - rand) \times f$$
 (3.39)

$$f = a \times \exp\left(-b \times rand \times \left(\frac{i}{Maxi}\right)\right)$$
(3.40)

a ve *b* iki sabit sayıdır, *i* yineleme sayısı, *Maxi* maksimum yineleme sayısıdır. RUN da keşif ve sömürü arasında uygun bir denge sağlamak için *SF* kullanılmıştır. Eşitlikler incelendiğinde, çeşitliliği artırmak ve keşif aramasını geliştirmek için ilk iterasyonlarda büyük bir *SF* değeri belirtilir; daha sonra, iterasyon sayısını arttıkça sömürü arama fazının gelişmesi için değeri azaltılır. RUN'ın ana kontrol parametreleri, *SF*'de kullanılan *a* ve *b*'dir. "Eş. (3.41)"deki kurallara göre, RUN'un arama ve sömürü aşamalarını *rand* < 0.5 koşuluna göre seçilir. Eğer *rand* < 0.5 ise, çözüm uzayında global bir arama yapar ve eş zamanlı olarak x_c çözümü etrafında yerel arama yapar. Eğer *rand* ≥ 0.5 ise x_m çözümü çevresinde yerel bir arama yapmaya başlar. Yerel aramayı x_c ve x_m çözümleri etrafında gerçekleştirmek için, arama uzayı aşağıdaki koşula göre yeniden yazılır.

$$if rand < 0.5 (keşif fazı)$$

$$x_{n+1} = (x_c + r \times SF \times g \times x_c) + SF \times SM + \mu \times x_s$$

$$else$$

$$x_{n+1} = (x_c + r \times SF \times g \times x_m) + SF \times SM + \mu \times x_s$$

$$end$$

$$\mu = 0.5 + 0.1 \times randn\mu = 0.5 + 0.1 \times randn$$

$$(3.41)$$

Burada r, 1 veya – 1 olan bir tam sayıdır. Bu r parametresi arama yönünü değiştirir ve çeşitliliği artırır. g, [0, 2] aralığında rastgele bir sayıdır. Denklemlere göre iterasyon sayısı arttıkça x_c etrafındaki yerel arama azalır.

3.3.4. Gelişmiş çözüm kalitesi

RUN algoritmasında, çözümlerin kalitesini artırmak ve her yinelemede yerel optimumdan kaçınmak için geliştirilmiş çözüm kalitesi kullanılır. Geliştirilmiş çözüm kalitesi uygulayarak, RUN algoritması her çözümün daha iyi bir konuma doğru hareket etmesini sağlar. RUN'da, üç rastgele çözümün (x_{avg}) ortalaması hesaplanır ve yeni bir çözüm (x_{new1}) oluşturmak için en iyi konum (x_b) ile birleştirilir. Geliştirilmiş çözüm kalitesi ile çözümü (x_{new2}) oluşturmak için "Eş. (3.42)" deki kurallar takip edilmelidir.

$$if \ rand < 0.5$$

$$if \ w < 1$$

$$x_{new2} = x_{new1} + r.w. |(u. x_{new1} - x_{avg}) + randn|$$

$$else$$

$$x_{new2} = (x_{new1} - x_{avg}) + r.w. |(u. x_{new1} - x_{avg}) + randn|$$

$$end$$

$$end$$

$$end$$

Burada w, x_{avg} , x_{new1} ifadeleri sırasıyla "Eş. (3.43-3.45)" de verilmiştir.

$$w = rand(0,2).\exp\left(-c\left(\frac{i}{Maxi}\right)\right)$$
(3.43)

$$x_{avg} = \frac{x_{r1} + x_{r2} + x_{r3}}{3} \tag{3.44}$$

$$x_{new1} = \beta \times x_{avg} + (1 - \beta) \times x_{best}$$
(3.45)

 β [0, 1] aralığında rastgele bir sayıdır. $c = 5 \times rand$, w, artan yineleme sayısıyla azalan rastgele bir sayıdır. Bu kısımda (x_{new2}) hesaplanan çözüm, mevcut çözümden daha iyi uygunluğa sahip olmayabilir ($f(x_{new2}) > f(x_n)$). İyi bir çözüm oluşturmak için "Eş. (3.46)"daki gibi tanımlanan başka bir yeni çözüm (x_{new3}) oluşturulur.

$$if \ rand < w$$

$$x_{new3} = (x_{new2} - rand. x_{new2}) + SF. (rand. x_{RK} + (v. x_b - x_{new2}))$$
(3.46)

Parametre çıkarımı probleminin çözümü için kullanılan RUN algoritmasının akış diyagramı Şekil 3.3'de verilmiştir.

Şekil 3.3. Parametre çıkarımı probleminin çözümü için kullanılan RUN algoritmasının akış diyagramı

3.4. Vektörlerin Ağırlıklı Ortalamasına Dayalı Optimizasyon Algoritması

Vektörlerin ağırlıklı ortalaması (weIghted meaN oF vectOrs –INFO) Ahmadianfar ve ark. tarafından 2022 yılında ortaya atılmıştır [76]. INFO, popülasyon tabanlı bir algoritmadır.

Popülasyon, bir dizi vektör içerir. Olası çözümlere karşılık gelen vektörlerin ağırlıklı ortalaması hesaplanır. Başlangıç aşaması, güncelleme kuralı, vektörlerin birleşimi ve yerel arama olmak üzere dört aşamada çalışmaktadır. INFO algoritması, "Eş. (3.47)"de verilen ağırlıklı ortalamayı temel almıştır.

$$WM = \frac{\left(\sum_{i=1}^{N} x_i \times w_i\right)}{\left(\sum_{i=1}^{N} w_i\right)} \tag{3.47}$$

Burada N, vektör sayısıdır. Denkleme göre WM, ağırlıklı ortalama, pozisyonların ortalaması (x_i) ve vektörlerin ağırlıkları (w_i) ile bulunur. Her bir vektörün ağırlıkları ise dalgacık fonksiyonu tabanlı olarak "Eş. (3.48)" ile hesaplanır. Bu denkleme göre w genişleme parametresi olarak isimlendirilen sabit bir sayıdır.

$$w = \cos(x) \times \exp\left(-\frac{x^2}{\omega}\right) \tag{3.48}$$

3.4.1. Başlangıç aşaması

Bir dizi olası çözümler (X), vektör popülasyonu (N_{INFO}), problemin boyutu (D) gibi temel girdiler ve ağırlıklı ortalama faktörü (δ), ve ölçekleme faktörü (σ) olmak üzere iki adet kontrol parametreleri başlangıç aşamasında tanımlanır. Daha sonra rastgele başlangıç ile "Eş. (3.49)"daki gibi başlangıç vektörleri başlatılır.

$$X_{l,j}^{t} = \left\{ X_{l,1}^{t}, X_{l,2}^{t}, \cdots, X_{l,D}^{t} \right\}$$

$$l = 1, 2, 3, \cdots, N_{INFO}$$
(3.49)

3.4.2. Güncelleme kuralı

Güncelleme kuralının görevi çeşitliliği arttırmaktır ve iki aşamada gerçekleştirilir. Birinci aşamada, bir dizi vektörün ağırlıklı ortalaması değerlendirilir ve buradan en kötü, en iyi, ve iyi çözüme dayalı bir kural çıkartılır. Rastgele bir başlangıç ile algoritma başlatılır. Başlangıç çözümünden bir sonraki çözüme geçişte çıkartılan bu kural yani rastgele vektörlerin ağırlıklı ortalama bilgileri kullanılır. Bu ortalama kuralı (*MeanRule*) "Eş. (3.50)"de verilmiştir.

$$MeanRule = r \times WM1_{l}^{t} + (1 - r) \times WM2_{l}^{t}$$
(3.50)

$$WM1_{l}^{t} = \delta \times \left[\begin{pmatrix} w_{1}(x_{a1} - x_{a2}) + \\ w_{2}(x_{a1} - x_{a3}) + \\ w_{3}(x_{a2} - x_{a3}) \end{pmatrix} / (w_{1} + w_{2} + w_{3} + \varepsilon) \right] + (\varepsilon \times rand)$$
(3.51)

$$w_1 = \cos((f(x_{a1}) - f(x_{a2})) + \pi) \times \exp(-|(f(x_{a1}) - f(x_{a2}))/\omega|)$$
(3.52)

$$w_2 = \cos((f(x_{a1}) - f(x_{a3})) + \pi) \times \exp(-|(f(x_{a1}) - f(x_{a3}))/\omega|)$$
(3.53)

$$w_3 = \cos((f(x_{a2}) - f(x_{a3})) + \pi) \times \exp(-|(f(x_{a2}) - f(x_{a3}))/\omega|)$$
(3.54)

$$\omega = \max(f(x_{a1}), f(x_{a2}), f(x_{a3}))$$
(3.55)

$$WM2_{l}^{t} = \delta \times \left[\begin{pmatrix} w_{1}(x_{bs} - x_{bt}) + \\ w_{2}(x_{bs} - x_{ws}) + \\ w_{3}(x_{bt} - x_{ws}) \end{pmatrix} / (w_{1} + w_{2} + w_{3} + \varepsilon) \right] + (\varepsilon \times rand)$$
(3.56)

$$w_{1} = \cos((f(x_{bs}) - f(x_{bt})) + \pi) \times \exp(-|(f(x_{bs}) - f(x_{bt}))/\omega|)$$
(3.57)

$$w_{2} = \cos((f(x_{bs}) - f(x_{ws})) + \pi) \times \exp(-|(f(x_{bs}) - f(x_{ws}))/\omega|)$$
(3.58)

$$w_3 = \cos((f(x_{bt}) - f(x_{ws})) + \pi) \times \exp(-|(f(x_{bt}) - f(x_{ws}))/\omega|)$$
(3.59)

$$\omega = f(x_{ws}) \tag{3.60}$$

$$\delta = 2 \times \beta \times rand - \beta \tag{3.61}$$

$$\beta = \alpha = 2 \times exp\left(-4 \times \frac{t}{T_{INFO}}\right) \tag{3.62}$$

Ortalama kuralda yer alan, 1st WM ($WM1_l^t$) ve 1st WM'de yer alan denklemler olan birinci dalgacık fonksiyonu (w_1), ikinci dalgacık fonksiyonu (w_2), üçüncü dalgacık fonksiyonu (w_3) ve genişleme parametresi (ω) "Eş. (3.51-3.55)"de verilmiştir. Devamında ise ikinci WM ($WM2_l^t$) ve ikinci WM'de yer alan denklemler olan birinci dalgacık fonksiyonu (w_1), ikinci dalgacık fonksiyonu (w_2), üçüncü dalgacık fonksiyonu (w_3) ve genişleme parametresi (ω) "Eş. (3.56-3.60)"da verilmiştir. Ölçekleme faktörü (δ) "Eş. (3.61)"de verilmiştir. Maksimum iterasyon (T_{INFO}) ve mevcut iterasyona (t) bağlı olarak üstel fonksiyona göre hesaplanan β Eş. (3.62)'de sunulmuştur. Güncelleme kuralının ikinci aşamasının görevi yakınsamayı hızlandırmaktır. Bu aşama, algoritmanın performansı üzerinde etkili olup en iyi sonuca erişmeyi hedefler. Bunu ise, Eş. (3.63)'de görüldüğü üzere vektörleri daha iyi bir yöne yönlendirmek için her nesilde adım boyutunu farklılaştırır. Elde edilen yeni vektör (z_l^t) Eş. (3.64)' verilmiştir.

$$CA = \begin{cases} randn \times \left(\frac{x_{bs} - x_{a_1}^t}{f(x_{bs}) - f(x_{a_1}^t) + 1}\right) \\ randn \times \left(\frac{x_{a_2}^t - x_{a_3}^t}{f(x_{a_2}^t) - f(x_{a_3}^t) + 1}\right) \\ randn \times \left(\frac{x_{a_1}^t - x_{a_2}^t}{f(x_{a_1}^t) - f(x_{a_2}^t) + 1}\right) \end{cases}$$
(3.63)

$$z_l^t = x_l^t + \sigma \times MeanRule + CA \tag{3.64}$$

Keşif fazını destekleyen ve global aramaya olanak tanıyan güncelleme kuralı ($Rule_{ur}$) Eş. (3.65)'de verilmiştir. r parametresine göre birinci ve ikinci vektörlere yeni vektör güncelleme kuralı uygulanır. Vektörlerin ölçekleme faktörü (σ) Eş. (3.66)'da verilmiştir. σ keşif ve sömürü ile ilişkilidir. σ 'nın aldığı değerler küçük ise vektörlerin ağırlıklı ortalaması referans alınır ve geçerli konumu yönlendirmede bu ağırlıklı ortama kullanılır. Böylece sömürü fazı yapılır. σ 'nın aldığı değerler büyük olduğunda ise ağırlıklı ortalamadan sapma ve keşif eğilimi doğmaktadır. σ 'nın hesaplanmasında yer alan ve üstel olarak değişen α Eş. (3.67)'de sunulmuştur. c ve d sabit sayılar olup, sırasıyla 2 ve 4'e eşittir.

$$Rule_{ur} = \begin{cases} z1_{l}^{t} = x_{l}^{t} + \sigma \times MeanRule + \left[\binom{x_{bs}}{-x_{a1}^{t}}\right] / \binom{f(x_{bs})}{-f(x_{a1}^{t}) + 1} & r < 0.5 \\ z2_{l}^{t} = x_{bs} + \sigma \times MeanRule + \left[\binom{x_{a1}^{t}}{-x_{b}^{t}}\right] / \binom{f(x_{a1}^{t})}{-f(x_{a2}^{t}) + 1} & r < 0.5 \\ z1_{l}^{t} = x_{a}^{t} + \sigma \times MeanRule + \left[\binom{x_{a2}^{t}}{-x_{a3}^{t}}\right] / \binom{f(x_{a2}^{t})}{-f(x_{a3}^{t}) + 1} & r \ge 0.5 \\ z2_{l}^{t} = x_{bt} + \sigma \times MeanRule + \left[\binom{x_{a1}^{t}}{-x_{a2}^{t}}\right] / \binom{f(x_{a1}^{t})}{-f(x_{a2}^{t}) + 1} & r \ge 0.5 \end{cases}$$
(3.65)

 $\sigma = 2 \times \alpha \times rand - \alpha \tag{3.66}$

$$\alpha = c \times exp\left(-d \times \frac{t}{T_{INFO}}\right) \tag{3.67}$$

3.4.3. Vektörlerin birleşimi

INFO algoritmasının üçüncü aşaması vektörlerin birleşimidir. Bu aşamanın görevi popülasyon çeşitliliğini arttırmak ve yerel aramayı geliştirmektir. Bunun için, güncelleme kuralı operatöründe elde edilen $z1_l^t$ ve $z2_l^t$ vektörleri Eş. (3.68)'de görüldüğü üzere vektörlerin birleşimi kuralına göre birleştirilir ve yeni bir vektör elde edilir. Bu güncelleme kuralında kullanılan μ Eş. (3.69)'da verilmiştir.

$$Rule_{vc} = \begin{cases} u_l^t = z 1_l^t + \mu . |z 1_l^t - z 2_l^t| & rand_2 < 0.5\\ u_l^t = z 2_l^t + \mu . |z 1_l^t - z 2_l^t| & rand_2 \ge 0.5\\ u_l^t = x_l^t & rand_1 \ge 0.5 \end{cases}$$
(3.68)

$$\mu = 0.05 \times randn \tag{3.69}$$

3.4.4. Yerel arama

INFO algoritmasının dördüncü aşaması yerel aramadır. Bu aşamanın görevi, global en iyi noktaya ulaşmak için sömürüye teşvik etmektir. Bunu, global pozisyon (x_{best}^t) ve ortalama kuralını kullanarak ve yeni bir vektör üreterek gerçekleştirir. Güncelleme kuralı $(Rule_{lc})$, yeni çözüm (x_{rnd}) ve ortalama çözüm (x_{avg}) denklemleri "Eş. (3.70-3.74)"de verilmiştir.

$$Rule_{lc} = \begin{cases} u_l^t = x_{bs} + randn \times (MeanRule + randn \times (x_{bs}^t - x_{a1}^t)), rand_2 < 0.5 \\ u_l^t = x_{rnd} + randn \times (MeanRule + randn \times (v_1 \times x_{bs} - v_2 \times x_{rnd})), rand_2 \ge 0.5 \end{cases}$$
(3.70)

$$x_{rnd} = \phi \times x_{avg} + (1 - \phi) \times (\phi \times x_{bt} + (1 - \phi) \times x_{bs})$$
(3.71)

$$x_{avg} = (x_a + x_b + x_3)/3 \tag{3.72}$$

$$v_1 = \begin{cases} 2 \times rand & p > 0.5\\ 1 & p \le 0.5 \end{cases}$$
(3.73)

$$v_2 = \begin{cases} rand & p < 0.5\\ 1 & p \ge 0.5 \end{cases}$$
(3.74)

Parametre çıkarımı için kullanılan INFO algoritmasının akış diyagramı Şekil 3.4'de verilmiştir.

Şekil 3.4. Parametre çıkarımı probleminin çözümü için kullanılan INFO algoritmasının akış diyagramı

3.5. Yapay Sinek Kuşu Algoritması

YSKA 2022 yılında Zhao ve ark. tarafından ortaya atılmıştır [77]. YSKA, sinek kuşlarının uçma yetenekleri, hafıza kapasiteleri ve yiyecek arama yöntemlerinden esinlenilmiştir. YSKA üç bileşenden oluşur. Bunlar, yiyecek kaynakları, sinek kuşları ve ziyaret tablosudur.

Sinek kuşları bir dizi besin kaynağından en uygununu seçmek için, tüm çiçeklerin nektar kalitesi, nektar doldurma oranı ve son ziyaret zamanı olmak üzere tüm çiçekleri değerlendirir. YSKA'da bu davranışı basitleştirmek için, her besin kaynağının aynı sayıda ve aynı türde çiçeklere sahip olduğu varsayılır. Bir besin kaynağı bir çözüm vektörüdür ve bir besin kaynağının nektar doldurma hızı, amaç fonksiyonun uygunluk değeri ile temsil edilir. Uygunluk değeri ne kadar iyi olursa, besin kaynağının nektar doldurma oranı o kadar yüksektir.

Her sinek kuşu her zaman beslenebileceği belirli bir yiyecek kaynağına atanır, atanan bu sinek kuşu ve yiyecek kaynağı aynı konumdadır. Bir sinek kuşu, bu besin kaynağının konumunu ve nektar doldurma oranını aklında tutabilir ve bilgiyi bir popülasyondaki diğer sinek kuşlarıyla paylaşabilir. Ayrıca her bir sinek kuşu için, her bir besin kaynağının ne kadar süreyle tek başına ziyaret edilmediğini de hatırlayabilir.

Ziyaret tablosu, farklı sinek kuşlarının her bir besin kaynağı için ziyaret seviyesini kaydeder; bu, aynı sinek kuşunun o ana kadar belirli bir besin kaynağını en son ziyaret etmesinden bu yana geçen süreyi gösterir. Bir sinekkuşu için ziyaret seviyesi yüksek olan besin kaynağına, o sinekkuşu için öncelikli olarak ziyaret edilir. Bir sinek kuşu, daha fazla nektar elde etmek için, aynı en yüksek ziyaret düzeyine sahip besin kaynakları arasında en yüksek nektar doldurma oranına sahip besin kaynağını ziyaret etme eğilimindedir. Her sinek kuşu, ziyaret tablosu aracılığıyla hedef besin kaynağını bulabilir. Ziyaret tablosu genellikle her yineleme sırasında güncellenir. Başlangıç, yönlendirilmiş yiyecek arama, bölgesel yiyecek arama, yiyecek aramada göç olmak üzere dört aşamada YSKA matematiksel olarak modellenir.

3.5.1. Başlangıç aşaması

Popülasyonda n adet sinek kuşu, n tane besin kaynağının olduğu varsayılırsa başlangıç konumlar Eş. (3.75)'e göre rastgele başlatılır.

$$x_i = Low + r \cdot (Up - Low) \quad i = 1, \dots, n \tag{3.75}$$

Burada, *d* boyutlu bir problem için sırasıyla *Low* ve *Up*, üst ve alt sınırlardır, *r* [0, 1]'deki rastgele bir vektördür ve x_i , verilen bir problemin çözümü olan *i*'inci besin kaynağının konumunu temsil eder. Ziyaret tablosu Eş. (3.76)'da verilmiştir.

$$VT_{i,j} = \begin{cases} 0 & if \quad i \neq j \\ null & i = j \end{cases} \quad i = 1, ..., n; \ j = 1, ..., n$$
(3.76)

i = j için, $VT_{i,j} = null$, bir sinek kuşunun belirli besin kaynağında yiyecek aldığını gösterir; için $i \neq j$, $VT_{i,j} = 0$, j'inci besin kaynağının geçerli yinelemede *i*. sinek kuşu tarafından ziyaret edildiğini gösterir.

3.5.2. Yönlendirilmiş yiyecek arama

Sinek kuşları yüksek nektar hacmine sahip besin kaynağına doğru bir eğilimleri vardır. YSKA'da bir sinek kuşunun, yönlendirilmiş yiyecek arama davranışı için en yüksek ziyaret düzeyine sahip besin kaynaklarını belirlemesi ve daha sonra bunlardan en yüksek nektar doldurma oranına sahip olanı hedef yiyecek kaynağı olarak seçmesi beklenir. Hedef besin kaynağı belirlendikten sonra bu sinekkuşu beslenmek için ona doğru uçabilir. YKSA' ya çok yönlü, çapraz ve eksenel uçuşlar olmak üzere üç uçuş becerisi, bir yön değiştirme vektörü eklenerek yiyecek arama evresi modellenir. Eksenel uçuş, bir sinek kuşunun herhangi bir koordinat ekseni boyunca uçabileceğini gösterir. Köşegen uçuş, sinek kuşunun bir dikdörtgenin bir köşesinden karşı köşeye hareket etmesini ifade eder. Çok yönlü uçuş, herhangi bir uçuş yönünün üç koordinat ekseninin her birine yansıtılabileceğini gösterir. YSKA'da bu uçuş modelleri aşağıdaki denklemlerle matematiksel olarak modellenir.

$$D^{(i)} = \begin{cases} 1 & if \ i = randi([1,d]) \\ 0 & else \end{cases} \quad i = 1, ..., d$$
(3.77)

$$D^{(i)} = \begin{cases} 1 & if \ i = P(j), j \in [1, k], P = r \text{ and } per \ m(k), k \in [2, [r_1 \cdot (d - 2] + 1] \\ else \end{cases}$$
(3.78)

$$D^i = 1$$
 $i = 1, ..., d$ (3.79)

randi([1,d]) 1'den d'ye kadar rastgele bir tamsayı ürettiğinde, randperm(k) 1'den k'ye kadar olan tam sayıların rastgele bir permütasyon üretir ve r1, (0, 1]'de rastgele bir sayıdır. Bu uçuş yetenekleriyle, bir sinek kuşu hedef besin kaynağını ziyaret eder ve bunun sonucunda aday bir besin kaynağı oluşur. Böylece bir besin kaynağı, mevcut tüm kaynaklardan seçilen hedef besin kaynağına göre ziyaret tablosunda güncellenir. Yönlendirilmiş yiyecek arama davranışı Eş. (3.80)'de modellenmiştir.

$$v_i(t+1) = x_{i,tar}(t) + a \cdot D \cdot (x_i(t) - x_{i,tar}(t))$$
(3.80)

Burada xi(t), t zamanındaki i'nci besin kaynağının konumu, $x_{i,tar}(t)$, i'inci sinek kuşunun ziyaret etmeyi planladığı hedef besin kaynağının konumu ve a, ortalaması sıfır, standart sapması bir olan N(0,1) normal dağılımına tabi olan yönlendirilmiş bir faktördür. i'inci besin kaynağının konum güncellemesi Eş. (3.81)'deki gibidir.

$$x_i(t+1) = f(x) = \begin{cases} x_i(t), \ f(x_i(t)) \le f(v_i(t+1)) \\ v_i(t+1), \ f(x_i(t)) > f(v_i(t+1)) \end{cases}$$
(3.81)

Bu denklemde $f(\cdot)$ fonksiyonun uygunluk değerini gösterir.

YSKA algoritmasında ziyaret tablosu, gıda kaynaklarının ziyaret bilgilerini saklayan önemli bileşendir. Herhangi bir sinekkuşu ziyaret etmek istediği hedef besin kaynağını her iterasyonda ziyaret tablosuna göre bulabilir. Ziyaret tablosu, her bir besin kaynağının aynı sinek kuşu tarafından en son ziyaret edilmesinden bu yana ne kadar süreyle ziyaret edilmediğini kaydeder ve ziyaret edilmeyen uzun süre, yüksek ziyaret seviyesini gösterir. Her sinekkuşu, ziyaret seviyesi en yüksek olan besin kaynağını/kaynaklarını ister. Aynı en yüksek ziyaret seviyesi için birden fazla kaynak bağlıysa, bir sinek kuşunun ziyaret edeceği hedef besin kaynağı olarak en iyi nektar doldurma oranına sahip olan seçilir.

3.5.3. Bölgesel yiyecek arama

Bir sinek kuşu hedef besin kaynağını ziyaret ettikten sonra, mevcut diğer besin kaynaklarını ziyaret etmek yerine yeni bir besin kaynağı arama eğilimi içerisine girebilir. Bu nedenle, bir sinekkuşu, kendi bölgesi içinde, mevcut olandan daha iyi olabilecek bir aday çözüm olarak yeni bir besin kaynağının bulunabileceği komşu bölgeye kolayca hareket edebilir. Bölgesel yiyecek arama stratejisinde sinek kuşlarının yerel aramasını ve aday bir besin kaynağının matematiksel denklemi "Eş.(3.82)"de verilmiştir.

$$v_i(t+1) = x_i(t) + b \cdot D \cdot x_i(t)$$
(3.82)

Denklemlerdeki b, ortalaması sıfır, standart sapması bir olan N(0, 1) normal dağılımına tabi olan bölgesel bir faktördür.

3.5.4. Yiyecek aramada göç

Bir sinek kuşu sık sık ziyaret ettiği bir bölgede yiyecek sıkıntısı çektiğinde, bu sinek kuşu genellikle beslenmek için daha uzak bir besin kaynağına göç etme eğilimindedir. Bu durumu YSKA'da modellemek için denklemlere göç katsayısını eklenir. Eğer iterasyon sayısı, göç katsayısının önceden belirlenmiş değerini aşarsa, en kötü nektar doldurma oranına sahip besin kaynağında bulunan sinek kuşu, tüm arama uzayında rastgele üretilen yeni bir besin kaynağına göç eder ve ardından ziyaret tablosu güncellenir. Bir sinek kuşunun en kötü nektar doldurma hızına sahip kaynaktan rastgele üretilmiş yeni bir kaynağa göç davranışı "Eş. (3.83)"de modellenmiştir. Bu denklemde x_{wor} , popülasyondaki en kötü nektar doldurma oranına sahip besin kaynağını temsil eder. Nüfus büyüklüğüne göre göç katsayısı için "Eş. (3.84)" tavsiye edilmektedir.

$$x_{wor}(t+1) = Low + r \cdot (Up - Low) \tag{3.83}$$

$$M = 2n \tag{3.84}$$

Yönlendirilmiş yiyecek arama aşamasında, yiyecek kaynağı olmadığında, sinek kuşları hedef yiyecek kaynakları olarak farklı kaynaklara doğru hareket eder. Bu özellik daha yüksek bir araştırmaya ve yerel optimuma daha düşük bir yakınsama olasılığına yol açar. Yeni bir besin kaynağı tarafından güncellenen bir besin kaynağı olduğunda, aynı hedef besin kaynağı olarak eskisinden daha büyük olasılıkla bu güncellenmiş kaynak, diğer farklı besin kaynaklarında konuşlanmış sinek kuşlarını ona doğru hareket etmeye yönlendirecek ve daha yüksek bir sömürü ile sonuçlanacaktır. Matematiksel ifadelere göre, ilk iterasyonlar da, besin kaynakları arasındaki mesafenin uzun olması algoritmanın keşif yeteneğini vurgularken, mevcut iterasyonların artması mesafeyi adaptif olarak azaltır, böylece algoritmanın sömürü yeteneği vurgulanır. Bölgesel yiyecek arama aşamasında, bir sinek kuşu, yerel bölgesinde sömürü sürecindedir. Yiyecek aramada göç aşaması ise algoritmanın arama alanında keşif sürecinde olduğunu gösterir. Parametre çıkarımı için kullanılan YSKA algoritmasının akış diyagramı Şekil 3.5'de verilmiştir.

Şekil 3.5. Parametre çıkarımı probleminin çözümü için kullanılan YSKA algoritmasının akış diyagramı

3.6. Sürüngen Arama Algoritması

SAA Abualigah ve ark. tarafından 2022 yılında ortaya atılmıştır [78]. SAA; timsahların kuşatma mekanizması, avlanma mekanizması ve sosyal davranışlarından esinlenilmiştir. Algoritmanın başlangıç, kuşatma ve avlanma olmak üzere üç fazı vardır.

3.6.1. Başlangıç fazı

SAA algoritmasında optimizasyon işlemi, Eş. (3.85)'de gösterildiği gibi, rastgele oluşturulan bir dizi aday çözüm (X) ile başlar ve elde edilen en iyi çözüm, her iterasyon sonucunda optimum olarak kabul edilir.

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,j} & x_{1,n-1} & x_{1,n} \\ x_{2,1} & \cdots & x_{2,j} & \cdots & x_{2,n} \\ \cdots & \cdots & x_{i,j} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{N-1,1} & \cdots & x_{N-1,j} & \cdots & x_{N-1,n} \\ x_{,1} & \cdots & x_{N,j} & x_{N,n-1} & x_{N,n} \end{bmatrix}$$
(3.85)

$$x_{i,j} = rand \times (UB - LB) + LB, \ j = 1, 2, ..., n$$
 (3.86)

"Eş. (3.86)" da, $x_{i,j}$ *i*'inci çözümünün *j*'inci konumunu, *N* aday çözümlerin sayısını ve *n* verilen problemin boyutunu belirtir. *rand* rastgele bir değerdir *LB* ve *UB* sırasıyla verilen problemin alt ve üst sınırını ifade eder.

3.6.2. Kuşatma fazı

Kuşatma fazı algoritmanın keşif yeteneğiyle ilişkilendirilir. Timsahlar kuşatma sırasında, iki farklı hareket sergiler. Bunlar; yüksek yürüyüş ve gövde yürüyüşüdür. Bu hareketler algoritmanın geçiş bir arama uzayında çalışmasına olanak sağlar. SAA algoritması kuşatma ve avlanma fazları arasında geçiş yapabilir. Bu davranış dört koşula göre gerçekleşir. Toplam iterasyon sayısı dörde bölünerek bu koşullar oluşturulur.

Kuşatma fazı iki koşula bağlıdır. Yüksek yürüyüş hareketinde koşul $t < \frac{T}{4}$, gövde yürüyüşü hareketinde ise koşul $\frac{T}{4} < t \le 2\frac{T}{4}$, dir. Burada T toplam iterasyon sayısını, t ise mevcut

iterasyonu temsil eder. Bu koşullar, keşif yinelemelerinin yüksek yürüyüş için neredeyse yarısı, gövde yürüyüşü içinde diğer yarısını kullanacağı anlamına gelmektedir. Algoritma daha çeşitli çözümler üretmesi stokastik bir ölçekleme katsayısı da denklemlere eklenir. Timsahların kuşatma davranışı "Eş. (3.87)"de matematiksel olarak modellenmiştir.

$$x_{i,j}(t+1) = \begin{cases} Best_j(t) \times \eta_{(i,j)}(t) \times \beta - R_{(i,j)}(t) \times rand, & t \le \frac{T}{4} \\ Best_j(t) \times x_{(r_1,j)} \times ES(t) \times rand, & t \le 2\frac{T}{4} \text{ and } t > \frac{T}{4} \end{cases}$$
(3.87)

$$\eta_{(i,j)} = Best_j(t) \times P_{(i,j)}$$
(3.88)

$$R_{(i,j)} = \frac{Best_j(t) - x_{(r_2,j)}}{Best_j(t) + \varepsilon}$$
(3.89)

$$ES(t) = 2 \times r_3 \times \left(1 - \frac{1}{T}\right) \tag{3.90}$$

Burada $Best_j(t)$ şimdiye kadar elde edilen en iyi çözümdeki j'inci konumdur, rand [0 1] arasında rastgele bir sayıyı belirtmektedir. $\eta_{(i,j)}$ (4) arama operatörü, β keşif doğruluğunu kontrol eden parametredir. $R_{i,j}$, azaltma fonksiyonudur ve arama alanını azaltmak için kullanılır. r_1 ve r_2 , [1 N] arasında rastgele bir sayılardır ve $x_{r1,j}$, j'inci çözümünün rastgele bir konumunu belirtir. ES(t), iterasyon sayısı boyunca 2 ile -2 arasında rastgele azalan olasılık oranıdır. "Eş. (3.90)"da kullanılan 2 ifadesi, ES(t)'yi 2 ile 0 arasında olması için eklenen korelasyon değeridir. ϵ küçük bir değer, r_3 ; -1 ile 1 arasında rastgele bir tam sayıdır. $P_{(i,j)}$, "Eş.(3.91)" kullanılarak hesaplanan, elde edilen en iyi çözümün konumu ile mevcut çözümün konumu arasındaki yüzde farkıdır.

$$P_{(i,j)} = \alpha + \frac{x_{i,j} - M(x_i)}{Best_j(t) \times (UB_{(j)} - LB_{(j)} + \varepsilon}$$
(3.91)

$$M(x_i) = \frac{1}{n} \sum_{j=1}^{n} x_{i,j}$$
(3.92)

 $M(x_i)$, hesaplanan *i*'inci çözümünün ortalama konumlarıdır. $UB_{(j)}$ ve $LB_{(j)}$, sırasıyla *j*'inci konumunun üst ve alt sınırlarıdır. α hassas bir parametre olup değeri 0,1'dir. α 'nın görevi, iterasyonlar boyunca avcılık fazı için aday çözümler arasındaki farkı kontrol eder.

3.6.3. Avlanma fazı

Avlanma fazı algoritmanın sömürü yeteneğiyle ilişkilendirilir. Timsahlar avlanma sırasında av koordinasyonu ve işbirliği olmak üzere iki farklı strateji uygulayabilir. Bunlar yerel aramayı (sömürü) ifade etmektedir. Timsahların bu stratejileri hedef ava kolayca yaklaşmalarını sağlar. Algoritmanın sömürü (yerel) yeteneği, birkaç denemeden sonra, optimuma yakın çözümü keşfedebilir. Avlanma fazında, optimal çözüme yakın bir yoğunlaştırma araştırması yapmak ve aralarındaki iletişimi vurgulamak için sömürü mekanizmaları yani timsah stratejileri çalıştırılır.

SAA' nın sömürü mekanizmaları, kuşatma fazında olduğu gibi iki ana arama stratejisini (av koordinasyonu ve av işbirliği) kullanmaya dayalı en uygun çözümü bulmak için arama uzayını ve yaklaşımı kullanır. Av koordinasyonunda koşul $2\frac{T}{4} < t \le 3\frac{T}{4}$, av işbirliği stratejisinde ise $3\frac{T}{4} < t \le T$ 'dir. Avlanma fazının matematiksel modeli Eş. (3.93)'de verilmiştir.

$$x_{i,j}(t+1) = \begin{cases} Best_j(t) \times P_{(i,j)}(t) \times rand, & t \le 3\frac{T}{4} \text{ and } t > 2\frac{T}{4} \\ Best_j(t) - \eta_{(i,j)}(t) \times \varepsilon - R_{(i,j)}(t) \times rand, & t \le T \text{ and } t > 3\frac{T}{4} \end{cases}$$
(3.93)

Parametre çıkarımı için kullanılan SAA algoritmasının akış diyagramı Şekil 3.6'da verilmiştir.

Şekil 3.6. Parametre çıkarımı probleminin çözümü için kullanılan SAA algoritmasının akış diyagramı

4. MAKSİMUM GÜÇ NOKTASI TAKİBİ YÖNTEMLERİ

MGNT FV sistemlerde bir FV dizinin maksimum verimde çalışabilmesi için sıklıkla kullanılan bir yöntemdir. Güneş enerjisi ile çalışan sistemlerin kurulumunun pahalı olması, kullanılan modüllerin veriminin düşük olmasından dolayı bir FV sistemin maksimum verimde yani maksimum güçte çalışması istenir. MGNT'nin temel amacı FV diziyi MGN noktasında çalıştırmaktır. MGN noktası sabit olmayıp, ışınım ve sıcaklıkla değişmektedir.

MGNT yöntemleri, geleneksel yöntemler, meta sezgisel yöntemler, hibrit yöntemler gibi gruplara ayrılabilir. Bu tez çalışmasında meta sezgisel tabanlı yöntemler kullanılmıştır. Dolayısıyla bu bölümde MGNT için kullanılan meta sezgisel algoritmalar anlatılacaktır.

4.1. Parçacık Sürü Optimizasyon Algoritması

PSO algoritması Eberhant ve ark. tarafından 1995 yılında ortaya atılmıştır [79]. PSO, sürü halinde hareket eden kuş, balık, böcek gibi hayvanların davranışlarından esinlenilmiştir. PSO'nun temeli parçacıklar arasındaki bilgi alışverişine dayanır. Algoritmanın temel amacı, arama uzayında parçacıkların en iyi konuma ulaşmasını sağlamaktır. PSO'da sürü içerisindeki tüm parçacıklar ziyaret ettiği en iyi konum bilgisini kaydeder. Parçacıklar tekrar hareket etmeden önce, şimdiye kadar bulunan en iyi konum bilgisinin sürüdeki diğer parçacıklarla paylaşılabilmesi için, tüm ekip iletişim kurar. PSO'da parçacıkların konumu, parçacıkların hızına bağlıdır. PSO'nun pozisyon ve hız denklemleri "Eş. (4.1-4.2)"de verilmiştir.

$$v_i(t+1) = w \times v_i(t) + c_1 \times r_1 \times (P_{best_i} - x_i(t)) + c_2 \times r_2 \times (G_{best} - x_i(t))$$
(4.1)

$$x_i(t+1) = x_i(t) + v_i(t+1)$$
(4.2)

Burada v, parçacıkların hız, x ise pozisyon vektörleridir. t mevcut iterasyon, c_1 ve c_2 sırasıyla bireysel ve sosyal bileşenler olup [0 2] aralığında seçilir. w eylemsizlik sabiti olup, denklem 4.3'teki gibi hesaplanır. P_{best} mevcut iterasyondaki en iyi konum (yerel çözüm), G_{best} ise küresel olarak en iyi konumdur. c_1 , c_2 ve w parametreleri, algoritmanın keşif ve sömürü aşamasına etki eder.

$$w = w_{maks} - t \times \frac{w_{maks} - w_{min}}{t_{maks}}$$
(4.3)

"Eş. (4.3)" de w_{maks} ve w_{min} sırasıyla eylemsizlik parametresinin maksimum ve minimum değerleridir. t_{maks} ise toplam iterasyon sayısıdır. MGNT için kullanılan PSO algoritmasının akış diyagramı Şekil 4.1'de verilmiştir.

Şekil 4.1. MGNT için PSO algoritmasının akış diyagramı

4.2. Gri Kurt Optimizasyon Algoritması

Gri kurt optimizasyon algoritmasının detaylı anlatımı bölüm 3.2'de yapılmıştır. Bu tez çalışmasında GKO algoritmasını hem FV dizilerin bilinmeyen parametrelerini tahmin etmede hem de MGNT amacıyla kullanılmıştır. MGNT için kullanılan GKO algoritmasının akış diyagramı Şekil 4.2'de verilmiştir.

Şekil 4.2. MGNT için GKO algoritmasının akış diyagramı

4.3. Vektörlerin Ağırlıklı Ortalamasına Dayalı Optimizasyon Algoritması

INFO optimizasyon algoritmasının detaylı anlatımı bölüm 3.4'de yapılmıştır. Bu tez çalışmasında INFO algoritmasını hem FV dizilerin bilinmeyen parametrelerini tahmin etmede hem de MGNT amacıyla kullanılmıştır. MGNT için kullanılan INFO' nun akış diyagramı Şekil 4.3'de verilmiştir.

Şekil 4.3. MGNT için INFO algoritmasının akış diyagramı

4.4. Yapay Sinek Kuşu Algoritması

YSKA optimizasyon algoritmasının detaylı anlatımı bölüm 3.5'de verilmiştir. Bu tez çalışmasında YSKA algoritmasını hem FV dizilerin bilinmeyen parametrelerini tahmin etmede hem de MGNT amacıyla kullanılmıştır. MGNT için kullanılan YSKA' nın akış diyagramı Şekil 4.4'de verilmiştir.

Şekil 4.4. MGNT için YSKA algoritmasının akış diyagramı
5. SİSTEMİN MODELLENMESİ

FV hücre ve modüllerin tek ve çift diyotlu elektriksel eşdeğer devre modelleri MATLAB/Simulink yazılımında modellenmiştir. MATLAB/Simulink simülasyon programının hazır modülleri kullanılmamış olup eşdeğer devre modelleri, bölüm 2'de verilen matematiksel denklemler temel alınarak oluşturulmuştur.

5.1. Tek Diyotlu Eşdeğer Devrenin Modellenmesi

"Eş. (5.1)" de verilen tek diyotlu eşdeğer devrenin çıkış akımı denkleminin modellenmesi gerekmektedir. Bu denkleme göre foton akımı, diyot akımı, seri ve paralel dirençler modele eklenmesi gerekmektedir.

$$I = I_{ph} - I_o x \left[e^{\frac{q x (V+I x R_s x N_s)}{\alpha x k x T x N_s}} - 1 \right] - \frac{V+I x R_s x N_s}{R_p x N_s}$$
(5.1)

5.1.1. Foton akımının modellenmesi

Foton akımının denklemi Eş. (5.2)'de verilmiştir. Foton akımının MATLAB/Simulink modeli Şekil 5.1'de verilmiştir.

$$I_{ph} = \left[I_{ph_{STK}} + K_i x(T - T_{ref})\right] x \frac{G}{G_{ref}}$$
(5.2)

Şekil 5.1. Foton akımının MATLAB/Simulink modeli

5.1.2. Diyot akımının modellenmesi

Diyot akımının modellenebilmesi için diyotun ters yönde doyma akımının (I_o) denklemine ihtiyaç vardır. "Eş. (5.3)"de verilen diyot akımının MATLAB/Simulink modeli Şekil 5.3'de verilmiştir.

$$I_o = I_{oref} \times \left(\frac{T_{ref}}{T}\right)^3 \times exp\left[\frac{q}{\alpha \times k} \times \left(\frac{E_{gref}}{T_{ref}} - \frac{E_g}{T}\right)\right]$$
(5.3)

Tek diyotlu eşdeğer devrede foton ve diyot akımlarından sonra seri ve paralel dirençlerden eklenerek model tamamlanır. Tek diyotlu eşdeğer devre hem hücre modeli hem de modül modeli içinde kullanılabilir. Bundan dolayı seri ve paralel bağlı dirençler, seri ve paralel bağlı hücre sayısı göz önüne alınarak eklenir. Şekil 5.2'de oluşturulan TDM'nin modeli verilmiştir.

Şekil 5.2. Tek diyotlu eşdeğer devrenin MATLAB/Simulink modeli

Şekil 5.3. Diyot akımının MATLAB/Simulink modeli

5.2. Çift Diyotlu Eşdeğer Devrenin Modellenmesi

"Eş. (5.4)" de verilen çift diyotlu eşdeğer devrenin çıkış akımı denkleminin modellenmesi gerekmektedir. Bu denkleme göre foton akımı, iki diyot akımı, seri ve paralel dirençler modele eklenmesi gerekmektedir.

5.2.1. Diyot akımlarının modellenmesi

Diyot akımlarının modellenebilmesi için diyotların ters yönde doyma akımlarının (I_{o1}, I_{o2}) denklemine ihtiyaç vardır." Eş. (5.4-5.5)" bu ifadelerin denklemleri sunulmuştur.

$$I_{o1} = I_{o1ref} \times \left(\frac{T_{ref}}{T}\right)^3 \times exp\left[\frac{q}{\alpha_1 \times k} \times \left(\frac{E_{gref}}{T_{ref}} - \frac{E_g}{T}\right)\right]$$
(5.4)

$$I_{o2} = I_{o2ref} \times \left(\frac{T_{ref}}{T}\right)^3 \times exp\left[\frac{q}{\alpha_2 \times k} \times \left(\frac{E_{gref}}{T_{ref}} - \frac{E_g}{T}\right)\right]$$
(5.5)

Şekil 5.4'de oluşturulan ÇDM'nin modeli verilmiştir.

Şekil 5.4. Çift diyotlu eşdeğer devrenin MATLAB/Simulink modeli

5.3. Yükseltici DA-DA Dönüştürücünün Tasarımı ve Modellenmesi

Dönüştürücüler, güneş ve rüzgâr gibi çıkış gücünün çevresel faktörlerden etkilenen kaynaklarda güç ve gerilim dalgalanmalarını minimuma indirmek için kullanılır [6].

Yükseltici dönüştürücüler devrenin çıkış gerilimini, giriş geriliminden daha yüksek olmasını sağlar. Bobin, anahtarlama elemanı, diyot, kondansatör ve yükten oluşur. Bu elemanların değeri "Eş. (5.6-5.8)" e göre seçilmiştir.

$$V_o = \frac{V_i}{1 - D} \tag{5.6}$$

$$L_{min} = \frac{D \times (1-D)^2 \times R}{2 \times f_s} \tag{5.7}$$

$$C_{min} = \frac{D}{R \times \frac{\Delta V_o}{V_o} \times f_s}$$
(5.8)

Bu denklemlerde V_o yükseltici devresinin çıkış gerilimi, V_i yükseltici devresinin giriş gerilimi, D görev oranını, f_s anahtarlama frekansını, L_{min} bobinin minimum değeri, C_{min} kapasitenin minimum değerin ifade etmektedir. Anahtarlama elemanı devrenin, görev oranı doğrultusunda, anahtarlama frekansına göre iletim veya kesimde olmasını sağlar.

6. BENZETİM ÇALIŞMALARI

Bu tez çalışmasında FV modüllerin bilinmeyen parametrelerinin çıkarılması ve kısmi gölgelenme koşullarında MGNT çalışması yürütülmüştür. Bu bölümde yürütülen çalışmaların simülasyon sonuçları sunulmuştur. FV parametre çıkarımı ve MGNT için üç farklı ticari modülü seçilmiştir. Çizelge 6.1'de seçilen modüller sunulmuştur.

FV Model	Marka	Tip	
TDM-M1	Sobutton Solar STM6 40/26	Monokristal	
ÇDM-M1	Schutten Solar STM0-40/30		
TDM-M2	Distance DWD 201	Polikristal	
ÇDM-M2	Photowatt-PwP 201		
TDM-M3	Sobutton Solar STD6 120/26	Dolilzriatel	
ÇDM-M3	Schutten Solar STP0-120/30	POIIKIIStai	

Çizelge 6.1. Seçilen ticari FV modüllerin model, marka ve tip bilgileri

6.1. FV parametre Çıkarımı Optimizasyonu

FV modülerin, TDM, ÇDM eşdeğer devre modellerinin bilinmeyen parametrelerinin belirlenmesi için YEO, GKO, RUN, INFO, YSKA ve SAA meta sezgisel algoritmaları kullanılmıştır. Parametre çıkarımı probleminin amaç fonksiyonu olarak RMSE seçilmiştir. "Eş. (6.2)"de TDM'nin ve "Eş. (6.3)"de ise ÇDM'nin amaç fonksiyonu sunulmuştur. Burada amaç fonksiyonu olarak kullanılan RMSE, literatürde paylaşılan bu modüllerin deneysel olarak ölçülen akım ile hesaplanan akım arasındaki farkı inceler.

$$RMSE = \sqrt{\frac{1}{M} \times \sum_{m=1}^{M} f(x)^2}$$
(6.1)

$$f(x) = I_{ph} - I_o \times \left[e^{\left(\frac{V+I \times R_S \times N_S}{\alpha \times V_t \times N_S}\right)} - 1 \right] - \frac{V+I \times R_S \times N_S}{R_p \times N_S} - I$$
(6.2)

$$f(x) = I_{ph} - I_{o1} \times \left[e^{\left(\frac{V + I \times R_S \times N_S}{\alpha_1 \times V_t \times N_S}\right)} - 1 \right] - I_{o2} \times \left[e^{\left(\frac{V + I \times R_S \times N_S}{\alpha_2 \times V_t \times N_S}\right)} - 1 \right] - \frac{V + I \times R_S \times N_S}{R_p \times N_S} - I$$
(6.3)

Eş. (6.4)'de TDM'nin ve ÇDM'nin karar değişkenleri verilmiştir.

$$x == \begin{cases} I_{ph}, I_o, \alpha, R_s, R_p & TDM \\ I_{ph}, I_{o1}, I_{o2}, \alpha_1, \alpha_2, R_s, R_p & \zeta DM \end{cases}$$
(6.4)

Kullanılan algoritmaların kontrol parametreleri Çizelge 6.2' de, karar değişkenlerin alt limiti Çizelge 6.3 ve üst limitleri ise Çizelge 6.4'de verilmiştir.

Çizelge 6.2. FV parametre çıkarımı için algoritmaların kontrol parametreleri

Y	EO	GI	KO	RI	JN	IN	FO	YS	KA	SA	AA
N _{AEO}	50	а	[2,0]	а	20	С	2	N	50	α	0.1
T _{AEO}	10000	С	[0,2]	b	12	d	4	IN _{AHA}	50	β	0.005

Cizelge	6.3.	Karar	değişken	lerin	alt	limitleri
YILVISU	0.2.	1 1001 001	av Signen		~~~	

	Alt limitler							
Karar Değişkenleri	TDM-M1 ÇDM-M1	TDM-M2 ÇDM-M2	TDM-M3 ÇDM-M3	Birim				
I _{ph}	0	0	0	А				
Ι _ο	0	0	0	μΑ				
I ₀₁	-	-	-	μΑ				
I _{o2}	-	-	-	μΑ				
α	1	1	1	-				
α1	-	-	-	-				
α2	-	-	-	-				
R _s	0	0	0	Ω				
R _p	0	0	0	Ω				

60

	Üst limitler							
Karar Değişkenleri	TDM-M1 ÇDM-M1	TDM-M2 ÇDM-M2	TDM-M3 ÇDM-M3	Birim				
I _{ph}	2	2	8	А				
Io	50	50	50	μΑ				
I ₀₁	-	-	-	μΑ				
I _{o2}	-	-	-	μΑ				
α	60	50	50	-				
α1	-	-	-	-				
α2	-	-	-	-				
R _s	0,36	2	0,36	Ω				
R _p	1000	2000	1500	Ω				

Çizelge 6.4. Karar değişkenlerin üst limitleri

Kullanılan tüm algoritmaların ajan sayısı 50, iterasyon sayısı 10,000'dir. Tüm modüller 30 kez bağımsız olarak çalıştırılmış, toplamda 300,000 fonksiyon değerlendirmesi yapılmıştır. Tüm modüllerin parametre çıkarımı sonuçları aşağıda verilmiştir.

6.1.1. FV parametre çıkarımı optimizasyonu sonuçları

<u>TDM-M1</u>

Tek diyotlu Solar 40/36 modelinin karar değişkenlerinin ve RMSE sonuçları Çizelge 6.5'de verilmiştir. TDM-M1 sonuçlarına göre en küçük RMSE sonucunu INFO algoritması üretmiştir. TDM-M1 modeli için en başarılı algoritma INFO'dur. INFO algoritmasının tahmin sonuçları ile ölçülen I-V ve P-V grafiği sonuçları sırasıyla Şekil 6.1(a) ve Şekil 6.1(b)'de verilmiştir. Karşılaştırma neticesinde elde olan veriler ile simülasyon sonuçlarının başarıyla örtüştüğü ve INFO algoritmasının parametre tahmininde başarılı olduğu ortaya çıkmaktadır.

Algoritma	I_{ph}	Io	α	R _s	R _p	RMSE
YEO	1,66390	1,73866	1,52030	0,00427	15,92830	1,7298E-03
GKO	1,86239	0,00000	19,96629	0,00000	0,91287	3,1076E-01
RUN	1,66403	1,66293	1,51543	0,00442	15,70598	1,7330E-03
INFO	1,66390	1,73866	1,52030	0,00427	15,92829	1,7298E-03
YSKA	1,66390	1,73866	1,52030	0,00427	15,92829	1,7298E-03
SAA	1,63362	1,45620	1,50259	0,00316	494,11195	1,7714E-02

Çizelge 6.5. TDM-M1 modülünün parametre çıkarımı sonuçları

Şekil 6.1. TDM-M1 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri

<u>ÇDM-M1</u>

Çift diyotlu Solar 40/36 modelinin karar değişkenlerinin ve RMSE'nin sonuçları Çizelge 6.6'da verilmiştir. ÇDM-M1 sonuçlarına göre en küçük RMSE sonucunu yine INFO algoritması üretmiştir. ÇDM-M1 modeli için de en başarılı algoritma INFO'dur. INFO algoritmasının tahmin sonuçları ile ölçülen I-V ve P-V grafiği sonuçları sırasıyla Şekil 6.2(a) ve Şekil 6.2 (b)'de verilmiştir. Karşılaştırma neticesinde elde olan veriler ile simülasyon sonuçlarının başarıyla çakıştığı ve INFO algoritmasının parametre optimizasyonunda başarılı olduğu görülmüştür.

	-		-	1		-	1	
Algoritma	I_{ph}	I_{o1}	I _{o2}	α1	α2	R _s	R_p	RMSE
YEO	1,66390	50,00000	1,73854	52,25652	1,52030	0,00427	15,93811	1,7298E-03
GKO	1,65493	7,68138	0,28186	1,70251	18,32937	0,00000	154,33836	5,0353E-03
RUN	1,66264	0,00000	2,18100	1,01591	1,54557	0,00360	17,98396	1,8393E-03
INFO	1,66372	0,09639	5,93952	1,29029	1,81844	0,00611	17,31854	1,6949E-03
YSKA	1,66372	14,60459	0,99201	2,44714	1,46537	0,00496	17,02409	1,7091E-03
SAA	1,65260	0,00000	7,29633	12,24974	1,69743	0,00000	93,28439	6,8145E-03

Çizelge 6.6. ÇDM-M1 modülünün parametre çıkarımı sonuçları

Şekil 6.2. ÇDM-M1 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri

TDM-M2

Tek diyotlu PWP-201 modelinin karar değişkenlerinin ve RMSE'nin sonuçları Çizelge 6.7'de verilmiştir. TDM-M2 sonuçlarına göre en küçük RMSE sonucunu INFO algoritması üretmiştir. Bu nedenle TDM-M2 modeli için en başarılı algoritma INFO'dur. INFO algoritmasının tahmin sonuçları ile ölçülen I-V ve P-V grafiği sonuçları sırasıyla Şekil 6.3(a) ve Şekil 6.3(b)'de verilmiştir. Karşılaştırma sonucunda elde olan veriler ile simülasyon sonuçlarının başarıyla örtüşmüştür.

Algoritma	I _{ph}	Io	α	R _s	R _p	RMSE
YEO	1,03221	3,39323	1,34852	0,03341	23,57743	2,3860E-03
GKO	1,06463	50,00000	1,74121	0,00003	2,99666	4,8479E-02
RUN	1,03217	3,37455	1,34792	0,03344	23,63665	2,3862E-03
INFO	1,03221	3,39323	1,34852	0,03341	23,57741	2,3860E-03
YSKA	1,03221	3,39323	1,34852	0,03341	23,57741	2,3860E-03
SAA	1,01954	0,58031	1,21055	0,00000	2,31203	9,8261E-02

Çizelge 6.7. TDM-M2 modülünün parametre çıkarımı sonuçları

Şekil 6.3. TDM-M2 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri

ÇDM-M2

Çift diyotlu PWP 201 modelinin karar değişkenlerinin ve RMSE'nin sonuçları Çizelge 6.8'de verilmiştir. ÇDM-M2 sonuçlarına göre en küçük RMSE sonucunu INFO algoritması üretmiştir. ÇDM-M2 modeli için en başarılı algoritma INFO'dur. INFO algoritmasının tahmin sonuçları ile ölçülen I-V ve P-V grafiği sonuçları sırasıyla Şekil 6.4(a) ve Şekil 6.4(b)'de verilmiştir. Karşılaştırma sonucunca INFO algoritması başarılı bir performans göstermiştir.

Algoritma	I _{ph}	I ₀₁	I_{o2}	α ₁	α2	R _s	R _p	RMSE
YEO	1,03221	33,21949	3,39314	50,00000	1,34852	0,03341	23,59240	2,3860E-03
GKO	1,03253	37,55883	12,62905	5,28264	1,50476	0,02868	49,52549	5,0258E-03
RUN	1,03221	3,40143	0,00000	1,34877	1,00010	0,03341	23,60991	2,3860E-03
INFO	1,03221	3,39323	0,00000	1,34852	50,00000	0,03341	23,57741	2,3860E-03
YSKA	1,03221	3,39323	0,00000	1,34852	46,16896	0,03341	23,57740	2,3860E-03
SAA	1,00226	36,83807	1,18960	1,68658	1,87927	0,00000	7,62688	5,9035E-02

Çizelge 6.8. ÇDM-M2 modülünün parametre çıkarımı sonuçları

Şekil 6.4. ÇDM-M2 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri

TDM-M3

Tek diyotlu STP6-120/36 modelinin karar değişkenlerinin ve RMSE'nin sonuçları Çizelge 6.9'da verilmiştir. TDM-M3 sonuçlarına göre en küçük RMSE sonucunu INFO algoritması üretmiştir. TDM-M3 modeli için en başarılı algoritma INFO'dur. INFO algoritmasının tahmin sonuçları ile ölçülen I-V ve P-V grafiği sonuçları sırasıyla Şekil 6.5(a) ve Şekil 6.5(b)'de verilmiştir. Analizler sonucunda INFO algoritması başarılı sonuç üretmiştir.

Algoritma	I_{ph}	Io	α	R _s	R _p	RMSE
YEO	7,47253	2,33500	1,27565	0,00459	22,21991	1,6601E-02
GKO	7,50720	17,20161	1,47070	0,00345	1345,44706	3,6918E-02
RUN	7,47972	1,98799	1,26222	0,00467	13,19662	1,6755E-02
INFO	7,47253	2,33499	1,27565	0,00459	22,21989	1,6601E-02
YSKA	7,47253	2,33499	1,27565	0,00459	22,21990	1,6601E-02
SAA	7,21766	35,04512	1,55345	0,00000	28,60766	3,0146E-01

Çizelge 6.9. TDM-M3 modülünün parametre çıkarımı sonuçları

Şekil 6.5. TDM-M3 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri

ÇDM-M3

Çift diyotlu STP6-120/36 modelinin karar değişkenlerinin ve RMSE'nin sonuçları Çizelge 6.10'da verilmiştir. ÇDM-M3 sonuçlarına göre en küçük RMSE sonucunu INFO algoritması üretmiştir. ÇDM-M3 modeli için en başarılı algoritma INFO'dur. INFO algoritmasının tahmin sonuçları ile elde var olan I-V ve P-V grafiği sonuçları sırasıyla Şekil 6.6(a) ve Şekil 6.6(b)'de verilmiştir. Karşılaştırma neticesinde elde olan veriler ile simülasyon sonuçlarının başarıyla çakışmıştır.

Algoritma	I _{ph}	I ₀₁	<i>I</i> ₀₂	α ₁	α2	R _s	R_p	RMSE
YEO	7,47253	0,00000	2,33500	6,09612	1,27565	0,00459	22,22009	1,6601E-02
GKO	7,51858	0,40320	23,06141	1,80843	1,50473	0,00325	137,24879	4,2144E-02
RUN	7,46554	0,00000	2,56432	1,00000	1,28359	0,00456	56,03174	1,6674E-02
INFO	7,47253	0,00000	2,33499	49,99887	1,27565	0,00459	22,21990	1,6601E-02
YSKA	7,47253	0,00000	2,33499	45,34679	1,27565	0,00459	22,21989	1,6601E-02
SAA	7,07380	0,43139	0,09823	1,14474	2,41524	0,00403	104,22854	2,7174E-01

Çizelge 6.10. ÇDM-M3 modülünün parametre çıkarımı sonuçları

Şekil 6.6. ÇDM-M2 modülü için ölçülen veriler ile INFO algoritmasının hesapladığı verilerin I-V ve P-V grafikleri

6.1.2. Değerlendirme metriklerine göre FV parametre çıkarımı optimizasyonu sonuçları

Algoritmaların modül sonuçları hesaplama doğruluğu ve hesaplama zamanı olmak üzere değerlendirme metriklerine göre analiz edilmiştir. Burada hesaplama doğruluğu, amaç fonksiyonu olan RMSE' ye göre değerlendirilmiştir. Bu bölümdeki sonuçlar algoritmaların bağımsız 30 kez çalışması üzerinden yürütülmüştür. Değerlendirme metrikleri olarak, minimum, ortalama, maksimum ve standart sapma kullanılmıştır.

RMSE'nin değerlendirme metriği sonuçları

Çizelge 6.11'de algoritmaların TDM modellerine göre, Çizelge 6.12'de ise ÇDM modellerine göre RMSE'nin değerlendirme metrikleri sonuçları sunulmuştur. Çizelge 6.13'de ise algoritmaların toplam standart sapma ortalamasının sıralaması verilmiştir. Yapılan bu analizler 30 bağımsız çalıştırma boyunca istikrarlı olarak benzer sonuca yaklaşma eğilimini ölçen standart sapma açısından incelendiğinde; TDM-M1, TDM-M2, TDM-M3, ÇDM-M2 VE ÇDM-M3 modellerinde INFO algoritması en küçük standart sapmaya sahiptir. Dolayısıyla bu sonuçlar, INFO algoritmasının istikrarlı yaklaşım gösterdiğini ortaya koymuştur. ÇDM-M1 modelinde ise YSKA en düşük standart sapmaya sahiptir. Genel olarak; ortalama standart sapma üzerinden toplam standart sapma sıralaması değerlendirildiğinde ise algoritmasını ilk sıradadır. Bu da bizlere parametre çıkarımı probleminde INFO algoritmasının başarılı şekilde kullanılabileceğini göstermektedir.

Model	Algoritma	Ortalama	Maksimum	Minimum	Standart sapma	Standart sapma sıralaması
	YEO	1,7298E-03	1,7298E-03	1,7298E-03	2,1605E-16	3
	GKO	1,5344E-02	3,1076E-01	3,1050E-03	5,5928E-02	5
	RUN	2,0392E-03	3,3322E-03	1,7301E-03	5,8379E-04	4
I DM-MI	INFO	1,7298E-03	1,7298E-03	1,7298E-03	7,8563E-18	1
	YSKA	1,7298E-03	1,7298E-03	1,7298E-03	1,0296E-17	2
	SAA	6,3798E-02	3,3679E-01	1,0500E-02	8,1447E-02	6
	YEO	2,3860E-03	2,3860E-03	2,3860E-03	1,1602E-15	3
	GKO	3,4409E-02	2,8392E-01	3,4331E-03	7,0218E-02	6
	RUN	2,4025E-03	2,5017E-03	2,3861E-03	2,8044E-05	4
I DM-M2	INFO	2,3860E-03	2,3860E-03	2,3860E-03	3,3230E-17	1
	YSKA	2,3860E-03	2,3860E-03	2,3860E-03	2,1447E-16	2
	SAA	5,6423E-02	9,8261E-02	1,9735E-02	1,6676E-02	5
	YEO	1,6601E-02	1,6601E-02	1,6601E-02	4,7661E-16	2
	GKO	1,2662E-01	1,4131E+00	2,3509E-02	2,5762E-01	5
	RUN	1,6775E-02	1,7802E-02	1,6602E-02	2,3371E-04	3
1DM-M3	INFO	1,6601E-02	1,6601E-02	1,6601E-02	1,6712E-16	1
	YSKA	1,6651E-02	1,8109E-02	1,6601E-02	2,7546E-04	4
	SAA	6,2671E-01	1,5575E+00	2,6926E-01	3,5166E-01	6

Çizelge 6.11. Algoritmaların TDM modellerine göre RMSE değerlendirme metriği sonuçları

Model	Algoritma	Ortalama	Maksimum	Minimum	Standart sapma	Standart sapma sıralaması
	YEO	1,6991E-03	1,7298E-03	1,6927E-03	7,1989E-06	2
	GKO	4,6748E-03	6,5127E-03	1,9235E-03	1,0072E-03	5
CDM M1	RUN	2,4964E-03	3,3588E-03	1,7147E-03	7,5831E-04	4
ÇDM-MI	INFO	1,6978E-03	1,7298E-03	1,6884E-03	7,7742E-06	3
	YSKA	1,7063E-03	1,7106E-03	1,7020E-03	2,1870E-06	1
	SAA	1,6991E-03	1,7298E-03	1,6927E-03	7,1989E-06	2
	YEO	2,3860E-03	2,3860E-03	2,3860E-03	5,7776E-09	3
	GKO	1,3907E-02	6,1415E-02	3,3619E-03	1,8958E-02	6
CDM M2	RUN	2,4158E-03	2,7176E-03	2,3860E-03	7,9918E-05	4
ÇDM-M2	INFO	2,3860E-03	2,3860E-03	2,3860E-03	5,8990E-17	1
	YSKA	2,3860E-03	2,3860E-03	2,3860E-03	2,5389E-14	2
	SAA	5,4454E-02	8,6039E-02	1,4464E-02	1,7815E-02	5
	YEO	1,6601E-02	1,6601E-02	1,6601E-02	2,9579E-09	3
	GKO	8,1269E-02	2,6868E-01	2,1755E-02	8,7314E-02	5
	RUN	1,6733E-02	1,7083E-02	1,6601E-02	1,3310E-04	4
ÇDM-M3	INFO	1,6601E-02	1,6601E-02	1,6601E-02	2,7504E-16	1
	YSKA	1,6601E-02	1,6601E-02	1,6601E-02	5,0407E-13	2
	SAA	4,7684E-01	1,2276E+00	2,1432E-01	2,4430E-01	6

Çizelge 6.12. Algoritmaların ÇDM modellerine göre RMSE değerlendirme metriği sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YEO	2,5000	3
GKO	5,3750	5
RUN	3,8750	4
INFO	1,5000	1
YSKA	2,1250	2
SAA	5,6250	6

Çizelge 6.13. Algoritmaların RMSE değerlendirme metriğine göre toplam sıralama sonuçları

Hesaplama zamanının değerlendirme metriği sonuçları

Çizelge 6.14'de algoritmaların TDM modellerine göre, Çizelge 6.15'de ise ÇDM modellerine göre hesaplama zamanının değerlendirme metrikleri sonuçları verilmiştir. Çizelge 6.16'da ise algoritmaların hesaplama zamanına göre toplam standart sapma ortalamasının sıralaması verilmiştir.

Bir algoritmanın optimizasyon süresi, algoritmanın tasarlandığı altyapıyla ilişkilidir. Altı FV model için algoritmaların hesaplama zamanlarının standart sapmaları düşükten yükseğe doğru GKO, YSKA, SAA, INFO, YEO ve RUN olarak sıralanmaktadır. Amaç fonksiyonlarının standart sapmasında son sırada yer alan GKO ve SAA algoritmaları hesaplama zamanında ilk sıralarda yer almaktadır. Burada dikkat edilmesi gereken husus algoritmanın ne kadar hızlı sonuç bulduğu değil, bulduğu sonucun doğrulu ve istikrarıdır. Dolayısıyla hızlı hesaplama zamanına sahip olmak bir algoritmanın performansını değerlendirmede tek başına yeterli bir kriter değildir.

Model	Algoritma	Ortalama	Maksimum	Minimum	Standart sapma	Standart sapma sıralaması
	YEO	7,5807E+01	1,2184E+02	5,7963E+01	1,4129E+01	5
	GKO	1,5198E+01	1,6893E+01	1,3067E+01	5,6484E-01	1
	RUN	1,0908E+02	1,5079E+02	7,4922E+01	2,0456E+01	6
I DIVI-IVI I	INFO	6,4408E+01	9,6632E+01	5,0335E+01	1,0996E+01	4
	YSKA	2,4997E+01	3,2807E+01	2,1096E+01	3,0697E+00	3
	SAA	4,0345E+01	4,5782E+01	3,6320E+01	2,5370E+00	2
	YEO	8,0076E+01	1,3369E+02	4,7646E+01	1,7951E+01	5
	GKO	1,6926E+01	1,8496E+01	1,4210E+01	9,3182E-01	1
	RUN	1,1501E+02	1,6298E+02	6,5926E+01	2,5369E+01	6
I DIVI-IVIZ	INFO	6,9284E+01	9,5833E+01	5,3547E+01	1,2592E+01	4
	YSKA	2,6998E+01	3,6554E+01	1,9625E+01	4,0807E+00	2
	SAA	4,3295E+01	4,9496E+01	3,0848E+01	4,2385E+00	3
	YEO	8,0332E+01	1,3939E+02	4,6398E+01	1,8751E+01	5
	GKO	1,7200E+01	1,8453E+01	1,3449E+01	1,2582E+00	1
	RUN	1,1465E+02	1,6250E+02	6,7887E+01	2,5439E+01	6
TDM-M3	INFO	7,0361E+01	9,8083E+01	5,4387E+01	1,2403E+01	4
	YSKA	2,7177E+01	3,6659E+01	1,8791E+01	4,1204E+00	2
	SAA	4,4337E+01	5,0874E+01	3,0169E+01	5,1276E+00	3

Çizelge 6.14. Algoritmaların TDM modellerine göre hesaplama zamanı değerlendirme metriği sonuçları

Model	Algoritma	Ortalama	Maksimum	Minimum	Standart sapma	Standart sapma sıralaması
	YEO	3,2502E+01	3,4458E+01	3,1983E+01	5,2349E-01	1
	GKO	1,3918E+01	1,6676E+01	1,2932E+01	1,0062E+00	2
CDM M1	RUN	5,1813E+01	5,7318E+01	4,7058E+01	2,5497E+00	4
ÇDM-MI	INFO	3,6205E+01	4,4923E+01	3,1881E+01	3,4239E+00	5
	YSKA	1,9971E+01	2,5961E+01	1,7571E+01	2,4192E+00	3
	SAA	4,1436E+01	4,4999E+01	3,0373E+01	4,3288E+00	6
	YEO	4,2461E+01	5,3075E+01	3,6474E+01	5,1185E+00	5
	GKO	1,6775E+01	2,0836E+01	1,5251E+01	1,2913E+00	1
CDM M2	RUN	6,2222E+01	8,2484E+01	5,3685E+01	8,4599E+00	6
ÇDM-M2	INFO	3,5742E+01	4,1764E+01	3,4007E+01	2,0064E+00	3
	YSKA	2,3081E+01	2,5519E+01	2,0224E+01	1,3055E+00	2
	SAA	4,2586E+01	5,0154E+01	3,5568E+01	3,2352E+00	4
	YEO	4,0450E+01	5,1815E+01	3,7496E+01	3,7774E+00	6
	GKO	1,8779E+01	2,1417E+01	1,7096E+01	1,2816E+00	2
CDM M2	RUN	5,8782E+01	6,8911E+01	5,5359E+01	3,1637E+00	4
ÇDM-M3	INFO	3,8791E+01	5,0080E+01	3,6528E+01	3,2323E+00	5
	YSKA	2,3259E+01	2,5542E+01	2,2178E+01	8,7009E-01	1
	SAA	3,9622E+01	4,8041E+01	3,6732E+01	2,8960E+00	3

Çizelge 6.15. Algoritmaların ÇDM modellerine göre hesaplama zamanı değerlendirme metriği sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
AEO	4,7500	5
GWO	1,3750	1
RUN	4,8750	6
INFO	4,2500	4
AHA	2,3750	2
RSA	3,3750	3

Çizelge 6.16. Algoritmaların hesaplama zamanı değerlendirme metriğine göre toplam sıralama sonuçları

6.1.3. Friedman testine göre FV parametre çıkarımı optimizasyonunun değerlendirilmesi

Algoritmaların parametre tahmini sonuçları RMSE üzerinden değerlendirildikten sonra istatistiksel bir metot olan Friedman testine tabi tutulmuştur. Friedman test, parametrik olmayan istatistiksel bir testtir. Bu test, algoritmalar arasında istatistiksel bir fark olup olmadığını tespit etmeye olanak tanır [80]. Friedman testi algoritma davranışları ile ilgilenen, farklılık olup olmadığını tespit etmeye çalışan ve çok sayıda algoritmayı karşılaştırarak ardından algoritmaların sıralamasını belirlemeyi sağlar [81]. %5 önem derecesi için bu çalışmada kullanılan altı algoritmanın TDM modelleri Çizelge 6.17'de, ÇDM modellerinin Çizelge 6.18'de Friedman test sonuçları için verilmiştir. Testin çıktısı olan p değerleri incelendiğinde; p-değeri<0,05 olması sebebiyle altı FV modelin hepsinde algoritmalar arasında önemli farklar olduğu görülmüş ve algoritmalar önem sıralarına göre numaralandırılmışlardır.

Model	Algoritma	Friedman test ortalaması	Sıralama	P-değeri	Sonuç	
	YEO	2,7167	3			
	GKO	5,0667	5		P-değeri	
	RUN	4,0000	4	7,4893E-	(7,4893E-29< 0,05)	
	INFO	1,3333	1	29	performansı arasında	
	YSKA	1,9500	2		onemn fark vardir.	
	SAA	5,9333	6			
	YEO	2,6500	3			
	GKO	5,1667	5		P-değeri	
	RUN	4,0000	4	4,2313E-	(4,2313E-28< 0,05)	
	INFO	1,3167	1	28	performansı arasında	
	YSKA	2,0333	2		onemn fark vardir.	
	SAA	5,8333	6			
	YEO	2,5500	3			
	GKO	5,0333	5		P-değeri	
	RUN	3,9667	4	1,6866E-	(1,6866E-28<0,05)	
TDM-M3	INFO	1,3000	1	28	performansı arasında	
	YSKA	2,1833	2		onemii iark vardir.	
	SAA	5,9667	6			

Çizelge 6.17. Algoritmaların TDM modellerinin Friedman test sonuçları

Model	Algoritma	Friedman test ortalaması	Sıralama	P-değeri	Sonuç
	YEO	1,6667	2		
	GKO	4,9333	5		P-değeri
CDM M1	RUN	4,1000	4	2.0052E.29	(2,9053E-28< 0,05)
ÇDIVI-IVI I	INFO	1,5333	1	2,9055E-28	Algoritmaların performansı arasında
	YSKA	2,8000	3		önemli fark vardır.
	SAA	5,9667	6		
	YEO	2,6333	3		
	GKO	5,1000	5		P-değeri
CDM M2	RUN	3,9667	4	0.0202E.20	(9,0202E-29< 0,05)
ÇDIVI-IVI2	INFO	1,1167	1	9,0202E-29	Algoritmaların performansı arasında
	YSKA	2,2833	2		önemli fark vardır.
	SAA	5,9000	6		
	YEO	2,7833	3		
	GKO	5,0333	5		P-değeri
CDM M2	RUN	4,0000	4	1 0000E 20	(1,9999E-29< 0,05)
ÇDIVI-IVI3	INFO	1,1167	1	1,77775-29	Algoritmaların performansı arasında
	YSKA	2,1000	2		önemli fark vardır.
	SAA	5,9667	6		

Çizelge 6.18. Algoritmaların ÇDM modellerinin Friedman test sonuçları

Algoritma	YEO	GKO	RUN	INFO	YSKA	SAA
TDM-M1	3	5	4	1	2	6
ÇDM-M1	2	5	4	1	3	6
TDM-M2	3	5	4	1	2	6
ÇDM-M2	3	5	4	1	2	6
TDM-M3	3	5	4	1	2	6
ÇDM-M3	3	5	4	1	2	6
Sıralamanın ortalaması	2,75	5	4	1	2,25	6
Toplam sıralama	3	5	4	1	2	6

Çizelge 6.19. Algoritmaların Friedman testine göre sıralama sonuçları

Friedman test sonuçları incelendiğinde tüm modellerde INFO algoritması birinci olmuştur. Parametre çıkarımı optimizasyonu için yapılan çalışmalar genel olarak değerlendirildiğinde bu altı algoritma içerisinde en başarılı INFO algoritması olmuştur. Bu sonuçlar bize INFO algoritmasının parametre çıkarımı problemi için başarılı bir şekilde kullanılabileceğini gösterir.

6.2. MGNT Optimizasyonu

MGNT optimizasyonu için MATLAB/Simulink yazılımında FV sistem oluşturulmuştur. Oluşturulan FV sistemde üç farklı dizi modeli kullanılmıştır. Bu dizi modelleri parametre çıkarımı çalışmalarında kullanılan modellerdir. Bu üç FV dizi, hem TDM hem de ÇDM olarak modellenmiş olup, toplamda altı farklı FV dizi modeli oluşturulmuştur. Gölgelenme analizi yapabilmek adına her modelde FV diziler birbirleriyle seri bağlanıp, her diziye paralel şekilde bypass diyot eklenmiştir.

Parametrelerin belirlenmesi çalışmasında en başarılı algoritma INFO olduğu için FV dizi modelleri bu algoritmanın bulduğu parametre değerleri ile çalıştırılmıştır. Bölüm 6.1'de yürütülen parametre çıkarımı çalışmaları, daha önce de belirtildiği gibi literatürde paylaşılan akım bilgisine göredir. Kullanılan üç modelin akım bilgileri STK altındaki sonuçları

değildir. Bu nedenle INFO algoritmasının bulduğu parametre değerleri STK koşuluna çevrilmelidir. Bu işlem "Eş. (6.1-6.2)" kullanılarak gerçekleştirilir [82].

$$R_{s}(G,T) = \frac{T}{T_{STK}} \left(1 - \lambda ln \frac{G}{G_{STC}} \right) R_{s_{STK}} \quad \lambda = 0,217$$
(6.1)

$$R_p(G) = \left(\frac{G_{STK}}{G}\right) \times R_{p_{STK}}$$
(6.2)

INFO algoritmasının bulduğu ve STK koşuluna çevrilen TDM-M1, ÇDM-M1, TSM-M2, ÇDM-M2, TDM-M3, ÇDM-M3 modüllerinin parametre değerleri Çizelge 6.20'de verilmiştir.

Parametreler	FV Modüller (TDM)					
1 uluitoti ofor	M1	M2	M3			
$I_{ph}\left(A ight)$	2,3601	1,0301	7,5001			
$I_o(A)$	1,6298E-07	4,3043E-07	9,8813E-08			
α	1,5203	1,3485	1,2756			
$R_{s}\left(arDminute{\Omega} ight)$	0,0036	0,0313	0,0042			
$R_p(\Omega)$	11,1503	23,5774	22,2199			
Darametreler	FV Modüller (ÇDM)					
	M1	M2	M3			
$I_{ph}\left(A ight)$	2,3601	1,0301	7,5001			
$I_{o1}\left(A\right)$	4,0199E-09	3,1117E-07	0			
$I_{o2}(A)$	7,8770E-07	0	9,8813E-08			
α ₁	1,2903	1,34852	49,9989			
α2	1,8184	50	1,27565			
$R_{s}\left(arDminute{\Omega} ight)$	0,0052	0,0313	0,0042			
$R_p(\Omega)$	12,1235	23,5774	22,2199			

Çizelge 6.20. Modüllerin STK altındaki parametre değerleri

Maksimum güç noktası takibi yapabilmek ve çıkış gerilimindeki dalgalanmaları azaltmak için oluşturulan FV dizi modellerine yükseltici DA-DA dönüştürücü eklenir. MGNT, yükseltici DA-DA dönüştürücünün anahtarla elemanın görev oranına etki eder. Görev oranı devrenin bir periyot boyunca iletimde ve kesimde olduğu süreleri belirler. Çizelge 6.21'de yükseltici DA-DA dönüştürücü parametreleri verilmiştir.

Parametreler	M1	M2	M3
$C_1(\mu F)$	90	110	90
$L_1(mH)$	11	0,5	89
C ₂ (μF)	23	16	55
$R(\Omega)$	40	100	40
$f_{s}(Hz)$	25,000	25,000	25,000

Çizelge 6.21. Yükseltici DA-DA dönüştürücü parametreleri

Bu tez çalışmasında PSO, GKO, INFO ve YSKA algoritmaları MGNT optimizasyonu için kullanılmıştır. Çizelge 6.22'de bu algoritmaların kontrol parametreleri verilmiştir. Tüm algoritmaların Simulink ortamına gönderdiği D (görev oranı) tutma süresi, simülasyonda gerilimlerde dalgalanma olmaması için 0,02 s olarak ayarlanmıştır. Oluşturulan FV sistem şekil 6.7'de verilmiştir.

Çizelge 6.22. MGNT için algoritmaların kontrol parametreleri

Algoritma	Parametre	Değer
YSKA	N _{YSKA}	4
CKO	N _{GKO}	4
GKU	а	0,35
NIFO	N _{INFO}	4
INFO	α	0,45
	N _{PSO}	4
DSO	W	0,35
r30	<i>C</i> ₁	1,5
	<i>C</i> ₂	1,5

Şekil 6.7. FV sistem

6.2.1. MGNT optimizasyonunun sonuçları

Yapılan çalışmalar TDM-M1, ÇDM-M1, TDM-M2, ÇDM-M2, TDM-M3, ÇDM-M3 olmak üzere toplamda altı farklı model üzerinden yürütülmektedir. Tasarlanan sisteme ilk olarak gölgelenme uygulanmadan yani STK altında algoritmaların MGNT performansları incelenmemiştir. Daha sonra, sisteme dinamik gölgelenme ve dinamik olmayan gölgelenme senaryoları uygulanarak algoritmaların performansları analiz edilmiştir.

6.2.2. Temel sistem sonuçları

Bu bölümde altı farklı model, 1000 W/m² ışınım ve 25°C' lik sıcaklıkta çalıştırılarak algoritmaların performansları kaydedilmiştir. Şekil 6.8-6.13'de algoritmaların tüm modellere göre ürettiği güç grafikleri, Çizelge 6.23'de ise gölgelenmenin olmadığı durum için TDM-M1, ÇDM-M1, TDM-M2, ÇDM-M2, TDM-M3 ve ÇDM-M3 modellerine göre YSKA, GKO, INFO ve PSO algoritmalarının; P_{FV} (W), MGN izleme zamanı, MGNT ve dönüştürücü verimi performansları verilmiştir. Çizelge 6.23'de verilen sonuçlar, temel sistem için tüm devre modellerinin 30 kez bağımsız çalışmanın ardından kaydedilen en iyi sonuçlardır.

Burada, P_{MGN} , sistemin MGN noktasını, P_{FV} (W) algoritmaların bulduğunu maksimum noktayı, $P_{Y\ddot{u}k}$, yükün çektiği gücü, MGN izleme zamanı da algoritmaların MGN noktasını bulma süresini ifade eder. MGNT verimliliği ve dönüştürücü verimliliği "Eş. (6.3-6.4)"de verilen denklemler ile hesaplanır.

$$MGNT \ verimlilik = \frac{P_{MGN} - p_{FV}}{P_{MGN}} \times 100 \tag{6.3}$$

$$D \ddot{o} n \ddot{u} \dot{s} t \ddot{u} r \ddot{u} c \ddot{u} verimlili \breve{g} i = \frac{P_{MGN} - p_{YUK}}{P_{MGN}} \times 100$$
(6.4)

Sonuçlar incelendiğinde algoritmaların tümü, bütün modellerde %99'un üzerinde başarı göstermiştir. Bu durum, gölgelenmenin olmadığı durumlarda dört algoritmada maksimum güç noktası takibi için kullanılabilir olduğunu göstermiştir.

Model	Algoritma	P _{MGN} (W)	P _{FV} (W)	$P_{Y\ddot{u}k}$ (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)	Dönüştürücü Verimliliği (%)
	YSKA		123,4291	120,0803	0,9675	99,9999	97,2868
TDM-	GKO	100 4000	123,4193	120,1074	0,0881	99,9920	97,3088
M1	INFO	123,4292	123,4287	120,0899	0,4805	99,9996	97,2946
	PSO		123,4289	120,0106	0,3803	99,9998	97,2303
	YSKA		125,0014	121,6829	0,9647	99,9996	97,3448
ÇDM-	GKO	125 0010	124,9756	121,6239	0,0888	99,9789	97,2976
M1	INFO	125,0019	125,0006	121,6781	0,4407	99,9990	97,3410
	PSO		124,9974	121,5990	0,5808	99,9963	97,2777
	YSKA		42,7055	37,0600	1,2600	99,9984	86,7790
TDM-	GKO	42,7062	42,6306	37,9002	0,0922	99,8231	88,7463
M2	INFO		42,7049	38,6077	0,4846	99,9970	90,4030
	PSO		42,7039	37,6743	0,2723	99,9947	88,2173
	YSKA		40,4963	35,5381	1,2601	99,9962	87,7530
ÇDM-	GKO		40,4920	36,7336	0,0601	99,9855	90,7052
M2	INFO	40,4979	40,4956	36,3452	0,2402	99,9945	89,7461
	PSO		40,4957	36,6361	0,4436	99,9946	90,4643
	YSKA		358,9681	304,2531	1,8616	99,9204	84,6902
TDM-	GKO	250 2542	358,9968	299,0701	0,1606	99,9283	83,2475
M3	INFO	559,2542	358,9403	300,6541	0,2000	99,9126	83,6884
	PSO		359,0913	299,0207	0,1801	99,9547	83,2337
	YSKA		358,8247	310,4411	1,2803	99,9100	86,4382
ÇDM-	GKO	250 1470	358,6954	309,9986	0,0920	99,8740	86,3150
M3	INFO	559,1479	358,8352	300,2783	0,5601	99,9129	83,6086
	PSO		358,9300	301,5155	0,4800	99,9393	83,9530

Çizelge 6.23. Temel sistem için algoritmaların modellere göre MGNT sonuçları

Şekil 6.8. TDM-M1 modelinin güç-zaman grafiği

Şekil 6.9. ÇDM-M1 modelinin güç-zaman grafiği

0.25

Şekil 6.9 (Devamı). ÇDM-M1 modelinin güç-zaman grafiği

Şekil 6.10. TDM-M2 modelinin güç-zaman grafiği

Şekil 6.11. ÇDM-M2 modelinin güç-zaman grafiği

Şekil 6.12. TDM-M3 modelinin güç-zaman grafiği

Şekil 6.12 (Devamı). TDM-Me modelinin güç-zaman grafiği

Şekil 6.13. ÇDM-M3 modelinin güç-zaman grafiği

6.2.3. Temel sistemin değerlendirme metriklerine göre MGNT optimizasyonu sonuçları

MGNT'nin değerlendirme metriği sonuçları

Çizelge 6.24'de algoritmaların modellere göre, MGNT değerlendirme metriği sonuçları sunulmuştur. Çizelge 6.25'de ise algoritmaların toplam standart sapma ortalamasının sıralaması verilmiştir. Yapılan bu analizler 30 bağımsız çalıştırma boyunca istikrarlı olarak benzer sonuca yaklaşma eğilimini ölçen standart sapma açısından incelendiğinde; tüm modellerde YSKA algoritması en küçük standart sapmaya sahiptir. Bu sonuçlar, YSKA algoritmasının istikrarlı yaklaşım gösterdiğini ortaya koyar.

Model	Algoritma	P_{FV} (W)				
		Minimum	Ortalama	Maksimum	Standart sapma	Standart sapma sıralama
TDM-M1	YSKA	117,8978	121,8276	123,4291	1,5325	1
	GKO	80,7813	113,1582	123,4193	13,0060	2
	INFO	46,4205	118,1563	123,4287	13,9690	3
	PSO	46,4950	117,2899	123,4289	18,5322	4
ÇDM- M1	YSKA	115,6989	123,4850	125,0014	1,9154	1
	GKO	61,8106	113,0401	124,9756	17,3001	3
	INFO	35,2348	116,0467	125,0006	18,6519	4
	PSO	112,4189	123,5032	124,9974	2,6631	2
TDM-M2	YSKA	39,1066	42,1859	42,7055	0,9513	1
	GKO	16,9548	38,6965	42,6306	5,4416	4
	INFO	15,1554	41,1393	42,7049	5,0910	3
	PSO	29,1014	41,5238	42,7039	2,6703	2
ÇDM- M2	YSKA	39,5420	40,4019	40,4963	0,2281	1
	GKO	35,0967	38,4565	40,4920	1,8142	2
	INFO	26,4621	38,2636	40,4956	3,7809	3
	PSO	11,1548	38,6529	40,4957	5,4517	4
TDM-M3	YSKA	329,8122	354,1769	358,9681	6,6502	1
	GKO	226,4206	323,4548	358,9968	40,6775	4
	INFO	234,2667	331,2694	358,9403	34,9145	3
	PSO	268,4846	347,9742	359,0913	23,2116	2
ÇDM- M3	YSKA	323,9988	356,4186	358,8247	6,3167	1
	GKO	156,9312	317,4080	358,6954	48,8473	4
	INFO	295,1639	344,7897	358,8352	17,2765	2
	PSO	242,8965	340,0841	358,9300	29,9116	3

Çizelge 6.24. Basit sistem için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları
Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	2,9324	1
GKO	21,1811	4
INFO	15,6140	3
PSO	13,7401	2

Çizelge 6.25. Basit sistem için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları

Genel olarak; toplam standart sapma sıralaması değerlendirildiğinde ise algoritmalar YSKA, PSO, INFO ve GKO olarak sıralanmaktadır. YSKA algoritmasının ilk sırada olması MGNT için bu algoritmanın başarılı şekilde kullanılabileceğini gösterir.

MGN izleme süresinin değerlendirme metriği sonuçları

Çizelge 6.26'de algoritmaların modellere göre, MGN izleme süresi değerlendirme metriği sonuçları sunulmuştur. Çizelge 6.27'de ise algoritmaların toplam standart sapma ortalamasının sıralaması verilmiştir.

		MGN İzleme Zamanı (s)							
Model	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama			
	YSKA	0,6421	0,8048	0,9675	0,1539	2			
TDM-	GKO	0,0454	0,1278	0,5013	0,1252	1			
M1	INFO	0,0841	0,4187	1,1847	0,2451	4			
	PSO	0,0849	0,3100	0,6008	0,1677	3			
	YSKA	0,6442	0,8255	1,3020	0,1763	3			
ÇDM-	GKO	0,0619	0,1038	0,3882	0,0748	1			
M1	INFO	0,1012	0,5063	1,6813	0,4124	4			
	PSO	0,2208	0,4420	0,6010	0,1136	2			
	YSKA	0,4832	1,2948	3,1265	0,4371	4			
TDM-	GKO	0,0539	0,1065	0,5062	0,0764	1			
M2	INFO	0,0638	0,4954	1,2823	0,3138	3			
	PSO	0,0958	0,3548	0,6436	0,1476	2			
	YSKA	0,9602	1,1677	1,3225	0,1493	3			
ÇDM-	GKO	0,0601	0,1015	0,3918	0,0561	1			
M2	INFO	0,0828	0,4178	1,0838	0,2489	4			
	PSO	0,1708	0,3875	0,6401	0,1399	2			
	YSKA	0,2001	1,2512	2,4831	0,4789	3			
TDM-	GKO	0,0826	0,1794	0,3800	0,0688	1			
M3	INFO	0,1800	0,6060	2,3804	0,5010	4			
	PSO	0,1799	0,3714	0,7800	0,1720	2			
	YSKA	1,0005	1,5466	2,4834	0,3533	4			
ÇDM-	GKO	0,0606	0,2248	0,6688	0,1420	1			
M3	INFO	0,1800	0,4855	1,1812	0,2537	3			
	PSO	8,4033	0,3627	0,7790	0,1591	2			

Çizelge 6.26. Basit sistem için algoritmaların modellere göre MGN izleme zamanı değerlendirme metrikleri sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	0,2915	3
GKO	0,0906	1
INFO	0,3292	4
PSO	0,1500	2

Çizelge 6.27. Basit sistem için algoritmaların MGN izleme zamanı değerlendirme metriğine göre toplam sıralama sonuçları

Temel sistem modeli için algoritmaların MGN izleme zamanlarının standart sapmaları düşükten yükseğe doğru GKO, PSO, YSKA ve INFO olarak sıralanmaktadır. Amaç fonksiyonlarının standart sapmasında son sırada yer alan GKO algoritması MGN izleme zamanında ilk sıralarda yer almaktadır. Önemli olan algoritmanın ne kadar hızlı sonuç bulduğu değil, bulduğu sonucun doğrulu ve tutarlığıdır. Dolayısıyla algoritmaların performansını sadece MGN izleme zamanına göre değerlendirmek doğru bir yaklaşım değildir.

6.2.4. Temel sistemin Friedman testine göre MGNT optimizasyonunun değerlendirilmesi

Basit sistem modellerinde algoritmaların MGNT sonuçları değerlendirme metrikleriyle incelendikten sonra istatistiksel bir metot olan Friedman testiyle de incelenmiştir. MGNT problemi maksimumu bulmaya çalışan bir problem olduğu için Friedman sıra ortalamasının büyük olması algoritmanın başarısının yüksek olduğunu gösterir.

%5 önem derecesine göre basit sistem modellerinin Friedman test sonuçları Çizelge 6.28'de, verilmiştir. Testin çıktısı olan p değerleri; p-değeri<0,05 olması sebebiyle altı FV modelin hepsinde algoritmalar arasında önemli fark olduğu ortaya koyulmuştur. Çizelge 6.29'da elde edilen sonuçlara göre YSKA en başarılı algoritmadır.

Model	Algoritma	Friedman Sıra Ortalaması	Sıra	p- Değeri	Sonuç
	YSKA	2,8667	1		
	GKO	1,8000	4	4,1453E-03	P-değeri
	INFO	2,5000	3		(4,1453E-03<0,05)
	PSO	2,8333	2		
	YSKA	2,6667	2		
CDM M1	GKO	2,0000	4	8 2522E 02	P-değeri
ÇDM-MI	INFO	2,2667	3	8,2322E-03	(8,2522E-03< 0,05)
	PSO	3,0667	1		
	YSKA	3,0000	1		
трм м2	GKO	1,5667	3	6 1586E 05	P-değeri (6,1586E-05< 0,05)
1 DIVI-IVI2	INFO	2,6333	4	0,1580E-05	
	PSO	2,8000	2		
	YSKA	3,4667	1		
CDM M2	GKO	2,0667	3	6,6104E-06	P-değeri
ÇDM-M2	INFO	1,9000	4		(6,6104E-06< 0,05)
	PSO	2,5667	2		
	YSKA	2,9667	1		
TDM M3	GKO	1,9667	3	1 2220E 03	P-değeri
1 DWI-WI3	INFO	2,1000	2	1,2229E-05	(1,2229E-03< 0,05)
	PSO	2,9667	1		
	YSKA	3,3000	1		
CDM M3	GKO	1,6333	4	1 4574E 05	P-değeri
	INFO	2,5667	2	1,45740-05	(1,4574E-05< 0,05)
	PSO	2,5000	3		

Çizelge 6.28. Basit sistem için algoritmaların Friedman test sonuçları

	Model	YSKA	GKO	INFO	PSO
	TDM-M1	1	4	3	2
	ÇDM-M1	2	4	3	1
Basit sistem	TDM-M2	1	3	4	2
	ÇDM-M2	1	3	4	2
	TDM-M3	1	3	2	1
	ÇDM-M3	1	4	2	3
Sıralamanın ortalaması		3,0444	1,8389	2,3278	2,7888
Total Sıralama		1	4	3	2

Çizelge 6.29. Algoritmaların basit modelde Friedman testine göre sıralama sonuçları

6.2.5. Dinamik olmayan gölgelenme sonuçları

Bu bölümde FV sistemlere uygulanan üç farklı dinamik olmayan gölgelenme (DOG) senaryolarını sonuçlarını sunulmuştur. Çizelge 6.30'de oluşturulan senaryoların ışınım ve sıcaklık bilgileri verilmiştir.

Çizelge 6.30. Dinamik olmayan gölgelenme senaryoları

Senaryo	FV Dizi	Işınım (W/m ²)	Sıcaklık (°C)
Senaryo 1	FV1	1000	25
	FV2	1000	25
D00-51	FV3	750	25
Senaryo 2	FV1	1000	25
	FV2	750	25
D00-52	FV3	500	25
Senaryo 3	FV1	750	25
	FV2	500	25
DOG-22	FV3	250	25

DOG-S1

Bu senaryoda FV1 ve FV2 dizileri 1000 W/m²' lik tek tip radyasyona maruz kalırken, FV3 dizisi 750 W/m²' lik radyasyon etkisinde bırakılır. Bu gölgelenme modeli I-V ve P-V karakteristik grafiklerinde çoklu tepe noktaları üretir. Algoritmalar yerel tepe noktasına takılırsa güç verimliliğinde önemli kayıplar oluşur. Şekil 6.14-6.19'da algoritmaların tüm modellere göre ürettiği güç grafikleri, Çizelge 6.31'de ise bu gölgelenme senaryosunun sonuçları sunulmuştur.

Şekil 6.14. DOG-S1 için TDM-M1 modelinin güç-zaman grafiği

Şekil 6.15. DOG-S1 için ÇDM-M1 modelinin güç-zaman grafiği

Şekil 6.16. DOG-S1 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.16 (Devamı). DOG-S1 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.17. DOG-S1 için ÇDM-M2 modelinin güç-zaman grafiği

Şekil 6.18. DOG-S1 için TDM-M3 modelinin güç-zaman grafiği

Şekil 6.19. DOG-S1 için ÇDM-M3 modelinin güç-zaman grafiği

Şekil 6.19 (Devam). DOG-S1 için ÇDM-M3 modelinin güç-zaman grafiği

Çizelge 6.31'de dinamik olmayan senaryo 1 için TDM-M1, ÇDM-M1, TDM-M2, ÇDM-M2, TDM-M3 ve ÇDM-M3 modellerine göre YSKA, GKO, INFO ve PSO algoritmaların; P_{FV} (W), MGN izleme zamanı, MGNT ve dönüştürücü verimi performansları verilmiştir. Sonuçlar incelendiğinde algoritmaların tümü, bütün modellerde %99'un üzerinde başarı göstermiştir. Çizelge 6.31'de verilen sonuçlar, DOG-S1 için tüm devre modellerinin 30 kez bağımsız çalıştırılmasından sonra kaydedilen en iyi sonuçlardır.

Model	Algoritma	P _{MGN} (W)	P_{FV} (W)	$P_{Y\ddot{u}k}$ (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)	Dönüştürücü Verimliliği (%)
	YSKA		100,1925	98,3666	0,8873	99,9976	98,1752
TDM-	GKO	100 1050	100,1949	98,3468	0,0874	99,9955	98,1555
M1	INFO	100,1950	97,3415	95,2671	0,1012	97,1521	95,0817
	PSO		100,1734	98,2856	0,5805	99,9785	98,0943
	YSKA		101,5245	99,7206	0,8872	99,9997	98,2229
ÇDM-	GKO	101,5248	101,4441	99,7031	0,0616	99,9206	98,2057
M1	INFO		97,8132	95,7157	0,1013	96,3442	94,2782
	PSO		101,5054	99,6428	0,2805	99,9809	98,1463
	YSKA		35,2103	30,7602	0,9624	99,9955	87,3575
TDM-	GKO	35,2118	35,2115	31,4046	0,0779	99,9989	89,1876
M2	INFO		35,2133	31,9485	0,2801	99,9943	90,7323
	PSO		35,2122	31,4936	0,2705	99,9999	89,4403
	YSKA		33,4808	31,0331	0,0615	99,9995	92,6887
ÇDM-	GKO	33,4810	33,4815	29,7264	0,0796	99,9998	88,7858
M2	INFO		33,4665	29,8710	0,4832	99,9567	89,2178
	PSO		33,3854	30,2228	0,0904	99,7145	90,2686
	YSKA		294,4739	281,4201	1,2606	99,8850	95,4572
TDM-	GKO	294,8128	294,4842	280,2337	0,2815	99,8885	95,0548
M3	INFO		294,4528	281,7472	2,9800	99,8779	95,5682
	PSO		294,4881	281,2311	0,1801	99,8899	95,3931
	YSKA		294,4218	281,4682	4,0218	99,8905	95,4956
CDM-	GKO	294,7446	294,4101	281,6943	0,1621	99,8865	95,5723
М3	INFO		294,3218	281,4867	0,4807	99,8566	95,5019
	PSO		294,4281	281,0510	0,5803	99,8926	95,3541

Çizelge 6.31. DOG-S1 için algoritmaların modellere göre MGNT sonuçları

DOG-S2

Bu senaryoda FV1 dizisi 1000 W/m², FV2 dizisi 750 W/m², FV3 dizisi 500 W/m²'lik radyasyona maruz bırakılır. Bu gölgelenme modelinin I-V ve P-V karakteristik grafiklerinde üç farklı tepe noktası oluşur. Bundan dolayı algoritmaların küresel MGN performansı bu senaryo ile test edilecektir. Şekil 6.20-6.25'de algoritmaların tüm modellere göre ürettiği güç grafikleri, Çizelge 6.32'de ise dinamik olmayan senaryo 2 için, TDM-M1, ÇDM-M1, TDM-M2, ÇDM-M2, TDM-M3 ve ÇDM-M3 modellerine göre YSKA, GKO, INFO ve PSO algoritmaların; P_{FV} (W), MGN izleme zamanı, MGNT ve dönüştürücü verimi performansları verilmiştir. Çizelge 6.32'de verilen sonuçlar, DOG-S2 için tüm devre modellerinin 30 kez bağımsız çalıştırılmasından sonra kaydedilen en iyi sonuçlardır.

Şekil 6.20. DOG-S2 için TDM-M1 modelinin güç-zaman grafiği

Şekil 6.21. DOG-S2 için ÇDM-M1 modelinin güç-zaman grafiği

Şekil 6.22. DOG-S2 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.22 (Devamı). DOG-S2 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.23. DOG-S2 için ÇDM-M2 modelinin güç-zaman grafiği

Şekil 6.24. DOG-S2 için TDM-M3 modelinin güç-zaman grafiği

Şekil 6.25. DOG-S2 için ÇDM-M3 modelinin güç-zaman grafiği

Şekil 6.25 (Devamı). DOG-S2 için ÇDM-M3 modelinin güç-zaman grafiği

Sonuçlar incelendiğinde algoritmaların tümü, M1 modülü için %95, M2 ve M3 modülleri için ise %99'un üzerinde başarı göstermiştir. Bu başarı oranı; YSKA, GKO, INFO ve PSO algoritmalarını DOG-S2 koşulları altında MGN noktasını bulmak için kullanılabilir olduğunu gösterir.

Model	Algoritma	P _{MGN} (W)	P_{FV} (W)	$P_{Y\ddot{u}k}$ (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)	Dönüştürücü Verimliliği (%)
	YSKA		63,5147	61,1932	0,9610	95,3374	91,8527
TDM-	GKO	66,6210	63,3482	61,1045	0,0643	95,0874	91,7195
M1	INFO		63,4997	61,1650	1,2807	95,3148	91,8103
	PSO		63,5169	61,1370	0,5810	95,3407	91,7683
	YSKA		64,3885	62,0764	1,2810	95,2676	91,8468
ÇDM-	GKO	67,5870	64,3210	61,9969	0,0844	95,1677	91,7291
M1	INFO		64,3850	62,0902	0,2420	95,2624	91,8671
	PSO		64,3886	61,9936	0,5810	95,2678	91,7242
	YSKA		23,6480	22,7504	2,2993	99,4964	95,7199
TDM-	GKO	23,7677	23,7195	23,0235	0,1007	99,7971	96,8687
M2	INFO		22,1873	19,0958	0,9852	93,3508	80,3434
	PSO		23,7366	23,1425	0,2993	99,8690	97,3693
	YSKA		22,5879	21,5218	0,1066	99,7909	95,0809
ÇDM-	GKO	22,6353	22,6340	21,9791	0,1039	99,9945	97,1013
M2	INFO		21,0455	18,0016	0,4833	92,9765	79,5290
	PSO		22,6226	21,7276	0,0817	99,9440	95,9903
	YSKA		200,0699	190,0494	3,0806	99,9592	94,9528
TDM-	GKO	200,1516	199,3860	188,2923	0,0867	99,6175	94,0748
M3	INFO		200,0558	187,9929	0,2826	99,9521	93,9253
	PSO		200,0962	189,2875	1,1628	99,9723	94,5721
	YSKA		200,0351	190,0875	3,0805	99,9565	94,9858
ÇDM-	GKO	200,1221	199,8802	188,6731	0,0833	99,8791	94,2790
M3	INFO		200,0214	189,4405	0,2602	99,9497	94,6624
	PSO		199,9968	189,2861	0,4804	99,9374	94,5853

Çizelge 6.32. DOG-S2 için algoritmaların modellere göre MGNT sonuçları

DOG-S3

Bu senaryoda FV1 dizisi 750 W/m², FV2 dizisi 500 W/m², FV3 dizisi 250 W/m²'lik radyasyon etkisine bırakılır. Bu gölgelenme modelinde I-V ve P-V karakteristik grafiklerinde oluşan üç farklı tepe noktası birbirine yakındır. Bu noktalara orta yüksek nokta (OYN) olarak adlandırılır. Bu senaryo ile algoritmaların OYN varlığında küresel MGN performansları test edilmiştir. Şekil 6.26-6.31'de algoritmaların tüm modellere göre ürettiği güç grafikleri, Çizelge 6.33'de ise dinamik olmayan senaryo 3 için, TDM-M1, ÇDM-M1, TDM-M2, ÇDM-M2, TDM-M3 ve ÇDM-M3 modellerine göre YSKA, GKO, INFO ve PSO algoritmaların; P_{FV} (W), MGN izleme zamanı, MGNT ve dönüştürücü verimi performansları verilmiştir. Çizelge 6.33'de verilen sonuçlar, DOG-S3 için tüm devre modellerinin 30 kez bağımsız çalıştırılmasından sonra kaydedilen en iyi sonuçlardır.

Şekil 6.26. DOG-S3 için TDM-M1 modelinin güç-zaman grafiği

Şekil 6.27. DOG-S3 için ÇDM-M1 modelinin güç-zaman grafiği

Şekil 6.28. DOG-S3 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.28 (Devamı). DOG-S3 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.29. DOG-S3 için ÇDM-M2 modelinin güç-zaman grafiği

Şekil 6.30. DOG-S3 için TDM-M3 modelinin güç-zaman grafiği

Şekil 6.31. DOG-S3 için ÇDM-M3 modelinin güç-zaman grafiği

Şekil 6.31 (Devamı). DOG-S3 için ÇDM-M3 modelinin güç-zaman grafiği

Sonuçlar incelendiğinde algoritmaların tümü, tüm modellerde %99'un üzerinde başarı göstermiştir. Bu başarı oranı; YSKA, GKO, INFO ve PSO algoritmalarını DOG-S3 koşulları altında küresel MGN noktasını bulmak için kullanılabilir olduğunu gösterir.

Model	Algoritma	P _{MGN} (W)	P_{FV} (W)	$P_{Y\ddot{u}k}$ (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)	Dönüştürücü Verimliliği (%)
	YSKA		41,3082	40,2088	0,9815	100,0003	97,3388
TDM-	GKO	41,3081	41,3002	40,2151	0,0873	99,9810	97,3542
M1	INFO		41,0203	39,8593	0,0614	99,3034	96,4927
	PSO		41,2974	40,2036	0,4605	99,9742	97,3261
	YSKA		41,9441	40,8607	0,8255	99,9997	97,4167
ÇDM-	GKO	41,9443	41,9164	40,8588	0,0845	99,9335	97,4122
M1	INFO		41,4463	40,2769	0,1673	98,8129	96,0249
	PSO		41,9440	40,8436	0,2639	99,9993	97,3759
	YSKA		14,6028	12,7278	1,2838	99,8341	87,0150
TDM-	GKO	14,6271	14,6210	13,5076	0,0741	99,9586	92,3467
M2	INFO		14,6231	12,5751	0,4839	99,9726	85,9712
	PSO		14,6268	13,0650	0,3920	99,9978	89,3206
	YSKA		13,8845	12,3626	0,0937	99,9990	89,0382
ÇDM-	GKO	13,8846	13,8816	12,3959	0,2745	99,9786	89,2780
M2	INFO		13,8846	12,2505	0,1706	99,9998	88,2306
	PSO		13,8621	12,3351	0,0911	99,8378	88,8398
	YSKA		124,3481	118,2795	3,9208	99,8857	95,0109
TDM-	GKO	124,4904	124,3238	118,2404	0,2432	99,8662	94,9795
M3	INFO		124,3507	118,0676	0,4812	99,8878	94,8407
	PSO		124,3606	118,3480	0,6201	99,8957	95,0660
	YSKA		124,3316	118,0945	4,5409	99,8889	94,8780
ÇDM-	GKO	124,4698	124,3292	118,1986	0,1613	99,8870	94,9616
M3	INFO		124,3294	118,2320	0,1611	99,8872	94,9885
	PSO		124,3489	118,2020	1,1405	99,9029	94,9644

Çizelge 6.33. DOG-S3 için algoritmaların modellere göre MGNT sonuçları

6.2.6. DOG için değerlendirme metriklerine göre MGNT optimizasyonu sonuçları

Dinamik olmayan gölgelenme koşullarında algoritmaların tüm model sonuçları; MGNT ve MGN izleme süresi olmak üzere değerlendirme metriklerine göre analiz edilmiştir. Bu bölümdeki sonuçlar algoritmaların bağımsız 30 kez çalışması üzerinden yürütülmüştür. Değerlendirme metrikleri olarak, minimum, ortalama, maksimum ve standart sapma kullanılmıştır.

MGNT değerlendirme metriği

Çizelge 6.34'de DOG-S1, Çizelge 6.35'de DOG-S2 ve Çizelge 6.36'da ise DOG-S3 gölgelenme senaryoları için algoritmaların MGNT değerlendirme metriği sonuçları verilmiştir. Çizelge 6.37-6.39'da ise sırasıyla DOG-S1, DOG-S2 ve DOG-S3 için algoritmaların toplam standart sapma ortalamasının sıralaması sunulmuştur.

		P_{FV} (W)							
Model	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama			
	YSKA	93,2171	99,5269	100,1925	1,3062	1			
TDM-	GKO	76,6926	89,6153	100,1950	9,6875	3			
M1	INFO	39,8567	89,0446	97,3415	12,0402	4			
	PSO	78,0885	95,5342	100,1734	7,3372	2			
	YSKA	92,5843	100,6570	101,5245	1,8422	1			
ÇDM-	GKO	69,8666	85,6484	101,4441	10,0688	3			
M1	INFO	73,6509	89,6535	97,8132	8,5033	2			
	PSO	52,3022	92,3805	101,5054	11,8272	4			
	YSKA	32,4861	34,5335	35,2103	0,7367	1			
TDM-	GKO	25,3101	32,0435	35,2115	3,1745	4			
M2	INFO	26,3548	32,8900	35,2133	3,0842	3			
	PSO	26,7654	33,7570	35,2122	2,6090	2			
	YSKA	24,5887	30,0971	33,4808	2,9976	3			
ÇDM-	GKO	24,4892	30,1636	33,4815	2,8517	2			
M2	INFO	23,0050	31,2382	33,4665	2,5232	1			
	PSO	17,5037	30,1549	33,3854	3,5726	4			
	YSKA	269,9230	291,6842	294,4739	5,8630	1			
TDM-	GKO	171,2661	263,5167	294,4842	34,3815	4			
M3	INFO	240,8602	283,3761	294,4528	14,6529	2			
	PSO	232,3728	282,6013	294,4881	18,3133	3			
	YSKA	269,0395	290,2455	294,4218	7,1660	1			
ÇDM-	GKO	214,3420	266,6488	294,4101	29,1270	4			
M3	INFO	196,7509	276,2876	294,3218	22,5534	3			
	PSO	232,0904	284,6582	294,4281	18,3507	2			

Çizelge 6.34. DOG-S1 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

		P_{FV} (W)						
Model	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama		
	YSKA	61,8223	62,2393	63,5147	0,5592	1		
TDM-	GKO	45,0631	57,9534	63,3482	4,7601	2		
M1	INFO	37,6996	59,4124	63,4997	6,3787	3		
	PSO	37,6637	61,1842	63,5169	6,4490	4		
	YSKA	61,5021	63,4072	64,3885	0,9423	1		
ÇDM-	GKO	50,6024	59,6693	64,3210	4,2044	2		
M1	INFO	38,1695	60,7075	64,3850	5,3093	4		
	PSO	38,1243	62,0824	64,3886	4,9841	3		
	YSKA	13,2444	21,5770	23,6480	2,3379	4		
TDM-	GKO	17,9811	21,1449	23,7195	1,6102	3		
M2	INFO	19,2373	21,2952	22,1873	1,0115	1		
	PSO	20,3950	22,5181	23,7366	1,1584	2		
	YSKA	16,8044	20,0655	22,5879	1,5124	2		
ÇDM-	GKO	11,7984	19,9326	22,6340	2,9072	4		
M2	INFO	11,9847	19,9109	21,0455	1,9493	3		
	PSO	17,2808	20,0812	22,6226	1,4113	1		
	YSKA	185,3776	198,1739	200,0699	4,1467	1		
TDM-	GKO	146,7761	177,6733	199,3860	16,5099	4		
M3	INFO	159,5067	190,1756	200,0558	10,0280	3		
	PSO	163,5535	191,5621	200,0962	9,9157	2		
	YSKA	183,1194	197,9870	200,0351	4,4741	1		
ÇDM-	GKO	112,7622	175,0809	199,8802	19,4716	4		
M3	INFO	168,9172	191,4374	200,0214	8,4433	2		
	PSO	155,7401	190,3525	199,9968	11,6427	3		

Çizelge 6.35. DOG-S2 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

			P_{FV} (W)							
	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama				
	YSKA	39,4716	40,9701	41,3082	0,4104	1				
TDM-	GKO	26,1919	36,3293	41,3002	5,4051	3				
M1	INFO	26,3167	37,3915	41,0203	5,3820	2				
	PSO	26,6761	37,1633	41,2974	5,8399	4				
	YSKA	39,9416	41,4744	41,9441	0,5776	1				
ÇDM-	GKO	27,6041	37,7117	41,9164	4,8794	3				
M1	INFO	27,5104	38,8881	41,4463	4,0059	2				
	PSO	25,5155	38,7261	41,9440	5,3173	4				
	YSKA	13,9520	14,3935	14,6028	0,1674	1				
TDM-	GKO	9,0493	12,5125	14,6210	2,0262	4				
M2	INFO	9,1577	13,9516	14,6231	1,3303	2				
	PSO	6,1942	14,1290	14,6268	1,5336	3				
	YSKA	6,5168	12,0680	13,8845	2,0431	4				
ÇDM-	GKO	7,9523	12,0474	13,8816	1,9012	2				
M2	INFO	12,2814	13,5658	13,8846	0,3989	1				
	PSO	8,3186	12,1103	13,8621	1,9639	3				
	YSKA	112,4423	122,7596	124,3481	3,1084	1				
TDM-	GKO	82,8495	112,5383	124,3238	11,5054	4				
M3	INFO	98,0294	116,4087	124,3507	8,2060	2				
	PSO	80,4886	117,2477	124,3606	11,1341	3				
	YSKA	86,4775	120,8564	124,3316	8,2501	1				
ÇDM-	GKO	76,1800	111,6630	124,3292	14,6487	4				
M3	INFO	91,1598	116,3764	124,3294	11,2295	3				
	PSO	94,9196	118,4200	124,3489	10,1061	2				

Çizelge 6.36. DOG-S3 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	3,3186	1
GKO	14,8818	4
INFO	10,5595	3
PSO	10,3350	2

Çizelge 6.37. DOG-S1 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları

Çizelge 6.38. DOG-S2 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	2,3287	1
GKO	8,2439	4
INFO	5,5200	2
PSO	5,9268	3

Çizelge 6.39. DOG-S3 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	2,4262	1
GKO	6,7277	4
INFO	5,0921	2
PSO	5,9825	3

Yapılan bu analizler 30 bağımsız çalıştırma boyunca istikrarlı olarak yakın sonuç üretme eğilimini ölçen standart sapma açısından değerlendirildiğinde DOG-S1 için TDM-M1, ÇDM-M1, TDM-M2, TDM-M3 ve ÇDM-M3 modellerinde YSKA algoritması en düşük standart sapmaya sahiptir. Dolayısıyla bu sonuçlar DOG S1 için YSKA algoritmasının istikrarlı sonuç ürettiğini ortaya koymuştur. ÇDM-M2 modelinde ise INFO en düşük standart sapmaya sahiptir. DOG-S1 gölgelenme durumu genel olarak değerlendirildiğinde

YSKA, PSO, INFO ve GKO olarak sıralanmaktadır. Birinci sırada YSKA algoritması bulunmaktadır.

DOG-S2 için TDM-M1, ÇDM-M1, TDM-M3 ve ÇDM-M3 modellerinde YSKA algoritması en düşük standart sapmaya sahiptir. Dolayısıyla bu sonuçlar DOG-S2 için YSKA algoritmasının istikrarlı sonuç ürettiğini göstermiştir. TDM-M2 modelinde INFO algoritması, ÇDM-M2 modelinde ise PSO en düşük standart sapmaya sahiptir. DOG-S2 gölgelenme durumu genel olarak değerlendirildiğinde YSKA, INFO, PSO ve GKO olarak sıralanmaktadır. Birinci sırada YSKA algoritması bulunmaktadır.

DOG-S3 için TDM-M1, ÇDM-M1, TDM-M2, TDM-M3 ve ÇDM-M3 modellerinde YSKA algoritması en düşük standart sapmaya sahiptir. Bu sonuçlar DOG S3 için YSKA algoritmasının istikrarlı sonuç ürettiğini göstermiştir. ÇDM-M2 modelinde ise INFO en düşük standart sapmaya sahiptir. DOG-S3 gölgelenme durumu genel olarak değerlendirildiğinde YSKA, INFO, PSO ve GKO olarak sıralanmaktadır. Birinci sırada YSKA algoritması bulunmaktadır.

Dinamik olmayan tüm gölgelenme senaryolarında MGNT için en başarılı ve en istikrarlı algoritma YSKA algoritması olmuştur. Bu da bizlere YSKA algoritmasının MGNT optimizasyonunda başarılı bir şekilde kullanılabileceğini göstermektedir.

MGN izleme süresinin değerlendirme metriği sonuçları

Çizelge 6.40'da DOG-S1, Çizelge 6.41'de DOG-S2 ve Çizelge 6.42'de ise DOG-S3 gölgelenme senaryoları için algoritmaların MGN izleme süresi değerlendirme metriği sonuçları verilmiştir. Çizelge 6.43-6.45'de ise sırasıyla DOG-S1, DOG-S2 ve DOG-S3 için algoritmaların MGN izleme süresi toplam standart sapma ortalamasının sıralaması verilmiştir.

		MGN İzleme Zamanı (s)				
Model	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama
	YSKA	0,3877	0,8238	1,4841	0,2377	3
TDM-	GKO	0,0611	0,0897	0,2004	0,0235	1
M1	INFO	0,1005	0,4868	1,3676	0,3512	4
	PSO	0,0613	0,3154	0,6627	0,1519	2
	YSKA	0,3851	0,7544	0,9668	0,2038	3
ÇDM-	GKO	0,0278	0,0915	0,3678	0,0544	1
M1	INFO	0,0859	0,5027	1,7605	0,4412	4
	PSO	0,0817	0,2926	0,5804	0,1222	2
TDM- M2	YSKA	0,5018	0,9007	1,7869	0,2262	4
	GKO	0,0717	0,1111	0,3946	0,0597	1
	INFO	0,0444	0,3225	1,0908	0,2153	3
	PSO	0,0444	0,3920	0,6136	0,1396	2
CDM-	YSKA	0,0453	0,0961	0,1402	0,0183	3
	GKO	0,0524	0,0891	0,1222	0,0149	1
M2	INFO	0,0831	0,4777	1,4007	0,3752	4
	PSO	0,0423	0,0918	0,1113	0,0150	2
	YSKA	1,2602	1,6253	3,9217	0,5980	4
TDM-	GKO	0,0625	0,2460	0,7687	0,1769	2
M3	INFO	0,0803	0,6038	2,9800	0,5192	3
	PSO	0,1611	0,3706	0,6801	0,1666	1
	YSKA	1,0535	2,0932	4,7804	1,0606	4
ÇDM-	GKO	0,0607	0,2239	0,7052	0,1631	1
M3	INFO	0,1606	0,5280	2,3013	0,4546	3
	PSO	0,1600	0,4799	0,9809	0,2009	2

Çizelge 6.40. DOG-S1 için algoritmaların modellere göre MGN izleme zamanının değerlendirme metriği sonuçları

		MGN İzleme Zamanı (s)				
Model	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama
	YSKA	0,7008	0,9411	1,8611	0,2346	3
TDM-	GKO	0,0603	0,0833	0,1022	0,0132	1
M1	INFO	0,0808	0,3608	2,1806	0,4048	4
	PSO	0,0808	0,3544	0,6815	0,1854	2
	YSKA	0,6610	0,9823	1,3406	0,1591	2
ÇDM-	GKO	0,0625	0,0958	0,3635	0,0513	1
M1	INFO	0,0846	0,3839	1,4010	0,3542	4
	PSO	0,0607	0,4099	1,0809	0,2152	3
TDM- M2	YSKA	0,4176	3,9696	9,9880	3,3605	4
	GKO	0,0758	0,0962	0,1096	0,0099	1
	INFO	0,1615	0,6013	1,8854	0,4487	3
	PSO	0,0609	0,3232	1,2020	0,2349	2
ÇDM- M2	YSKA	0,0641	0,0947	0,1174	0,0132	1
	GKO	0,0628	0,0973	0,2031	0,0267	3
	INFO	0,1601	0,7739	5,7030	1,0013	4
	PSO	0,0745	0,1003	0,2039	0,0265	2
	YSKA	0,9607	2,3130	3,7204	0,9324	4
TDM-	GKO	0,0801	0,1883	0,6799	0,1270	1
M3	INFO	0,1023	0,5270	1,6831	0,3780	3
	PSO	0,0800	0,4794	1,4828	0,3493	2
	YSKA	1,0806	2,3952	4,4433	0,9760	4
ÇDM-	GKO	0,0813	0,1794	0,4603	0,0928	1
M3	INFO	0,1815	0,6328	1,7694	0,4458	3
	PSO	0,1623	0,4266	1,0217	0,1821	2

Çizelge 6.41. DOG-S2 için algoritmaların modellere göre MGN izleme zamanının değerlendirme metriği sonuçları

		MGN İzleme Zamanı (s)				
Model	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama
	YSKA	0,3619	0,8430	1,5616	0,2311	3
TDM-	GKO	0,0414	0,0981	0,4843	0,0739	1
M1	INFO	0,0614	0,4886	1,6843	0,4331	4
	PSO	0,0483	0,2581	0,4816	0,1082	2
	YSKA	0,3869	0,7696	1,5819	0,2454	3
ÇDM-	GKO	0,0644	0,0892	0,2644	0,0352	1
M1	INFO	0,1046	0,4166	2,0848	0,4008	4
	PSO	0,0830	0,2695	0,4804	0,0816	2
TDM- M2	YSKA	0,4801	0,8901	1,3896	0,2013	3
	GKO	0,0521	0,0986	0,2040	0,0289	1
	INFO	0,0819	0,4369	1,2801	0,3138	4
	PSO	0,0620	0,3768	0,7438	0,1585	2
ÇDM- M2	YSKA	0,0614	0,1102	0,5078	0,0774	4
	GKO	0,0684	0,1059	0,2745	0,0430	1
	INFO	0,1601	0,6214	3,0479	0,6556	3
	PSO	0,0402	0,1028	0,3001	0,0513	2
	YSKA	0,9609	1,9016	3,9208	0,7306	4
TDM-	GKO	0,0664	0,1775	0,5801	0,1040	1
M3	INFO	0,1608	0,4952	1,6800	0,3921	3
	PSO	0,0800	0,4712	1,1406	0,2656	2
	YSKA	0,2055	1,9970	4,9809	1,0699	4
ÇDM-	GKO	0,0621	0,1762	0,4800	0,1023	1
M3	INFO	0,1462	0,5854	1,7578	0,4718	3
	PSO	0,0808	0,4535	1,1805	0,3011	2

Çizelge 6.42. DOG-S3 için algoritmaların modellere göre MGN izleme zamanının değerlendirme metriği sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	0,3907	3
GKO	0,0820	1
INFO	0,3927	4
PSO	0,1326	2

Çizelge 6.43. DOG-S1 için algoritmaların MGN izleme zamanının değerlendirme metriğine göre toplam sıralama sonuçları

Çizelge 6.44. DOG-S2 için algoritmaların MGN izleme zamanının değerlendirme metriğine göre toplam sıralama sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	0,9459	4
GKO	0,0535	1
INFO	0,5054	3
PSO	0,1989	2

Çizelge 6.45. DOG-S3 için algoritmaların MGN izleme zamanının değerlendirme metriğine göre toplam sıralama sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	0,4259	3
GKO	0,0645	1
INFO	0,4445	4
PSO	0,1610	2

Bir algoritmanın çalışma süresi, algoritmanın tasarlandığı altyapıyla ilişkilendirilir. Dinamik olmayan tüm gölgelenme senaryolarında MGNT standart sapmasında son sırada olan GKO algoritması, MGN izleme zamanında ilk sırada yer almaktadır. Burada dikkat edilmesi gereken husus bir algoritmanın hızlı olması aynı zamanda doğru ve istikrarlı sonuç ürettiğini göstermez. Dolayısıyla algoritmaların performanslarını değerlendirilirken algoritmanın hızı tek başına kıstas olamaz.

6.2.7. DOG senaryoları için Friedman testine göre MGNT optimizasyonunun değerlendirilmesi

Bu tez çalışmasında dinamik olmayan gölgelenme durumları için algoritmaların MGNT optimizasyon performansları değerlendirme metrikleriyle analiz edildikten sonra Friedman testiyle incelenmiştir.

%5 önem derecesine göre DOG-S1'in Friedman test sonuçları Çizelge 6.46'da, DOG-S2'in Friedman test sonuçları Çizelge 6.47'de ve DOG-S3'ün Friedman test sonuçları ise Çizelge 6.48'de verilmiştir. Sırasıyla DOG-S1, DOG-S2 ve DOG-S3 senaryolarının Friedman testine göre sıralama sonuçları Çizelge 6.49-6.51'de verilmiştir.

Friedman test sonuçları incelendiğinde DOG-S1 ve DOG-S2 için TDM-M1, ÇDM-M1, TDM-M2, TDM-M3 ve ÇDM-M3 modellerinde P değeri 0,05'den küçüktür. Bu da bizlere bu modeller ile çalışan algoritmalar arasında önem farkı olduğunu gösterir. ÇDM-M2 modelinde ise P değeri 0,05'den küçük olmadığından burada algoritmaların birbirlerine göre üstünlükleri yoktur. DOG-S3 de ise tüm modellerin P değeri 0,05'den küçüktür. Dolayısıyla DOG-S3 için çalışan algoritmaların birbirlerine göre önem dereceleri farklıdır.

Dinamik olmayan gölgelenme senaryolarının Friedman test sonuçları genel olarak değerlendirilirse, üç senaryoda da toplam sıralama sonuçlarında YSKA algoritması birinci sıradadır. Bu sonuç YSKA algoritması, diğer algoritmalara göre MGNT optimizasyonu problemi için daha başarılı olduğunu ortaya koyar.

Model	Algoritma	Friedman Sıra Ortalaması	Sıra	p- Değeri	Sonuç
	YSKA	3,66667	1		
	GKO	2,03333	3	2.245.00	P-değeri
TDM-M1	INFO	1,63333	4 3,24E-09		(3,24E-09< 0,05)
	PSO	2,66667	2		
	YSKA	3,66667	1		
CDM M1	GKO	1,96667	3	9 27 E 00	P-değeri
ÇDM-MI	INFO	1,73333	4	8,27E-09	(8,27E-09< 0,03)
	PSO	2,63333	2		
	YSKA	3,00000	1		
	GKO	2,03333	3	2 21E 02	P-değeri (3,31E-03< 0,05)
TDM-M2	INFO	2,10000	4	5,51E-05	
	PSO	2,86667	2		
	YSKA	2,36667	3		
	GKO	2,30000	4	5 5 CE 01	P-değeri
ÇDM-M2	INFO	2,70000	1	5,50E-01	(5,50E-01>0,05)
	PSO	2,63333	2		
	YSKA	2,60000	1		
	GKO	1,80000	4	2 19E 04	P-değeri
1 Divi-ivi5	INFO	2,43333	3	2,18E-04	(2,18E-04< 0,03)
	PSO	2,50000	2		
	YSKA	3,20000	1		
CDM M2	GKO	2,00000	4	1,72E-03	P-değeri
ÇDIVI-IVI3	INFO	2,20000	3		(1,/2E-03< 0,03)
	PSO	2,60000	2		

Çizelge 6.46. DOG-S1 için algoritmaların Friedman test sonuçları

Model	Algoritma	Friedman Sıra Ortalaması	Sıra	p-Değeri	Sonuç	
	YSKA	2,6667	2			
	GKO	1,6667	4		p-değeri (2,09E-04< 0,05)	
TDM-MI	INFO	2,5667	3	2,09E-04		
	PSO	3,1000	1			
	YSKA	2,9333	1			
ÇDM-	GKO	1,8667	3	1.055.02	p-değeri	
M1	INFO	2,2667	2	1,85E-03	(1,85E-03< 0,05)	
	PSO	2,9333	1			
	YSKA	2,8000	2			
TDM-M2	GKO	1,9333	4	1 20E 02	p-değeri (1,20E-03<)	
	INFO	2,1667	3	1,20E-05		
	PSO	3,1000	1			
	YSKA	2,3000	3		p-değeri (6,96E-01> 0,05)	
ÇDM-	GKO	2,6333	1	6 06E 01		
M2	INFO	2,6333	1	0,901-01		
	PSO	2,4333	2			
	YSKA	3,6333	1			
TDM M3	GKO	1,6333	4	3 71E 08	p-değeri	
1 DIVI-IVI3	INFO	2,3000	3	5,712-08	(3,712-08< 0,03)	
	PSO	2,4333	2			
	YSKA	3,5000	1			
ÇDM-	GKO	1,5333	4	1 27E 07	p-değeri	
M3	INFO	2,5333	2	1,2/E-U/	(1,2/E-0/< 0,03)	
	PSO	2,4333	3			

Çizelge 6.47. DOG-S2 için algoritmaların Friedman test sonuçları
Model	Algoritma	Friedman Sıra Ortalaması	Sıra	Р-	Sonuç
	YSKA	3,4333	1		
	GKO	2,0333	3	9.07E.07	P-değeri
IDM-MI	INFO	2,2667	2	8,05E-05	(8,05E-05< 0,05)
	PSO	2,2667	2		
	YSKA	3,5000	1		
	GKO	1,9667	4	1.005.05	P-değeri
ÇDM-M1	INFO	2,4000	2	1,09E-05	(1,09E-05< 0,05)
	PSO	2,1333	3		
	YSKA	2,6333	2		
	GKO	1,7667	3	2 60E 02	P-değeri (2,60E-03< 0,05)
IDM-M2	INFO	2,6333	2	2,00E-05	
	PSO	2,9667	1		
	YSKA	2,3333	2		
	GKO	2,1000	4	1 20E 02	P-değeri
ÇDM-M2	INFO	3,3000	3,3000 1		(1,20E-03< 0,05)
	PSO	2,2667	3		
	YSKA	3,2333	1		
	GKO	1,9333	4	7 24 5 04	P-değeri
TDM-M5	INFO	2,2333	3	/,34E-04	(7,54E-04< 0,05)
	PSO	2,6000	2		
	YSKA	2,9333	1		
CDM M2	GKO	1,9000	4	1.01E.02	P-değeri
ÇDIVI-IVI3	INFO	2,4000	3	1,01E-02	(1,01E-02< 0,03)
	PSO 2,7667 2		2		

Çizelge 6.48. DOG-S3 için algoritmaların Friedman test sonuçları

	Model	YSKA	GKO	INFO	PSO
	TDM-M1	1	3	4	2
DOG-S1	ÇDM-M1	1	3	4	2
	TDM-M2	1	3	4	2
	ÇDM-M2	3	4	1	2
	TDM-M3	1	4	3	2
	ÇDM-M3	1	4	3	2
Sıralamanın Ortalaması		1,3333	3,5	3,1667	2
Toplam Sıralama		1	4	3	2

Çizelge 6.49. Algoritmaların DOG-S1 modelde Friedman testine göre sıralama sonuçları

Çizelge 6.50. Algoritmaların DOG-S2 modelde Friedman testine göre sıralama sonuçları

	Model	YSKA	GKO	INFO	PSO
	TDM-M1	2	4	3	1
DOG-S2	ÇDM-M1	1	3	2	1
	TDM-M2	2	4	3	1
	ÇDM-M2	3	1	1	2
	TDM-M3	1	4	3	2
	ÇDM-M3	1	4	2	3
Sıralamanın ortalaması		1,6667	3,3333	2,3333	1,6667
Toplam Sıralama		1	3	2	1

	Model	YSKA	GKO	INFO	PSO
	TDM-M1	1	3	2	2
	ÇDM-M1	1	4	2	3
DOG-S3	TDM-M2	2	3	2	1
	ÇDM-M2	2	4	1	3
	TDM-M3	1	4	3	2
	ÇDM-M3	1	4	3	2
Sıralamanın Ortalaması		1,3333	3,6667	2,1667	2,1667
Toplam Sıralama		1	3	2	2

Çizelge 6.51. Algoritmaların DOG-S3 modelde Friedman testine göre sıralama sonuçları

6.2.8. Dinamik gölgelenme sonuçları

Bu bölümde FV sistemlere uygulanan üç farklı dinamik gölgelenme (DG) senaryolarının sonuçlarını sunulmuştur. Çizelge 6.52'de oluşturulan senaryoların ışınım ve sıcaklık bilgileri verilmiştir.

Bu tez çalışmasında, MATLAB/Simuink ortamında çalıştırılan tüm devre modellerinin çalışma süresi 10 saniye olarak belirlenmiştir. Simülasyonların çalışma süresi dörde bölünerek her 2,5 saniyede bi FV dizilere uygulanan ışınım değiştirilmiştir. Yani FV sisteme dinamik gölgelenme eklenmiştir.

Senaryo	Zaman (sn)	Işınım (W/m ²)	Sıcaklık (°C)
	0-2,5	1 000	25
Senaryo 1	2,5-5	850	25
DG-S1	5-7,5	700	25
	7,5-10	550	25
	0-2,5	550	25
Senaryo 2	2,5-5	700	25
DG-S2	5-7,5	850	25
	7,5-10	1 000	25

Çizelge 6.52. Dinamik gölgelenme senaryoları

<u>DG-S1</u>

Bu senaryoda FV1, FV2 ve FV3 dizilerine tek tip ışınım uygulanmıştır. Bu ışınım 0-2,5 saniye aralığında 1000 W/m², 2,5 ile 5 saniye aralığında 850 W/m², 5 ile 7,5 saniye aralığında 700 W/m² ve 7,5 saniye ile 10 saniye aralığında ise 550 W/m²'dir. Görüldüğü üzere ışınım kademeli olarak azaltılmaktadır. Azalan haraketli ışınım altında algoritmaların MGNT performansları test edilmiştir. Şekil 6.32-6.37'de de algoritmaların tüm modellere göre ürettiği güç grafikleri, Çizelge 6.53'de ise dinamik senaryo 1 için, TDM-M1, Çizelge 6ç54'de ÇDM-M1, Çizelge 6.55'de TDM-M2, Çizelge 6.56'da ÇDM-M2, Çizelge 6.57'de TDM-M3 ve Çizelge 6.58'de ise ÇDM-M3 modellerine göre YSKA, GKO, INFO ve PSO algoritmaların; P_{FV} (W), MGN izleme zamanı ve MGNT verimi performansları verilmiştir. Burada verilen sonuçlar, DG-S1 için tüm devre modellerinin 30 kez bağımsız çalıştırılmasından sonra kaydedilen en iyi sonuçlardır.

Şekil 6.32. DG-S1 için TDM-M1 modelinin güç-zaman grafiği

Şekil 6.33. DG-S1 için ÇDM-M1 modelinin güç-zaman grafiği

Şekil 6.33 (Devamı). DG-S1 için ÇDM-M1 modelinin güç-zaman grafiği

Şekil 6.34. DG-S1 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.35. DG-S1 için ÇDM-M2 modelinin güç-zaman grafiği

Şekil 6.36. DG-S1 için TDM-M3 modelinin güç-zaman grafiği

Şekil 6.36 (Devamı). DG-S1 için TDM-M3 modelinin güç-zaman grafiği

Şekil 6.37. DG-S1 için ÇDM-M3 modelinin güç-zaman grafiği

Model	Algoritma	Bölge	P _{MGN} (W)	P _{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	123,4292	123,3813	0,9609	99,9612
	A 11 A	2	103,5157	103,5156	3,5842	99,9999
	АПА	3	83,8765	83,7747	6,6830	99,8786
		4	64,2709	60,5585	9,3900	94,2238
		1	123,4292	123,3655	0,3605	99,9484
	GWO	2	103,5157	103,4723	2,6809	99,9581
		3	83,8765	83,7739	5,1837	99,8776
TDM-		4	64,2709	60,7639	7,6735	94,5433
M1		1	123,4292	123,3684	0,4807	99,9507
	INFO	2	103,5157	103,5134	3,9841	99,9978
	INFO	3	83,8765	80,6869	5,3073	96,1972
		4	64,2709	51,9634	8,5033	80,8506
		1	123,4292	123,4181	0,2620	99,9910
	PSO	2	103,5157	103,4990	3,0808	99,9838
	130	3	83,8765	83,7766	5,1843	99,8809
		4	64,2709	60,7642	7,8684	94,5439

Çizelge 6.53. DG-S1-TDM-M1 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P _{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	125,7292	125,0007	1,2815	99,4206
	A 11 A	2	105,7157	104,9311	4,9415	99,2578
	АПА	3	85,7765	84,9986	7,1676	99,0931
		4	65,2667	60,9278	9,5504	93,3521
		1	125,7292	124,8947	0,0843	99,3363
	GWO	2	105,7157	104,9149	2,6867	99,2425
		3	85,7765	84,9958	5,1875	99,0898
ÇDM-		4	65,2667	61,1126	8,0844	93,6352
M1		1	125,7292	124,8153	0,1607	99,2731
	INFO	2	105,7157	104,9311	3,7639	99,2579
	INFO	3	85,7765	81,1914	5,5038	94,6546
		4	65,2667	52,1328	7,8847	79,8766
		1	125,7292	124,9665	0,3617	99,3934
	PSO	2	105,7157	104,8917	2,9608	99,2205
	130	3	85,7765	84,9977	5,3460	99,0920
		4	65,2667	61,1129	7,8488	93,6357

Çizelge 6.54. DG-S1-ÇDM-M1 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P _{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	42,9062	42,7096	0,9609	99,5418
		2	36,1787	36,0796	4,0629	99,7261
	АНА	3	29,4232	29,3996	6,5225	99,9199
		4	22,7321	22,7188	8,6751	99,9414
		1	42,9062	42,6290	0,0888	99,3539
	GWO	2	36,1787	36,0542	2,6749	99,6561
		3	29,4232	29,4048	5,1721	99,9374
TDM-		4	22,7321	22,7289	7,7245	99,9859
M2		1	42,9062	42,7066	0,4816	99,5347
	INFO	2	36,1787	36,0803	3,0853	99,7281
	INFO	3	29,4232	29,3899	5,4649	99,8869
		4	22,7321	21,6935	8,5007	95,4309
		1	42,9062	42,6941	0,5808	99,5058
	PSO	2	36,1787	36,0776	3,8214	99,7206
	150	3	29,4232	29,3913	6,2614	99,8915
		4	22,7321	22,7243	7,7747	99,9655

Çizelge 6.55. DG-S1-TDM-M2 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P _{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	40,5979	40,5005	1,2608	99,7601
		2	34,2219	34,2141	3,7816	99,9771
	АНА	3	27,8885	27,8878	5,5812	99,9974
		4	21,5499	21,5489	8,7735	99,9955
		1	40,5979	40,4644	0,0934	99,6713
	GWO	2	34,2219	34,1769	2,6648	99,8685
	0.00	3	27,8885	27,8829	5,1443	99,9800
ÇDM-		4	21,5499	21,5419	7,6986	99,9630
M2		1	40,5979	40,4996	1,5601	99,7579
	INFO	2	34,2219	34,2134	3,7841	99,9753
	INFO	3	27,8885	27,8754	6,1613	99,9531
		4	21,5499	21,0710	8,3715	97,7777
		1	40,5979	40,5003	0,5239	99,7597
	PSO	2	34,2219	34,2136	3,0422	99,9759
	150	3	27,8885	27,8872	5,3831	99,9952
		4	21,5499	21,5453	7,7926	99,9788

Çizelge 6.56. DG-S1-ÇDM-M2 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P_{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	359,7532	359,4039	1,2606	99,9029
		2	304,9998	304,8074	2,9806	99,9369
	АНА	3	249,9160	249,8106	6,1802	99,9578
		4	194,6474	194,5868	8,8458	99,9688
		1	359,7532	356,4630	2,0034	99,0854
	GWO	2	304,9998	302,7779	2,6802	99,2715
		3	249,9160	249,4368	5,3811	99,8082
TDM-		4	194,6474	194,5852	7,7801	99,9680
M3		1	359,7532	359,6194	0,2601	99,9628
	INFO	2	304,9998	304,2364	3,7405	99,7497
	INFO	3	249,9160	249,8315	5,6403	99,9662
		4	194,6474	194,5978	7,9631	99,9745
		1	359,7532	359,5633	1,9269	99,9472
	PSO	2	304,9998	304,7888	3,0801	99,9308
	150	3	249,9160	249,7359	5,2800	99,9279
		4	194,6474	194,5910	7,8612	99,9710

Çizelge 6.57. DG-S1-TDM-M3 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P_{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	359,6479	359,5411	1,2609	99,9703
		2	304,8232	304,6716	4,4212	99,9503
	АНА	3	249,9634	249,7877	6,5804	99,9297
		4	194,6151	194,5593	9,4207	99,9713
		1	359,6479	359,0665	1,8666	99,8384
	GWO	2	304,8232	303,2218	3,1647	99,4746
		3	249,9634	249,2107	5,2611	99,6989
ÇDM-		4	194,6151	194,3190	7,7201	99,8479
M3		1	359,6479	359,2243	1,9510	99,8822
	INEO	2	304,8232	304,3390	3,6601	99,8411
	INFO	3	249,9634	249,6995	5,5604	99,8944
		4	194,6151	194,5563	8,2609	99,9698
		1	359,6479	359,5287	0,4803	99,9669
	PSO	2	304,8232	304,5608	3,3398	99,9139
	150	3	249,9634	249,8045	6,0604	99,9364
		4	194,6151	194,5387	7,9603	99,9608

Çizelge 6.58. DG-S1-ÇDM-M3 için algoritmaların modellere göre MGNT sonuçları

Bu senaryoda uygulanan ışınım 0-2,5 saniye aralığında 550 W/m², 2,5 ile 5 saniye aralığında 700 W/m², 5 ile 7,5 saniye aralığında 850 W/m² ve 7,5 saniye ile 10 saniye aralığında ise 1000 W/m²'dir. Işınım kademeli olarak arttırılmaktadır. Artan haraketli ışınım altında algoritmaların MGNT performansları test edilmiştir. Şekil 6.38-6.43'de de algoritmaların tüm modellere göre ürettiği güç grafikleri, Çizelge 6.59'da dinamik senaryo 2 için, TDM-M1, Çizelge 6.60'da ÇDM-M1, Çizelge 6.61'de TDM-M2, Çizelge 6.62'de ÇDM-M2, Çizelge 6.63'de TDM-M3 ve Çizelge 6.64'de ise ÇDM-M3 modellerine göre YSKA, GKO, INFO ve PSO algoritmaların; P_{FV} (W), MGN izleme zamanı, ve MGNT verimi performansları verilmiştir. Burada verilen sonuçlar, DG-S2 için tüm devre modellerinin 30 kez bağımsız çalıştırılmasından sonra kaydedilen en iyi sonuçlardır.

Şekil 6.38. DG-S2 için TDM-M1 modelinin güç-zaman grafiği

Şekil 6.39. DG-S2 için ÇDM-M1 modelinin güç-zaman grafiği

Şekil 6.40. DG-S2 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.40 (Devamı). DG-S2 için TDM-M2 modelinin güç-zaman grafiği

Şekil 6.41. DG-S2 için ÇDM-M2 modelinin güç-zaman grafiği

Şekil 6.42. DG-S2 için TDM-M3 modelinin güç-zaman grafiği

Şekil 6.43. DG-S2 için ÇDM-M3 modelinin güç-zaman grafiği

Şekil 6.43. DG-S2 için ÇDM-M3 modelinin güç-zaman grafiği (Devamı)

Model	Algoritma	Bölge	P _{MGN} (W)	P _{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	64,2709	60,2712	0,9811	93,7768
	A TT A	2	83,8765	83,7767	2,5054	99,8809
	АНА	3	103,5157	102,6735	5,0072	99,1864
		4	123,4292	123,1704	8,5807	99,7904
		1	64,2709	60,3755	0,1857	93,9391
	CWO	2	83,8765	83,7240	2,5066	99,8182
	0.00	3	103,5157	103,4077	5,0046	99,8957
TDM-		4	123,4292	122,8609	7,7809	99,5396
M1		1	64,2709	51,9733	0,2871	80,8659
	INFO	2	83,8765	80,6929	2,5862	96,2044
	INFO	3	103,5157	103,4981	5,0037	99,9830
		4	123,4292	123,2991	9,9999	99,8946
		1	64,2709	60,7650	0,3671	94,5450
	PSO	2	83,8765	83,6512	2,5070	99,7313
	150	3	103,5157	101,8769	7,4851	98,4169
		4	123,4292	114,9396	7,5854	93,1219

Model	Algoritma	Bölge	P _{MGN} (W)	P _{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	64,2709	60,9394	0,9809	94,8164
	A 11 A	2	85,7765	84,9641	2,5064	99,0529
	АПА	3	105,7157	104,6353	5,0815	98,9780
		4	125,7292	123,6159	7,5838	98,3192
		1	64,2709	61,1134	0,0935	95,0872
	GWO	2	85,7765	84,9798	2,9877	99,0711
	Gwo	3	105,7157	104,7403	5,0806	99,0773
ÇDM-		4	125,7292	124,9367	7,5045	99,3697
M1		1	64,2709	52,1403	0,2047	81,1258
	INEO	2	85,7765	81,1931	2,5109	94,6565
	INFO	3	105,7157	104,9086	5,0037	99,2365
		4	125,7292	124,9063	8,1406	99,3455
		1	64,2709	61,1139	0,3680	95,0880
	DSO	2	85,7765	84,9499	2,5066	99,0363
	130	3	105,7157	102,7491	5,3840	97,1937
		4	125,7292	124,1329	8,4807	98,7304

Çizelge 6.60. DG-S2-ÇDM-M1 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P _{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	22,7321	22,7187	0,9401	99,9408
		2	29,4232	29,4139	4,9213	99,9685
	АНА	3	36,0887	35,9688	6,3815	99,6678
		4	42,7162	42,6588	9,8246	99,8656
		1	22,7321	22,7261	0,0963	99,9735
	GWO	2	29,4132	29,4003	3,2883	99,9561
	dwo	3	36,0887	35,8426	7,4984	99,3182
TDM-		4	42,7162	42,5880	7,9614	99,6999
M2		1	22,7321	22,2539	0,0640	97,8964
	INEO	2	29,4132	29,4083	3,9402	99,9832
	INFO	3	36,0887	36,0510	5,0095	99,8958
		4	42,7162	42,4952	8,0008	99,4827
		1	22,7321	22,7139	0,2635	99,9197
	PSO	2	29,4132	29,1859	3,7809	99,2273
	130	3	36,0887	36,0456	6,3228	99,8808
		4	42,7162	42,4607	8,2859	99,4019

Çizelge 6.61. DG-S2-TDM-M2 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P _{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	21,5499	21,5254	0,9991	99,8865
		2	40,5979	27,8890	4,9295	68,6957
	АПА	3	34,2219	34,1930	5,7815	99,9157
		4	40,5979	40,4465	9,2818	99,6272
		1	21,5499	21,5408	0,0748	99,9580
	GWO	2	40,5979	27,6778	3,7821	68,1754
	dwo	3	34,2219	33,4486	5,3692	97,7403
ÇDM-		4	40,5979	40,4971	7,9943	99,7519
M2		1	21,5499	21,4058	0,0514	99,3315
	INFO	2	40,5979	27,8896	2,5117	68,6972
	INFO	3	34,2219	33,9575	6,3808	99,2276
		4	40,5979	40,3078	8,0005	99,2856
		1	21,5499	21,5442	0,4806	99,9735
	PSO	2	40,5979	27,8719	3,6820	68,6537
	150	3	34,2219	34,2059	5,0098	99,9533
		4	40,5979	40,4495	8,2407	99,6346

Çizelge 6.62. DG-S2-ÇDM-M2 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P_{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	194,6474	194,5369	1,8617	99,9432
		2	249,9160	249,8431	4,8804	99,9708
	АНА	3	304,9998	302,9576	6,9808	99,3304
		4	359,7532	358,5855	8,7801	99,6754
		1	194,6474	194,2280	0,1400	99,7845
	GWO	2	249,9160	247,6659	3,3801	99,0996
	Gwo	3	304,9998	304,1697	5,3641	99,7278
TDM-		4	359,7532	358,6591	10,0000	99,6959
M3		1	194,6474	194,5915	0,2401	99,9713
	INFO	2	249,9160	249,7924	3,9991	99,9505
	INFO	3	304,9998	300,0609	5,5801	98,3807
		4	359,7532	326,5045	10,0000	90,7579
		1	194,6474	194,5569	0,5221	99,9535
	PSO	2	249,9160	249,7873	3,0801	99,9485
	150	3	304,9998	302,8373	6,1624	99,2910
		4	359,7532	359,3129	10,0000	99,8776

Çizelge 6.63. DG-S2-TDM-M3 için algoritmaların modellere göre MGNT sonuçları

Model	Algoritma	Bölge	P _{MGN} (W)	P_{FV} (W)	MGN İzleme Zamanı (s)	MGNT Verimliliği (%)
		1	194,6151	194,5627	1,2601	99,9731
	A 11 A	2	249,9634	249,1851	3,7211	99,6886
	АПА	3	304,8232	301,7051	6,7798	98,9771
		4	359,6479	357,1853	10,0000	99,3153
		1	194,6151	194,3977	0,0679	99,8883
	GWO	2	249,9634	249,2997	4,7003	99,7345
		3	304,8232	298,1907	5,5624	97,8241
ÇDM-		4	359,6479	358,3452	8,2801	99,6378
M3		1	194,6151	194,5650	0,4809	99,9743
	INFO	2	249,9634	249,7380	2,5807	99,9098
	INFO	3	304,8232	304,1521	5,9803	99,7798
		4	359,6479	356,7658	10,0000	99,1986
		1	194,6151	194,5625	0,3801	99,9730
	DSO	2	249,9634	249,7475	3,3617	99,9136
	150	3	304,8232	304,4513	7,3037	99,8780
		4	359,6479	359,0274	8,0204	99,8275

Çizelge 6.64. DG-S2-ÇDM-M3 için algoritmaların modellere göre MGNT sonuçları

Sonuçlar incelendiğinde algoritmaların tümü, tüm modellerde ortalama %98 üzerinde üzerinde başarı göstermiştir. Bu başarı oranı; YSKA, GKO, INFO ve PSO algoritmalarını DG-S2 koşulları altında MGN takibi için kullanılabilir olduğunu gösterir.

6.2.9. DG için değerlendirme metriklerine göre MGNT optimizasyonu sonuçları

Dinamik gölgelenme koşullarında algoritmaların tüm model sonuçları; MGNT ve MGN izleme süresi olmak üzere değerlendirme metriklerine göre incelenmiştir. Bu bölümde

algoritmalar bağımsız 30 kez çalıştırılarak sonuçlar kaydedilmiştir. Değerlendirme metrikleri olarak, minimum, ortalama, maksimum ve standart sapma kullanılmıştır.

MGNT değerlendirme metriği sonuçları

Çizelge 6.65'de DG-S1-M1, Çizelge 6.66'da DG-S1-M2, Çizelge 6.67'de ise DOG-S1-M3 için algoritmaların MGNT değerlendirme metriği sonuçları verilmiştir. DG-S2-M1, DG-S2-M2 ve DG-S2-M3 için MGNT değerlendirme metriği sonuçları sırasıyla Çizelge 6.68-670'de verilmiştir. Algoritmaların DG koşulları altında toplam standart sapma ortalama sırası Çizelge 6.71-6.72'de verilmiştir.

MGNT değerlendirme metriği için dinamik senaryo 1 ve senaryo 2'de en başarılı algoritma PSO olmuştur. YSKA algoritması DG-S1'de üçüncü, DG-S2 de ise ikinci olmuştur.

				P_{FV} (W)						
Model	Bölge	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama			
		YSKA	113,7296	121,2148	123,3813	2,3747	1			
	1	GKO	82,0437	112,9377	123,3655	11,4993	4			
	1	INFO	102,9783	119,6287	123,3684	4,2014	3			
		PSO	114,1227	120,9091	123,4181	2,8673	2			
		YSKA	98,1792	102,4484	103,5156	1,5477	1			
	2	GKO	51,5091	95,2675	103,4723	13,6328	4			
	Z	INFO	32,5922	99,6758	103,5134	12,9067	3			
TDM-		PSO	26,2825	48,1321	60,7639	10,7589	2			
M1		YSKA	59,2475	81,1736	83,7747	5,2159	1			
	2	GKO	25,2823	72,4555	83,7739	16,0540	4			
	3	INFO	34,3071	76,7162	80,6869	8,8244	2			
		PSO	18,3463	80,6067	83,7766	12,0120	3			
		YSKA	50,6995	58,3509	60,5585	2,4113	1			
	4	GKO	26,2825	48,1321	60,7639	10,7589	2			
	4	INFO	32,3630	46,0978	51,9634	10,7873	3			
		PSO	11,9555	53,4263	60,7642	14,2452	4			
	1	YSKA	112,7710	122,8617	125,0007	2,9070	1			
		GKO	55,9048	113,4528	124,8947	15,4461	3			
		INFO	42,5512	115,0664	124,8153	20,4667	4			
		PSO	104,9474	122,5906	124,9665	4,9540	2			
		YSKA	99,6460	103,9453	104,9311	1,4652	1			
	2	GKO	64,5155	96,7650	104,9149	11,4839	4			
	2	INFO	58,8201	100,5236	104,9311	9,2784	3			
ÇDM-		PSO	97,4731	102,1622	104,8917	2,9108	2			
M1		YSKA	17,7583	81,2498	84,9986	12,6698	2			
	3	GKO	34,4715	73,5093	84,9958	14,6428	4			
	3	INFO	17,2167	75,3333	81,1914	13,1858	3			
		PSO	33,7734	81,3454	84,9977	10,4428	1			
		YSKA	34,4823	56,0605	60,9278	6,1523	1			
	1	GKO	14,0469	48,2407	61,1126	12,5418	4			
	+	INFO	7,6093	46,8236	52,1328	11,2236	3			
		PSO	27,1105	56,7704	61,1129	8,6588	2			

Çizelge 6.65. DG-S1-M1 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

					P_{FV} (W)		
Model	Bölge	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama
		YSKA	39,4030	42,1528	42,7096	0,7359	1
	1	GKO	31,3113	37,9629	42,6290	3,5884	3
		INFO	17,4923	40,5114	42,7066	4,6211	4
		PSO	33,4952	41,6701	42,6941	1,7123	2
		YSKA	33,5650	35,5855	36,0796	0,7277	1
	2	GKO	19,5559	32,8807	36,0542	3,8639	4
	Z	INFO	22,2507	34,5709	36,0803	2,5716	2
TDM-		PSO	21,4133	34,9135	36,0776	2,6447	3
M2		YSKA	26,4197	28,5844	29,3996	0,8815	1
	2	GKO	14,3578	26,9799	29,4048	3,4896	4
	3	INFO	18,5833	28,4862	29,3899	2,6933	2
		PSO	14,8005	28,1617	29,3913	2,6322	3
		YSKA	16,9628	22,0577	22,7188	1,1898	1
	Λ	GKO	86,6767	19,4435	22,7289	3,7946	4
	4	INFO	10,7140	20,4592	21,6935	2,5172	3
		PSO	13,4865	21,6253	22,7243	2,2420	2
	1	YSKA	37,2490	39,7473	40,5005	0,7529	1
		GKO	21,8861	36,4615	40,4644	4,4305	4
		INFO	31,4257	38,0407	40,4996	2,3013	2
		PSO	21,6896	39,4386	40,5003	3,4064	3
		YSKA	30,8187	33,6576	34,2141	0,8626	3
	2	GKO	21,8861	36,4615	40,4644	4,4305	4
	Z	INFO	30,8532	33,5700	34,2134	0,8322	1
ÇDM-		PSO	30,8159	33,6201	34,2136	0,8338	2
M2		YSKA	25,6914	27,4324	27,8878	0,6321	2
	2	GKO	16,3557	25,9363	27,8829	2,5628	4
	3	INFO	25,8959	27,5325	27,8754	0,4692	1
		PSO	25,0371	27,1659	27,8872	0,7810	3
		YSKA	39,9026	20,5187	21,5489	3,2059	3
	4	GKO	10,7549	19,1953	21,5419	3,0423	2
	4	INFO	19,0926	20,3612	21,0710	0,6737	1
		PSO	6,3259	19,9358	21,5453	3,5144	4

Çizelge 6.66. DG-S1-M2 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

				P_{FV} (W)						
Model	Bölge	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama			
		YSKA	315,3879	353,8713	359,4039	10,1730	1			
	1	GKO	139,2444	316,5211	356,4630	47,8005	4			
	1	INFO	291,8130	340,3183	359,6194	16,5484	2			
		PSO	276,3444	344,7582	359,5633	17,4160	3			
		YSKA	109,5675	275,4877	304,8074	44,4115	3			
	2	GKO	110,8203	255,1116	302,7779	56,0069	4			
	Z	INFO	238,0929	290,1712	304,2364	16,1213	1			
TDM-		PSO	133,9665	284,8843	304,7888	37,1394	2			
M3		YSKA	273,9431	226,7343	249,8106	48,5862	4			
	2	GKO	108,1272	214,3593	249,4368	40,4623	3			
	3	INFO	190,4819	238,1638	249,8315	14,8919	2			
		PSO	232,7390	245,0104	249,7359	4,2571	1			
		YSKA	281,5697	180,8791	194,5868	36,4912	4			
	4	GKO	92,2920	166,5975	194,5852	27,9891	3			
	4	INFO	112,3580	186,4945	194,5978	15,3407	2			
		PSO	129,8699	186,4239	194,5910	13,3229	1			
	1	YSKA	336,0286	356,1459	359,5411	4,8958	1			
		GKO	143,4874	316,1730	359,0665	48,9152	4			
	1	INFO	219,8452	337,9572	359,2243	31,9129	3			
		PSO	286,7118	345,9718	359,5287	14,9102	2			
		YSKA	86,5478	275,5474	304,6716	49,3079	4			
	2	GKO	130,3044	266,5690	303,2218	47,3157	3			
	Z	INFO	213,0732	287,0143	304,3390	23,2726	1			
ÇDM-		PSO	133,9087	282,4866	304,5608	32,2082	2			
M3		YSKA	224,3199	243,5265	249,7877	8,0332	1			
	2	GKO	124,7051	219,0101	249,2107	38,5387	4			
	3	INFO	146,1433	237,5240	249,6995	21,0443	2			
		PSO	132,6358	239,6482	249,8045	21,4237	3			
		YSKA	27,9189	183,0829	194,5593	30,8065	4			
	Л	GKO	107,2074	168,7493	194,3190	25,6820	3			
	4	INFO	112,3488	184,0749	194,5563	16,7841	2			
		PSO	129,5695	185,7070	194,5387	15,8335	1			

Çizelge 6.67. DG-S1-M3 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

			P_{FV} (W)						
Model	Bölge	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama		
		YSKA	13,6398	53,7962	60,2712	1,4457	1		
	1	GKO	27,0018	49,6863	60,3755	9,9241	4		
	1	INFO	14,5612	45,8689	51,9733	9,5088	3		
		PSO	24,4880	57,4870	60,7650	8,0102	2		
		YSKA	80,8035	83,0340	83,7767	0,8328	1		
	2	GKO	43,9865	76,2191	83,7240	11,5024	4		
	Z	INFO	46,0725	74,3797	80,6929	9,5086	3		
TDM-		PSO	39,4579	81,7171	83,6512	8,0020	2		
M1		YSKA	95,6747	98,7900	102,6735	2,2749	2		
	2	GKO	68,5843	96,6677	103,4077	6,7559	4		
	3	INFO	79,6243	101,4509	103,4981	4,4654	3		
		PSO	95,3596	96,0443	101,8769	1,8030	1		
		YSKA	102,8732	108,2147	123,1704	5,0036	3		
	Λ	GKO	88,3028	110,9258	122,8609	7,6922	4		
	4	INFO	108,9273	117,9583	123,2991	3,0804	1		
		PSO	102,6174	104,0418	114,9396	3,3140	2		
	1	YSKA	0,7668	52,0434	60,9394	15,5009	4		
		GKO	23,7360	44,6529	61,1134	12,7325	3		
		INFO	11,2270	44,7869	52,1403	10,7025	2		
		PSO	27,9929	58,4391	61,1139	6,1351	1		
		YSKA	78,7062	83,6586	84,9641	1,7378	1		
	2	GKO	35,0958	73,1747	84,9798	15,6845	4		
	Z	INFO	29,6559	72,6090	81,1931	11,6765	3		
ÇDM-		PSO	46,5359	83,4033	84,9499	6,9677	2		
M1		YSKA	97,7066	100,2630	104,6353	2,0293	1		
	2	GKO	56,1660	96,6951	104,7403	12,1632	4		
	3	INFO	43,5325	97,5013	104,9086	15,1885	3		
		PSO	68,3569	96,9002	102,7491	5,5241	2		
		YSKA	105,6802	110,3703	123,6159	4,0607	1		
	1	GKO	71,1628	112,1006	124,9367	11,8531	3		
	4	INFO	60,1034	116,6404	124,9063	12,5140	4		
		PSO	104,9464	106,5401	124,1329	4,8687	2		

Çizelge 6.68. DG-S2-M1 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

				P_{FV} (W)						
Model	Bölge	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama			
		YSKA	16,4722	22,1637	22,7187	1,2518	2			
	1	GKO	10,3492	20,6079	22,7261	3,2542	4			
	1	INFO	9,2686	19,7105	22,2539	3,0545	3			
		PSO	20,8617	22,4082	22,7139	0,3122	1			
		YSKA	26,0704	27,2060	29,4139	0,9894	2			
	2	GKO	19,4574	27,4464	29,4003	2,0019	3			
	Z	INFO	14,9324	28,2140	29,4083	2,6988	4			
TDM-		PSO	25,8320	26,3021	29,1859	0,8734	1			
M2		YSKA	24,6384	30,1479	35,9688	2,3397	1			
	2	GKO	27,9488	31,6900	35,8426	2,5961	3			
	3	INFO	21,9527	33,5019	36,0510	2,4996	2			
		PSO	27,8594	29,6302	36,0456	2,9239	4			
		YSKA	29,5566	34,4738	42,6588	4,7237	3			
	4	GKO	29,3707	35,0387	42,5880	4,3944	2			
	4	INFO	30,2363	37,0470	42,4952	2,7372	1			
		PSO	29,3006	32,4174	42,4607	4,8671	4			
	1	YSKA	19,4578	21,0191	21,5254	0,6364	1			
		GKO	6,5739	19,1546	21,5408	4,2176	4			
	1	INFO	10,9544	19,9045	21,4058	2,1265	3			
		PSO	10,8882	20,7523	21,5442	1,9567	2			
		YSKA	24,3240	26,2678	27,8890	1,2696	1			
	2	GKO	16,6296	25,5067	27,6778	2,6141	3			
	2	INFO	16,7507	26,7946	27,8896	2,1407	2			
ÇDM-		PSO	17,4652	25,1074	27,8719	2,0827	1			
M2		YSKA	14,5331	29,3155	34,1930	3,8451	4			
	2	GKO	21,7056	29,0611	33,4486	2,6648	2			
	5	INFO	29,8410	31,1712	33,9575	1,0156	1			
		PSO	25,6619	29,2460	34,2059	3,4898	3			
		YSKA	27,2231	33,9195	40,4465	5,0766	3			
	1	GKO	27,0016	32,3034	40,4971	4,2172	2			
	4	INFO	31,8868	34,0021	40,3078	2,2473	1			
		PSO	26,9466	32,9493	40,4495	5,2724	4			

Çizelge 6.69. DG-S2-M2 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

				P_{FV} (W)						
Model	Bölge	Algoritma	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama			
		YSKA	30,0917	180,7306	194,5369	40,3686	4			
	1	GKO	98,2609	168,0247	194,2280	30,2272	3			
	1	INFO	169,2830	188,0505	194,5915	7,2992	1			
		PSO	158,2056	188,5533	194,5569	7,9810	2			
		YSKA	204,4117	230,3183	249,8431	11,3003	1			
	2	GKO	97,3312	207,2968	247,6659	45,6550	4			
	Z	INFO	176,4155	231,7501	249,7924	16,5662	3			
TDM-		PSO	174,0806	224,0345	249,7873	14,6495	2			
M3		YSKA	103,8187	251,5424	302,9576	34,4773	3			
	2	GKO	100,0959	239,3826	304,1697	63,1506	4			
	3	INFO	202,5754	257,6735	300,0609	22,4327	1			
		PSO	215,5607	260,3148	302,8373	28,9828	2			
		YSKA	193,2147	286,0380	358,5855	44,5225	3			
	4	GKO	99,7395	261,7083	358,6591	70,6432	4			
	4	INFO	207,4958	269,2781	326,5045	26,7756	1			
		PSO	232,6365	297,2367	359,3129	42,0682	2			
	1	YSKA	16,5870	185,3441	194,5627	32,9594	4			
		GKO	106,3315	174,1609	194,3977	25,5682	3			
		INFO	111,9080	184,1451	194,5650	16,0644	2			
		PSO	174,4860	190,5522	194,5625	5,0588	1			
		YSKA	215,3599	230,9136	249,1851	7,8215	1			
	2	GKO	111,1816	212,2351	249,2997	38,5103	4			
	Z	INFO	116,2934	222,4053	249,7380	27,1729	3			
ÇDM-		PSO	189,0438	231,5036	249,7475	13,8743	2			
M3		YSKA	107,2930	243,6555	301,7051	30,4580	2			
	2	GKO	114,2814	243,5731	298,1907	49,7104	4			
	3	INFO	119,5075	256,9472	304,1521	40,1213	3			
		PSO	215,2234	268,1749	304,4513	27,9389	1			
		YSKA	226,1537	262,7919	357,1853	29,6539	1			
	Л	GKO	122,0713	276,5657	358,3452	58,4079	4			
	4	INFO	122,0506	285,9055	356,7658	54,3595	3			
		PSO	220,7415	298,9477	359,0274	40,7197	2			

Çizelge 6.70. DG-S2-M3 için algoritmaların modellere göre MGNT değerlendirme metrikleri sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	11,5182	3
GKO	19,4989	4
INFO	10,9779	2
PSO	10,0470	1

Çizelge 6.71. DG-S1 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları

Çizelge 6.72. DG-S2 için algoritmaların MGNT değerlendirme metriğine göre toplam sıralama sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam sıralama
YSKA	11,8575	2
GKO	20,6725	4
INFO	12,7482	3
PSO	10,3199	1

MGN izleme süresinin değerlendirme metriği sonuçları

Çizelge 6.73'de DG-S1-M1, Çizelge 6.74'de DG-S1-M2, Çizelge 6.75'de ise DOG-S1-M3 için algoritmaların MGN izleme süresi değerlendirme metriği sonuçları verilmiştir. DG-S2-M1, DG-S2-M2 ve DG-S2-M3 için MGN izleme zamanı değerlendirme metriği sonuçları sırasıyla Çizelge 6.76-6.78'de verilmiştir. Algoritmaların DG koşulları altında MGN izleme süresi için toplam standart sapma ortalama sırası Çizelge 6.79-6.80'de verilmiştir.

MGN izleme zamanı değerlendirme metriği sonuçlarına göre DG-S1'de PSO, DG-S2 de ise YSKA algoritması birinci sıradadır.

		Algoritma	MGN İzleme Zamanı (s)					
Model	Bölge		Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama	
		YSKA	0,9609	0,2277	1,3007	0,2603	2	
	1	GKO	0,3605	0,1638	0,6815	0,1486	1	
	1	INFO	0,4807	0,5084	1,9805	0,4164	4	
		PSO	0,2620	0,4677	1,4820	0,2738	3	
		YSKA	3,5842	3,3688	4,7212	0,3590	3	
	2	GKO	2,6809	2,7340	3,1844	0,1686	2	
	Z	INFO	3,9841	3,3116	4,3814	0,4264	4	
TDM-		PSO	3,0808	2,9492	3,2806	0,1534	1	
M1		YSKA	6,6830	6,1558	7,4666	0,5551	4	
	2	GKO	5,1837	5,2820	5,6823	0,1402	1	
	3	INFO	5,3073	5,8524	7,0818	0,5399	3	
		PSO	5,1843	5,4613	6,0434	0,1669	2	
		YSKA	9,3900	9,0059	9,9921	0,5217	3	
	Λ	GKO	7,6735	7,7851	8,0858	0,1136	1	
	4	INFO	8,5033	8,5441	9,9896	0,6702	4	
		PSO	7,8684	8,0872	9,7842	0,4377	2	
	1	YSKA	0,4850	0,9593	1,3404	0,2694	4	
		GKO	0,0608	0,1448	0,4019	0,1088	1	
		INFO	0,1204	0,4102	1,1004	0,2599	3	
		PSO	0,0820	0,4116	1,1209	0,1985	2	
	2	YSKA	2,8013	3,4976	4,9415	0,4947	3	
		GKO	2,5030	2,7825	3,3806	0,2193	1	
		INFO	2,7013	3,1952	4,3815	0,3944	4	
ÇDM-		PSO	2,5030	2,9221	3,8810	0,2490	2	
M1		YSKA	5,2687	6,2617	7,4676	0,6102	4	
	3	GKO	5,1817	5,3808	7,0810	0,4133	2	
		INFO	5,2012	5,9826	7,4882	0,6022	3	
		PSO	5,1837	5,4556	6,0816	0,2113	1	
	4	YSKA	8,0012	8,9692	9,9905	0,5650	3	
		GKO	7,6711	7,8492	8,9809	0,2567	1	
		INFO	7,6913	8,4190	9,9908	0,6272	4	
		PSO	7,6894	8,0909	9,6839	0,4330	2	

Çizelge 6.73. DG-S1-M1 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları

		Algoritma	MGN İzleme Zamanı (s)					
Model	Bölge		Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama	
		YSKA	0,7013	1,0729	1,5809	0,2377	2	
	1	GKO	0,0614	0,4720	2,1825	0,5710	4	
	1	INFO	0,0529	0,6754	1,9374	0,5587	3	
		PSO	0,1794	0,4544	1,0043	0,1814	1	
		YSKA	2,9878	3,6141	4,7290	0,5242	3	
	2	GKO	2,6645	3,4099	4,5842	0,6206	4	
	Z	INFO	2,8328	3,2978	4,1035	0,3828	1	
TDM-		PSO	2,6687	3,3289	4,0025	0,4661	2	
M2		YSKA	5,5096	6,2630	7,4997	0,5104	2	
	2	GKO	5,1347	5,6017	7,2968	0,6487	4	
	3	INFO	5,1996	5,8748	7,3864	0,5609	3	
		PSO	5,1979	5,6497	7,4998	0,5091	1	
		YSKA	8,0088	8,7995	9,9914	0,5404	2	
	4	GKO	7,6646	8,1399	9,9998	0,7399	4	
		INFO	7,7111	8,4392	9,9957	0,6076	3	
		PSO	7,7518	8,0210	9,9997	0,4217	1	
	1	YSKA	0,2666	1,0821	1,5815	0,2639	1	
		GKO	0,0637	0,4917	1,9962	0,6481	4	
		INFO	0,1809	0,6904	1,6200	0,4685	3	
		PSO	0,0913	0,5730	1,9946	0,3580	2	
	2	YSKA	2,8530	3,7277	4,6674	0,5807	4	
		GKO	2,6626	3,1529	4,0824	0,5138	3	
		INFO	2,6733	3,3572	4,6802	0,4223	2	
ÇDM-		PSO	2,7902	3,1259	4,0008	0,2810	1	
M2		YSKA	5,2837	6,1826	7,1609	0,5001	3	
	3	GKO	5,1443	5,5018	7,4656	0,5974	4	
		INFO	5,1834	5,8184	6,7671	0,3875	2	
		PSO	5,1637	5,5539	6,6833	0,3000	1	
	4	YSKA	8,0411	8,5931	9,9869	0,3867	2	
		GKO	7,6937	7,9061	9,9997	0,4327	4	
		INFO	7,7043	8,3406	9,3800	0,3836	1	
		PSO	7,6890	7,9940	9,8127	0,3895	3	

Çizelge 6.74. DG-S1-M2 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları

		Algoritma	MGN İzleme Zamanı (s)					
Model	Bölge		Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama	
		YSKA	1,2604	1,7334	2,4801	0,3398	1	
	1	GKO	0,1001	1,9777	2,5000	0,6653	3	
	1	INFO	0,2601	1,4971	2,5000	0,7897	4	
		PSO	0,5636	1,8947	2,4997	0,4247	2	
		YSKA	2,9000	4,2161	4,9841	0,6556	3	
	2	GKO	2,6621	4,0819	5,0000	0,9718	4	
	Z	INFO	2,7818	3,9434	5,0000	0,6074	1	
TDM-		PSO	2,7801	3,5706	5,0000	0,6356	2	
M3		YSKA	5,4005	6,6949	7,5000	0,6711	1	
	2	GKO	5,1613	6,7824	7,5000	1,0026	4	
	3	INFO	5,3801	6,4729	7,5000	0,8662	3	
		PSO	5,1847	5,7616	7,4968	0,6748	2	
		YSKA	7,9621	9,0065	9,9873	0,6821	3	
	4	GKO	7,6801	9,0562	10,0000	1,0955	4	
		INFO	7,8601	8,4146	10,0000	0,5409	1	
		PSO	7,7807	8,3192	9,9980	0,5810	2	
	1	YSKA	1,2604	1,6774	2,0001	0,3229	1	
		GKO	0,0843	1,9100	2,5000	0,6535	3	
		INFO	0,3009	1,7465	2,5000	0,6375	2	
		PSO	0,1626	1,3455	2,5000	0,7335	4	
	2	YSKA	2,9002	4,3372	5,0000	0,5520	1	
		GKO	2,6636	3,8945	5,0000	1,0028	4	
		INFO	2,9834	3,8778	5,0000	0,7173	2	
ÇDM-		PSO	2,9004	3,9628	5,0000	0,7788	3	
M3		YSKA	5,3602	6,4336	7,5000	0,6135	1	
	3	GKO	5,1621	6,4532	7,5000	1,1318	4	
		INFO	5,2813	6,3305	7,5000	0,8266	2	
		PSO	5,1633	6,0815	7,5000	0,8879	3	
	4	YSKA	8,1000	9,0911	10,0000	0,6007	1	
		GKO	7,6626	8,7139	10,0000	1,1410	4	
		INFO	7,7802	8,6087	10,0000	0,7249	3	
		PSO	7,6804	8,2971	9,9999	0,6390	2	

Çizelge 6.75. DG-S1-M3 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları

			MGN İzleme Zamanı (s)				
Model	Algoritma	Bölge	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama
		1	0,5009	1,1264	2,4826	0,6206	3
	АНА	2	0,0660	0,2905	1,7844	0,3540	1
		3	0,1685	1,1062	2,4930	0,8979	4
		4	0,0636	0,5589	1,9841	0,4214	2
		1	2,5032	2,6773	3,6814	0,2533	2
	CWO	2	2,5041	2,7818	3,8837	0,3198	3
	GwO	3	2,5093	2,8123	4,1843	0,4279	4
TDM-		4	2,5060	2,5761	3,3814	0,1781	1
M1		1	5,0057	5,3737	7,4864	0,4668	2
	INIEO	2	5,0046	5,2784	5,7809	0,2134	1
	INFO	3	5,0037	5,3149	7,1883	0,4711	3
		4	5,0054	5,2599	7,4851	0,6392	4
	PSO	1	7,5030	7,7209	8,5807	0,1929	3
		2	7,5028	7,7118	7,9992	0,1349	1
		3	7,5057	7,8131	9,9999	0,4809	4
		4	7,5028	7,6213	8,0849	0,1725	2
	АНА	1	0,4015	1,0738	2,4834	0,6761	3
		2	0,0727	0,3001	1,5819	0,3377	2
		3	0,1504	0,8806	2,4852	0,7636	4
		4	0,0824	0,5155	1,3029	0,3366	1
	GWO	1	2,5036	2,7096	4,0849	0,3706	3
		2	2,5043	2,7495	3,5814	0,2297	1
		3	2,5103	2,8456	4,0889	0,4281	4
ÇDM-		4	2,5038	2,6214	3,9817	0,2915	2
M1		1	5,0057	5,1954	5,8809	0,1944	1
		2	5,0056	5,2770	6,2848	0,2751	2
	INFO	3	5,0037	5,2147	6,1848	0,2832	3
		4	5,0056	5,3763	7,3809	0,7114	4
		1	7,5055	7,7516	8,2851	0,1503	2
		2	7,5028	7,7301	8,1877	0,1712	3
	PSO	3	7,5058	7,6514	8,1406	0,1441	1
		4	7,5028	7,6829	8,5013	0,2545	4

Çizelge 6.76. DG-S2-M1 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları
MGN İzleme Zamanı (s)						anı (s)	
Model	Algoritma	Bölge	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama
		1	0,3987	0,9218	2,4962	0,4414	2
		2	0,0708	0,4726	2,1003	0,6017	3
	AHA	3	0,0640	0,8827	2,4094	0,7637	4
		4	0,0845	0,3500	1,3939	0,2633	1
		1	2,5811	3,6910	4,9997	0,6249	4
	CWO	2	2,5112	3,6619	4,2834	0,4569	1
	GwO	3	2,5922	3,6183	4,9409	0,5027	2
TDM-		4	2,5111	2,9283	4,1896	0,5912	3
M2		1	5,0063	6,2474	7,4801	0,8798	3
	INIEO	2	5,1806	6,6179	7,5000	1,0177	4
	INFO	3	5,0095	7,0104	7,5000	0,6241	2
		4	5,0067	5,6005	6,9834	0,6111	1
		1	7,5051	8,0911	9,8246	0,5141	3
	PSO	2	7,5050	7,9045	10,0000	0,4374	1
		3	7,5079	8,0136	10,0000	0,5758	4
		4	7,5049	7,7687	10,0000	0,4879	2
		1	0,3705	0,8064	1,6726	0,3149	1
	A T T A	2	0,0683	0,4510	2,0002	0,5873	4
	АНА	3	0,0328	0,5743	1,9257	0,5732	3
		4	0,0581	0,4831	2,0006	0,4486	2
		1	2,5140	3,8140	4,9295	0,4515	2
	CWO	2	2,5104	3,5101	4,9999	0,6604	4
	GwO	3	2,5108	3,8586	4,0066	0,3832	1
ÇDM-		4	2,5101	3,1890	4,2873	0,6099	3
M2		1	5,0091	6,6063	7,4961	0,7625	2
	INIEO	2	5,1811	6,5632	7,4999	0,9170	4
	INFO	3	5,2898	7,0497	7,4999	0,4237	1
		4	5,0064	5,8350	7,4970	0,8911	3
		1	7,5827	8,1562	10,0000	0,6246	3
	DSO	2	7,5048	7,8541	8,0038	0,1702	1
	F30	3	7,5067	8,0705	10,0000	0,7070	4
		4	7,5048	7,9072	8,5051	0,2712	2

Çizelge 6.77. DG-S2-M2 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları

	MGN İzleme Zamanı (s)						
Model	Algoritma	Bölge	Minimum	Ortalama	Maksimum	Standart Sapma	Standart Sapma Sıralama
		1	0,1846	1,3821	2,4655	0,4266	2
		2	0,0473	0,8721	2,5000	0,9504	4
	AHA	3	0,1601	0,6161	1,9988	0,4938	3
		4	0,0800	0,4122	1,4812	0,2767	1
-		1	3,1242	4,7902	5,0000	0,5408	3
	CWO	2	3,0809	4,8506	5,0000	0,4742	2
	GwO	3	3,2801	4,7375	5,0000	0,5464	4
TDM-		4	3,0801	4,8826	5,0000	0,4484	1
M3		1	5,8004	7,4249	7,5000	0,3211	1
		2	5,3641	7,2368	7,5000	0,6598	4
	INFO	3	5,5801	7,4360	7,5000	0,3505	2
		4	5,5601	7,2042	7,5000	0,6200	3
		1	8,7801	9,9025	10,0000	0,2926	2
	DSO	2	7,5822	9,9194	10,0000	0,4414	3
	P30	3	10,0000	10,0000	10,0000	0,0000	1
		4	8,2008	9,6858	10,0000	0,6479	4
		1	1,0005	1,5231	2,4951	0,3919	1
	A T T A	2	0,0661	0,8161	2,5000	1,0107	4
	АНА	3	0,1601	0,7520	2,0810	0,5262	3
		4	0,1600	0,6104	2,1806	0,5196	2
		1	3,5002	4,8628	5,0000	0,4077	1
	GWO	2	2,8617	4,6863	5,0000	0,6452	4
	GwO	3	2,5807	4,8194	5,0000	0,5709	2
ÇDM-		4	3,0000	4,6852	5,0000	0,6416	3
M3		1	6,7798	7,4747	7,5000	0,1314	1
	INIEO	2	5,5624	7,3921	7,5000	0,4180	2
	INFO	3	5,6000	7,2086	7,5000	0,6039	4
		4	5,7002	7,2887	7,5000	0,4971	3
		1	8,8602	9,9620	10,0000	0,2081	1
	DSO	2	8,0806	9,8187	10,0000	0,5538	3
	F30	3	8,0061	9,8149	10,0000	0,5668	4
		4	8,0204	9,8740	10.0000	0,4788	2

Çizelge 6.78. DG-S2-M3 için algoritmaların modellere göre MGN izleme zamanı değerlendirme metriği sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam Sıralama
YSKA	0,4841	2
GKO	0,5836	4
INFO	0,5591	3
PSO	0,4327	1

Çizelge 6.79. DG-S1 için algoritmaların MGN izleme zamanı değerlendirme metriğine göre toplam sıralama sonuçları

Çizelge 6.80. DG-S2 için algoritmaların MGN izleme zamanı değerlendirme metriğine göre toplam sıralama sonuçları

Algoritma	Sıralamaların Ortalaması	Toplam Sıralama
YSKA	0,4275	1
GKO	0,5016	3
INFO	0,5045	4
PSO	0,4712	2

6.2.10. DG senaryoları için Friedman testine göre MGNT optimizasyonu sonuçları

Bu tez çalışmasında dinamik gölgelenme durumları için algoritmaların MGNT optimizasyon performansları değerlendirme metrikleriyle analiz edildikten sonra Friedman testiyle incelenmiştir.

			Friedman				
Model	Bölge	Algoritma	Sıra	Sıra	P-	Sonuç	
			Ortalaması				
		YSKA	2,7667	2		P-değeri	
	1	GWO	1,8333	4	5 38E-03	(5,38E-03<	
		INFO	2,4667	3	5,561-05	0,05)	
		PSO	2,9333	1			
		YSKA	3,0000	1		D dağari	
	2	GWO	2,0333	4	2 11E-03	$(2.11E_{-}03)$	
	2	INFO	2,9000	2	2,111-03	0.05)	
TDM-		PSO	2,0667	3		0,05)	
M1		YSKA	3,0333	2		D doğori	
	3	GWO	2,2333	3	5 12E 07	(5.12E.07~	
	5	INFO	1,5333	4	5,15E-07	(5,13E-07< 0,05)	
		PSO	3,2000	1			
	4	YSKA	3,1333	2		P-değeri (7.64E-08<	
		GWO	2,0667	4	76400		
		INFO	1,5667	3	7,04E-08	(7,04E-08<	
		PSO	3,2333	1		0,00)	
	1	YSKA	2,9667	2		D dočoni	
		GWO	1,8667	4	2 19E 04	(3,18E-04<	
		INFO	2,1333	3	3,16E-04		
		PSO	3,0333	1		0,03)	
		YSKA	3,2333	1		D dočoni	
	2	GWO	1,9000	4	6 07E 04	P-degeri	
	2	INFO	2,6000	2	0,07E-04	(0,0/E-04<	
ÇDM-		PSO	2,2667	3		0,03)	
M1		YSKA	3,2333	1		D dažani	
	2	GWO	2,0667	3	76400	P-degeri	
	5	INFO	1,5667	4	7,04E-08	(7,04E-06<	
		PSO	3,1333	2		0,05)	
		YSKA	2,8667	2		D dočeni	
	4	GWO	2,1333	3	2 95E 04	r-uegen	
	4	INFO	1,7000	4	3,03E-00	(3,83E-00<	
		PSO	3,3000	1		0,05)	

Çizelge 6.81. DG-S1-M1 için algoritmaların Friedman test sonuçları

			Friedman			
Model	Bölge	Algoritma	Sıra	Sıra	P-	Sonuç
			Ortalaması			
		YSKA	3,2333	1	1,52E-06	D doğori
	1	GWO	1,4667	4		(1.52E.06 < 0.05)
	1	INFO	2,6000	3		(1,32L-00<0,03)
		PSO	2,7000	2		
		YSKA	3,1000	1	1,34E-03	
	2	GWO	1,8000	4		P-değeri
	2	INFO	2,4667	3		(1,34E-03<0,05)
TDM-		PSO	2,6333	2		
M2		YSKA	2,5667	2	4,68E-02	
	2	GWO	2,0000	4		P-değeri
	3	INFO	2,9333	1		(4,68E-02<0,05)
		PSO	2,5000	3		
		YSKA	3,2333	1	1,98E-05	
	4	GWO	2,2333	3		P-değeri
	4	INFO	1,7000	4		(1,98E-05< 0,05)
		PSO	2,8333	2		
		YSKA	3,0000	2	1,74E-06	
	1	GWO	1,8667	3		P-değeri
	1	INFO	1,8667	3		(1,74E-06< 0,05)
		PSO	3,2667	1		
		YSKA	2,8667	1	1,34E-03	
	2	GWO	1,7000	4		P-değeri
	2	INFO	2,7333	2		(1,34E-03<0,05)
ÇDM-		PSO	2,7000	3		
M2		YSKA	2,8667	2	1,34E-03	
	2	GWO	1,8333	4		P-değeri
	5	INFO	3,0000	1		(1,34E-03<0,05)
		PSO	2,3000	3		
		YSKA	3,1333	1	5,80E-03	
	4	GWO	2,3000	3		P-değeri
	4	INFO	2,0000	4		(5,80E-03< 0,05)
		PSO	2,5667	2		

Çizelge 6.82. DG-S1-M2 için algoritmaların Friedman test sonuçları

			Friedman			
Model	Bölge	Algoritma	Sıra	Sıra	P-	Sonuç
			Ortalaması			
		YSKA	3,5333	1	2,87E-07	D dağari
	1	GWO	1,6333	4		(2.87E 0.07 < 0.05)
	1	INFO	2,3333	3		(2,8712-07< 0,03)
		PSO	2,5000	2		
		YSKA	2,5333	3	2,19E-02	
	2	GWO	1,9000	4		P-değeri
	2	INFO	2,7000	2		(2,19E-02<0,05)
TDM-		PSO	2,8667	1		
M3		YSKA	2,5667	3	8,00E-02	
	2	GWO	2,0000	4		P-değeri
	5	INFO	2,6000	2		(8,00E-02>0,05)
		PSO	2,8333	1		
	4	YSKA	3,1000	1	6,91E-05	
		GWO	1,6000	4		P-değeri
		INFO	2,6667	2		(6,91E-05< 0,05)
		PSO	2,6333	3		
		YSKA	3,5000	1	5,81E-08	
	1	GWO	1,5333	4		P-değeri
	1	INFO	2,2667	3		(5,81E-08<0,05)
		PSO	2,7000	2		
		YSKA	2,6333	2	5,70E-02	
	2	GWO	2,1667	4		P-değeri
	2	INFO	2,9667	1		(5,70E-02>0,05)
ÇDM-		PSO	2,2333	3		
M3		YSKA	2,7667	1	4,86E-02	
	2	GWO	1,9333	4		P-değeri
	3	INFO	2,6333	2		(4,86E-02<0,05)
		PSO	2,6667	3		
		YSKA	2,9000	1	1,20E-03	
	1	GWO	1,7000	4		P-değeri
	4	INFO	2,6667	3		(1,20E-03 < 0,05)
		PSO	2,7333	2		

Çizelge 6.83. DG-S1-M3 için algoritmaların Friedman test sonuçları

			Friedman			
Model	Bölge	Algoritma	Sıra	Sıra	P-	Sonuç
			Ortalaması			
		YSKA	2,9333	2	5,78E-10	D doğori
	1	GWO	2,1000	3		F = uegen (5.78E 10 < 0.05)
	1	INFO	1,4333	4		(3,781-10< 0,03)
		PSO	3,5333	1		
		YSKA	3,4333	1	1,21E-10	
	2	GWO	2,2667	3		P-değeri
		INFO	1,2667	4		(1,21E-10<0,05)
TDM-		PSO	3,0333	2		
M1		YSKA	2,4667	2	4,23E-10	
	2	GWO	2,4000	3		P-değeri
	3	INFO	3,7000	1		(4,23E-10<0,05)
		PSO	1,4333	4		
	4	YSKA	2,3333	3	4,35E-11	
		GWO	2,6333	2		P-değeri
	4	INFO	3,7000	1		(4,35E-11<0,05)
		PSO	1,3333	4		
		YSKA	2,8667	2	4,78E-09	
	1	GWO	1,8667	3		P-değeri
	1	INFO	1,7000	4		(4,78E-09< 0,05)
		PSO	3,5667	1		
		YSKA	3,1000	2	2,77E-09	
	2	GWO	2,1667	3		P-değeri
	2	INFO	1,4000	4		(2,77E-09<0,05)
ÇDM-		PSO	3,3333	1		
M1		YSKA	2,6667	2	4,32E-06	
	2	GWO	2,6333	3		P-değeri
	3	INFO	3,2000	1		(4,32E-06< 0,05)
		PSO	1,5000	4		
		YSKA	2,4333	3	5,77E-07	
	1	GWO	2,6333	2		P-değeri
	4	INFO	3,4000	1		(5,77E-07<0,05)
		PSO	1,5333	4		

Çizelge 6.84. DG-S2-M1 için algoritmaların Friedman test sonuçları

			Friedman			
Model	Bölge	Algoritma	Sıra	Sıra	P-	Sonuç
			Ortalaması			
		YSKA	3,2667	1	2,45E-07	D doğari
	1	GWO	2,4333	3		(2.45E.07 < 0.05)
		INFO	1,4333	4		(2,4512-07< 0,05)
		PSO	2,8667	2		
		YSKA	2,5000	3	2,94E-08	
	2	GWO	2,7667	2		P-değeri
		INFO	3,3667	1		(2,94E-08<0,05)
TDM-		PSO	1,3667	4		
M2		YSKA	2,1000	3	3,76E-07	
	2	GWO	2,8000	2		P-değeri
	3	INFO	3,4333	1		(3,76E-07<0,05)
		PSO	1,6667	4		
		YSKA	2,4333	3	2,53E-04	
	1	GWO	2,6667	2		P-değeri
	4	INFO	3,1667	1		(2,53E-04<0,05)
		PSO	1,7333	4		
		YSKA	2,9333	1	4,47E-03	
	1	GWO	2,4333	3		P-değeri
	1	INFO	1,8333	4		(4,47E-03<0,05)
		PSO	2,8000	2		
		YSKA	2,7333	2	4,40E-04	
	2	GWO	2,1333	3		P-değeri
	2	INFO	3,2000	1		(4,40E-04< 0,05)
ÇDM-		PSO	1,9333	4		
M2		YSKA	2,5000	2	1,13E-02	
	2	GWO	2,1000	4		P-değeri
	3	INFO	3,1333	1		(1,13E-02<0,05)
		PSO	2,2667	3		
		YSKA	2,7333	2	7,19E-02	
	1	GWO	2,1000	4		P-değeri
	4	INFO	2,8667	1		(7,19E-02>0,05)
		PSO	2,3000	3		

Çizelge 6.85. DG-S2-M2 için algoritmaların Friedman test sonuçları

			Friedman			
Model	Bölge	Algoritma	Sıra	Sıra	P-	Sonuç
			Ortalaması			
		YSKA	2,9667	1	1,49E-04	D doğori
	1	GWO	1,6000	4		r - uegen
	1	INFO	2,6667	3		(1,4912-04< 0,03)
		PSO	2,7667	2		
		YSKA	2,5333	2	6,82E-02	
	2	GWO	2,2667	3		P-değeri
		INFO	3,0000	1		(6,82E-02>0,05)
TDM-		PSO	2,2000	4		
M3		YSKA	2,3667	4	8,78E-01	
	2	GWO	2,5333	2		P-değeri
	3	INFO	2,6333	1		(8,78E-01>0,05)
		PSO	2,4667	3		
		YSKA	2,5000	2	3,92E-01	
	4	GWO	2,3333	3		P-değeri
	4	INFO	2,3333	3		(3,92E-01>0,05)
		PSO	2,8333	1		
		YSKA	3,1667	1	7,34E-04	
	1	GWO	1,8667	4		P-değeri
	1	INFO	2,2667	3		(7,34E-04<0,05)
		PSO	2,7000	2		
		YSKA	2,4667	2	2,49E-01	
	2	GWO	2,3000	4		P-değeri
	2	INFO	2,3333	3		(2,49E-01>0,05)
ÇDM-		PSO	2,9000	1		
M3		YSKA	2,1000	4	5,22E-02	
	2	GWO	2,3667	3		P-değeri
	3	INFO	2,5333	2		(5,22E-02>0,05)
		PSO	3,0000	1		
		YSKA	1,9667	4	4,86E-02	
	1	GWO	2,5333	3		P-değeri
	4	INFO	2,6333	2		(4,86E-02<0,05)
		PSO	2,8667	1		

Çizelge 6.86. DG-S2-M3 için algoritmaların Friedman test sonuçları

Senaryo	Bölge	Model	YSKA	GKO	INFO	PSO
	Bölge 1		1,8333	2,4667	2,9333	3,5333
	Bölge 2		2,0333	2,9000	2,0667	3,0333
	Bölge 3	IDM-MI	2,2333	1,5333	3,2000	1,4333
	Bölge 4		2,0667	1,5667	3,2333	1,3333
	Bölge 1		1,8667	2,1333	3,0333	3,5667
	Bölge 2	CDM M1	1,9000	2,6000	2,2667	3,3333
	Bölge 3	ÇDM-MI	2,0667	1,5667	3,1333	1,5000
	Bölge 4		2,1333	1,7000	3,3000	1,5333
	Bölge 1		1,4667	2,6000	2,7000	2,8667
	Bölge 2		1,8000	2,4667	2,6333	1,3667
	Bölge 3	TDM-M2	2,0000	2,9333	2,5000	1,6667
	Bölge 4		2,2333	1,7000	2,8333	1,7333
DG-SI	Bölge 1	ÇDM-M2	1,8667	1,8667	3,2667	2,8000
	Bölge 2		1,7000	2,7333	2,7000	1,9333
	Bölge 3		1,8333	3,0000	2,3000	2,2667
	Bölge 4		2,3000	2,0000	2,5667	2,3000
	Bölge 1		1,6333	2,3333	2,5000	2,7667
	Bölge 2		1,9000	2,7000	2,8667	2,2000
	Bölge 3	I DM-M3	2,0000	2,6000	2,8333	2,4667
	Bölge 4		1,6000	2,6667	2,6333	2,8333
	Bölge 1		1,5333	2,2667	2,7000	2,7000
	Bölge 2		2,1667	2,9667	2,2333	2,9000
	Bölge 3	ÇDM-M3	1,9333	2,6333	2,6667	3,0000
	Bölge 4		1,7000	2,6667	2,7333	2,8667
Sıralamaları	n ortalaması		2,9903	1,9083	2,3583	2,7431
Toplam	sıralama		1	4	3	2

Çizelge 6.87. Algoritmaların DG-S1 modelde Friedman testine göre sıralama sonuçları

Senaryo	Bölge	Model	YSKA	GKO	INFO	PSO
	Bölge 1		2,9333	2,1000	1,4333	3,5333
Senaryo DG-S2 DG-S2 Sıralamaları Toplam	Bölge 2		3,4333	2,2667	1,2667	3,0333
	Bölge 3		2,4667	2,4000	3,7000	1,4333
	Bölge 4		2,3333	2,6333	3,7000	1,3333
	Bölge 1		2,8667	1,8667	1,7000	3,5667
	Bölge 2	CDM M1	3,1000	2,1667	1,4000	3,3333
	Bölge 3	ÇDM-MI	2,6667	2,6333	3,2000	1,5000
	Bölge 4		2,4333	2,6333	3,4000	1,5333
	Bölge 1		3,2667	2,4333	1,4333	2,8667
	Bölge 2		2,5000	2,7667	3,3667	1,3667
DG-S2 -	Bölge 3	IDM-M2	2,1000	2,8000	3,4333	1,6667
	Bölge 4		2,4333	2,6667	3,1667	1,7333
	Bölge 1		2,9333	2,4333	1,8333	2,8000
	Bölge 2	CDM M2	2,7333	2,1333	3,2000	1,9333
	Bölge 3	ÇDM-M2	2,5000	2,1000	3,1333	2,2667
	Bölge 4		2,7333	2,1000	2,8667	2,3000
	Bölge 1		2,9667	1,6000	2,6667	2,7667
	Bölge 2	TDM M2	2,5333	2,2667	3,0000	2,2000
	Bölge 3	1 DWI-W15	2,3667	2,5333	2,6333	2,4667
	Bölge 4		2,5000	2,3333	2,3333	2,8333
	Bölge 1		3,1667	1,8667	2,2667	2,7000
	Bölge 2	CDM M2	2,4667	2,3000	2,3333	2,9000
	Bölge 3	ÇIVI-IVIƏ	2,1000	2,3667	2,5333	3,0000
	Bölge 4		1,9667	2,5333	2,6333	2,8667
Sıralamalar	rın ortalaması		2,6458	2,3306	2,6097	2,4139
Toplam	sıralama		1	4	2	3

Çizelge 6.88. Algoritmaların DG-S2 modelde Friedman testine göre sıralama sonuçları

7. SONUÇ VE ÖNERİLER

Bu tez çalışmasında literatürde kullanılan MGNT yöntemlerine ek olarak, gölgelenme koşullarında maksimum gücü bulma başarı yüksek ve istikrarlı FV parametre çıkarımı ve MGNT yöntemlerinin geliştirilip literatüre kazandırılması hedeflenmiştir. Bu nedenle, INFO algoritması ve YSKA algoritmaları parametre çıkarımı ve MGNT probleminin çözümünde literatürde ilk defa bu tez çalışmasında kullanılmıştır. Bu algoritmaların performanslarını karşılaştırmak amacıyla literatürde yaygın olarak kullanılan PSO ve GKO algoritmaları kullanılmıştır. Değerlendirme metrikleri ve istatistiksel testler sonucunda YSKA' nın diğer algoritmalara göre daha başarılı bir performans gösterdiği için yeni bir MGNT yöntemi olarak önerilmiştir.

Üç farklı ticari FV modül seçilmiş ve bu modüller tek ve çift diyotlu olarak modellenmiştir. Kullanılan eşdeğer devre modellerinde foton akımı, diyotların akımı, diyotların ters doyma akımları, seri ve paralel bağlı direnç bilgisine ihtiyaç vardır. Bu bilgiler üretici sayfasından elde edilemediğinden meta sezgisel algoritmalar ile tahmin edilmiştir. Parametre çıkarımı problemini çözmek için daha önce literatürde parametre çıkarımı probleminin çözümünde kullanılmayan YEO, RUN, INFO, YSKA ve SAA olmak üzere beş yeni algoritma ile FV parametre tahmini yapılmıştır. Bu algoritmaların parametre çıkarımı performanslarının karşılaştırılması adına GKO algoritması kullanılmıştır. Bütün algoritmalar 30 kez bağımsız olarak çalıştırılıp sonuçlar kaydedilmiştir. Yapılan analizler sonucunda parametre bulmada en başarılı algoritma INFO algoritmasıdır. İkinci en başarılı algoritma ise YSKA' dır. Bu iki algoritma oldukça düşük standart sapma oranına sahip olduğu için tutarlı algoritmalardır. Bu nedenle bu iki yeni, istikrarlı algoritma MGNT için de kullanılmıştır.

MGNT için kullanılan meta sezgisel algoritmalar farklı kısmi gölgelenme koşullarında çalıştırılmıştır. Tüm senaryo durumları için, algoritmalar 30 kez bağımsız olarak çalıştırılıp sonuçlar kaydedilmiştir. Kaydedilen MGNT sonuçları değerlendirme metrikleri ve Friedman testi ile analiz edilmiştir. Yapılan analizler sonucunda maksimum gücü bulmada en başarı algoritma YSKA' dır.

KAYNAKLAR

- 1. İnternet: MEB. Elektrik Enerjisinin Önemi ev Üstünlükleri. Web: https://hbogm.meb.gov.tr/MTAO/3ElektrikBilgisi/unite04.pdf, Son Erişim Tarihi: 05.06.2022.
- 2. Öztürk, O. (2020). *Fotovoltaik devre modeli geliştirilmesi ve sistemin kontrolü*, Yüksek Lisans Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir.
- 3. Bayram, M. (2019). Fotovoltaik güç sistemlerinde maksimum güç noktasının gerçek zamanlı olarak izlenmesi, Yayımlanmamış Yüksek Lisans Tezi, Bursa Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Bursa,20-24.
- İnternet: TÜİK. Türkiye'deki Toplam Kurulu Güç. Web: <u>https://data.tuik.gov.tr/Kategori/GetKategori?p=Cevre-ve-Enerji-103</u>. Son Erişim Tarihi: 05.06.2022
- 5. Al-Masri, H.M.K., Magableh, S.K. ve Abuelrub, A. (2021). Output power computation and sizing of a photovoltaic array by advanced modeling. *Sustainable Energy Technologies and Assessment*, 47, 1-17.
- 6. Aydoğan, D. (2019). *PSO tabanlı maksimum güç noktası algoritmasının geliştirilmesi ve uygulanması*, Yayımlanmamış Yüksek Lisans Tezi, Nevşehir Hacı Bektaş Veli Üniversitesi, Fen Bilimleri Enstitüsü, Nevşehir,15-18.
- 7. Houssein, E. H., Zaki, G. N., Diab, A. A. Z., ve Younis, E. M. (2021). An efficient Manta Ray Foraging Optimization algorithm for parameter extraction of three-diode photovoltaic model. *Computers & Electrical Engineering*, *94*, 107304.
- 8. Souad, L., Mustapha, E., Dris, B. H., Driss, S., Khalid, A., ve Arjdal, E. (2022). A new hybrid method to estimate the single-diode model parameters of solar photovoltaic panel. *Energy Conversion and Management: X*, 15, 100234.
- 9. Ekmekçi, E. (2020). *Güneş hücresi parametrelerinin belirlenme yöntemleri ve parametrelerin hücre performansına etkileri*, Yayımlanmamış Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Enerji Enstitüsü, İstanbul,18-19.
- 10. Phang, J. C. H., Chan, D. S. H., ve Phillips, J. R. (1984). Accurate analytical method for the extraction of solar cell model parameters. *Electronics Letters*, 20(10), 406-408.
- 11. Peng, L., Sun, Y., Meng, Z., Wang, Y., ve Xu, Y. (2013). A new method for determining the characteristics of solar cells. *Journal of power sources*, 227, 131-136.
- 12. Sera, D., Teodorescu, R., ve Rodriguez, P. (2008). *Photovoltaic module diagnostics by series resistance monitoring and temperature and rated power estimation*. In 2008 34th annual conference of IEEE industrial electronics, 2195-2199.
- 13. Saloux, E., Teyssedou, A., ve Sorin, M. (2011). Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. *Solar energy*, 85(5), 713-722.

- 14. Batzelis, E. I., ve Papathanassiou, S. A. (2015). A method for the analytical extraction of the single-diode PV model parameters. *IEEE Transactions on Sustainable Energy*, 7(2), 504-512.
- 15. Saleem, H., ve Karmalkar, S. (2009). An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J-V curve. *IEEE Electron Device Letters*, *30*(4), 349-352.
- 16. Bai, J., Liu, S., Hao, Y., Zhang, Z., Jiang, M., ve Zhang, Y. (2014). Development of a new compound method to extract the five parameters of PV modules. *Energy Conversion and Management*, 79, 294-303.
- 17. Cannizzaro, S., Di Piazza, M. C., Luna, M., ve Vitale, G. (2014). Generalized classification of PV modules by simplified single-diode models. In 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2266-2273.
- 18. Ali, M. S., ve Kazmi, S. M. R. (2020). An Accurate Analytical Approach for the Parameterization of the Single Diode Model of Photovoltaic Cell. *Energies*, 15, 2221.
- 19. Bouzidi, K., Chegaar, M. ve Bouhemadou, A. (2007). Solar cells parameters evaluation considering the series and shunt resistance. *Solar Energy Materials and Solar Cells*, 91(18), 1647-1651.
- 20. Tripathy, M., Kumar, M. ve Sadhu, P. K. (2017). Photovoltaic system using Lambert W function-based technique. *Solar Energy*, *158*, 432-439.
- 21. Jervase, J. A., Bourdouncen, H. ve Al-Lawati, A. (2001). Solar cell parameter extraction methods and effects of parameters on cell performance. *Measurement Science and Technology*, 12, 1922-1925.
- 22. Elyaqouti, M., Boulfaf, N., Hamid, N., Izbaim, D., Chaoufi, J., ve Bouhouch, L. (2021). Thermal and electrical modelling of photovoltaic modules. *International Journal of Ambient Energy*, 1-17.
- 23. Villalva, M. G., Gazoli, J. R., ve Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. *IEEE Transactions on power electronics*, 24(5), 1198-1208.
- 24. Bellia, H., Youcef, R., ve Fatima, M. (2014). A detailed modeling of photovoltaic module using MATLAB. *NRIAG Journal of Astronomy and Geophysics*, 3(1), 53-61.
- 25. Hussein, A. (2017). A simple approach to extract the unknown parameters of PV modules. *Turkish Journal of Electrical Engineering & Computer Sciences*, 25(5), 4431-4444.
- 26. Vika, H. B. (2014). Modelling of Photovoltaic Modules with Battery Energy Storage in Simulink/Matlab: With in-situ measurement comparisons, Yayımlanmamış Yüksek Lisans Tezi, Norveç Bilim ve Teknoloji Üniversitesi, Elektrik Güç Teknolojisi Enstitüsü, Trondheim, 30-32.

- 27. Siddique, H. A. B., Xu, P., ve De Doncker, R. W. (2013). *Parameter extraction algorithm for one-diode model of PV panels based on datasheet values*. In 2013 International Conference on Clean Electrical Power (ICCEP), 7-13.
- 28. Xiong, G., Li, L., Mohamed, A. W., Yuan, X., ve Zhang, J. (2021). A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm. *Energy Reports*, *7*, 3286-3301.
- 29. Easwarakhanthan, T., Bottin, J., Bouhouch, I., ve Boutrit, C. (1986). Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. *International journal of solar energy*, 4(1), 1-12.
- 30. Ndi, F. E., Perabi, S. N., Ndjakomo, S. E., Abessolo, G. O., ve Mengata, G. M. (2021). Estimation of single-diode and two diode solar cell parameters by equilibrium optimizer method. *Energy Reports*, *7*, 4761-4768.
- 31. Abd Elaziz, M., ve Oliva, D. (2018). Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. *Energy conversion and management*, *171*, 1843-1859.
- 32. Pourmousa, N., Ebrahimi, S. M., Malekzadeh, M., ve Alizadeh, M. (2019). Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization Algorithm. *Solar Energy*, *180*, 180-191.
- 33. Song, S., Wang, P., Heidari, A. A., Zhao, X., ve Chen, H. (2022). Adaptive Harris hawks optimization with persistent trigonometric differences for photovoltaic model parameter extraction. *Engineering Applications of Artificial Intelligence*, *109*, 104608.
- 34. Guo, L., Meng, Z., Sun, Y., ve Wang, L. (2016). Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. *Energy conversion and management*, *108*, 520-528.
- 35. Gao, X., Cui, Y., Hu, J., Xu, G., Wang, Z., Qu, J., ve Wang, H. (2018). Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. *Energy Conversion and Management*, 157, 460-479.
- 36. Gude, S., ve Jana, K. C. (2020). Parameter extraction of photovoltaic cell using an improved cuckoo search optimization. *Solar Energy*, 204, 280-293.
- 37. Ebrahimi, S. M., Salahshour, E., Malekzadeh, M., & Gordillo, F. (2019). Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. *Energy*, *179*, 358-372.
- 38. Luu, T. V., ve Nguyen, N. S. (2020). Parameters extraction of solar cells using modified JAYA algorithm. *Optik*, 203, 164034.
- 39. Long, W., Wu, T., Xu, M., Tang, M., ve Cai, S. (2021). Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm. *Energy*, 229, 120750.
- 40. Chin, V. J., ve Salam, Z. (2019). Coyote optimization algorithm for the parameter extraction of photovoltaic cells. *Solar Energy*, *194*, 656-670.

- 41. Rezk, H., Babu, T. S., Al-Dhaifallah, M., ve Ziedan, H. A. (2021). A robust parameter estimation approach based on stochastic fractal search optimization algorithm applied to solar PV parameters. *Energy Reports*, *7*, 620-640.
- 42. Wang, M., Zhao, X., Heidari, A. A., ve Chen, H. (2020). Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer. *Solar Energy*, *211*, 503-521.
- 43. Alam, D. F., Yousri, D. A., ve Eteiba, M. B. (2015). Flower pollination algorithm based solar PV parameter estimation. *Energy Conversion and Management*, *101*, 410-422.
- 44. Rizk-Allah, R. M., ve El-Fergany, A. A. (2021). Emended heap-based optimizer for characterizing performance of industrial solar generating units using triple-diode model. *Energy*, 237, 121561.
- 45. Mostafa, M., Rezk, H., Aly, M., ve Ahmed, E. M. (2020). A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel. *Sustainable Energy Technologies and Assessments*, *42*, 100849.
- 46. Benkercha, R., Moulahoum, S., ve Taghezouit, B. (2019). Extraction of the PV modules parameters with MPP estimation using the modified flower algorithm. *Renewable Energy*, *143*, 1698-1709.
- 47. Qais, M. H., Hasanien, H. M., Alghuwainem, S., ve Nouh, A. S. (2019). Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. *Energy*, *187*, 116001.
- 48. Gupta, A., Chauhan, Y. K., ve Pachauri, R. K. (2016). A comparative investigation of maximum power point tracking methods for solar PV system. *Solar energy*, *136*, 236-253.
- 49. Liu, L., Zhang, R., ve Chen, Q. (2022). High-performance global peak tracking technique for PV arrays subject to rapidly changing PSC. *Chaos, Solitons & Fractals, 160,* 112214.
- 50. Etarhouni, M., Chong, B., ve Zhang, L. (2022). A novel square algorithm for maximising the output power from a partially shaded photovoltaic array system. *Optik*, 257, 168870.
- 51. Javed, S., ve Ishaque, K. (2022). A comprehensive analyses with new findings of different PSO variants for MPPT problem under partial shading. *Ain Shams Engineering Journal*, *13*(5), 101680.
- 52. Chai, L. G. K., Gopal, L., Juwono, F. H., Chiong, C. W., Ling, H. C., ve Basuki, T. A. (2021). A novel global MPPT technique using improved PS-FW algorithm for PV system under partial shading conditions. *Energy Conversion and Management*, 246, 114639.
- 53. Eltamaly, A. M. (2021). A novel musical chairs algorithm applied for MPPT of PV systems. *Renewable and Sustainable Energy Reviews*, *146*, 111135.

- 54. Srinivasan, V., Boopathi, C. S., ve Sridhar, R. (2021). A new meerkat optimization algorithm based maximum power point tracking for partially shaded photovoltaic system. *Ain Shams Engineering Journal*, *12*(4), 3791-3802.
- 55. Zafar, M. H., Khan, N. M., Mirza, A. F., Mansoor, M., Akhtar, N., Qadir, M. U., ve Moosavi, S. K. R. (2021). A novel meta-heuristic optimization algorithm based MPPT control technique for PV systems under complex partial shading condition. *Sustainable Energy Technologies and Assessments*, 47, 101367.
- 56. Özgenç, B. (2019). Şebeke bağlantılı FV sistemlerde gölgelenme etkisinin incelenmesi ve güç kayıplarının azaltılması, YaymlanmamışYüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon,16-17.
- 57. Atıcı, K. (2019). Fotovoltaik sistemler için bozkurt optimizasyonu yöntemi tabanli en yüksek güç noktasi izleme algoritmasi tasarimi ve uygulamasi, Yayımlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 14-15.
- 58. Djite, A.N. (2020). *Güneş enerjisi dinamik devre modelinin elde edilmesi*, Doktora Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
- 59. Araújo, N., Sousa, F.J.P. ve Costa, F. B. (2020). Equivalent Models for Photovoltaic Cell–A Review. *Revista de Engenharia Térmica*, 19(2), 77-98.
- 60. Nakir, İ. (2007). Fotovoltaik güneş panellerinde GTS ve MGST kullanarak verimliliğin arttırılması, Yayımlanmamış Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 25-27.
- 61. De Soto, W.L. (2004). *Improvement and Validation of a Model for Photovoltaic Array Performance*, Yüksek Lisans Tezi, University of Wisconsin-Madison, Wisconsin.
- 62. Ma, T., Yang, H., ve Lu, L. (2014). Solar photovoltaic system modeling and performance prediction. *Renewable and Sustainable Energy Reviews*, *36*, 304-315.
- 63. Altaş, İ.H. (2015). Yenilenebilir enerji ders notları. Karadeniz Teknik Üniversitesi, Trabzon.
- 64. Çetinbaş, İ. (2014). Güneş enerjili sistemlerde kullanılan maksimum güç noktası takibi yöntemlerinin zeki algoritmalar yardımıyla uygulanması, Yayımlanmamış Yüksek Lisans Tezi, Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Karabük, 19-20.
- 65. Karakaya, H.B. (2021). Fotovoltaik sistemlerde maksimum güç noktasının takibi için kullanılan optimizasyon algoritmalarının performansının değerlendirilmesi, Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Kahramanmaraş.
- 66. Karagöz, M.K. (2020). FV sistemler için kısmi gölge koşullarını yönetebilen yarasa algoritması tabanlı maksimum güç noktası izleyici tasarımı ve gerçekleştirilmesi, Yayımlanmamış Doktora Tezi, Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Karabük, 20-25.
- 67. Genç, G. (2018). *Fotovoltaik panellerde gölge ve toz etkisinin analizi*, Yayımlanmamış Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 10-11.

- 68. Vidyanandan, K. V. (2017). An overview of factors affecting the performance of solar PV systems. *Energy Scan*, 27(28), 216.
- 69. Çam, S. (2021). Fotovoltaik enerji sistemlerinde sezgisel algoritma tabanli maksimum güç noktasi takip sistemi geliştirilmesi, Yayımlanmamış Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Lisansüstü Eğitim Enstitüsü, Samsun, 26-28.
- 70. Pan, J., Gao, Y., Qian, Q., Feng, Y., Fu, Y., ve Sardari, F. (2021). Parameters identification of photovoltaic cells using improved version of the chaotic grey wolf optimizer. *Optik*, 242, 167150.
- 71. Li, S., Gu, Q., Gong, W., ve Ning, B. (2020). An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. *Energy Conversion and Management*, 205, 112443.
- 72. Emekçi, E. (2020). Solar cell parameter extraction methods and effects of parameters on cell performance, Yayımlanmamış Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Enerji Enstitüsü, İstanbul 14-16.
- 73. Zhao, W., Wang, L., ve Zhang, Z. (2020). Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. *Neural Computing and Applications*, *32*(13), 9383-9425.
- 74. Mirjalili, S., Mirjalili, S. M., ve Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46-61.
- 75. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., ve Chen, H. (2021). RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. *Expert Systems with Applications*, *181*, 115079.
- 76. Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H., ve Gandomi, A. H. (2022). INFO: An Efficient Optimization Algorithm based on Weighted Mean of Vectors. *Expert Systems with Applications*, 116516.
- 77. Zhao, W., Wang, L., ve Mirjalili, S. (2022). Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. *Computer Methods in Applied Mechanics and Engineering*, *388*, 114194.
- 78. Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., ve Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. *Expert Systems with Applications*, 191, 116158.
- 79. Eberhart, R., ve Kennedy, J. (1995). A new optimizer using particle swarm theory. In *MHS*'95. *Proceedings of the sixth international symposium on micro machine and human science*, 39-43.
- 80. Atienza, D., Bielza, C., ve Larrañaga, P. (2022). Semiparametric Bayesian networks. *Information Sciences*, 584, 564-582.
- 81. Derrac, J., García, S., Molina, D., ve Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. *Swarm and Evolutionary Computation*, *1*(1), 3-18.

GAZİ GELECEKTİR...