Elektrikli Araç Grupları ve Dinamik Talep Cevabı İçeren Yük Frekans Kontrol Sistemlerinin Zaman Gecikmesine Bağlı Kararlılık Analizi ve Gürbüz Denetleyici Tasarımı


Ayasun S. (Yürütücü)

TÜBİTAK Projesi, 2019 - 2021

  • Proje Türü: TÜBİTAK Projesi
  • Başlama Tarihi: Mart 2019
  • Bitiş Tarihi: Mart 2021

Proje Özeti

Bu proje çalışmasında, dinamik talep cevabı (DTC) kontrol çevrimi ve/veya elektrikli araç (EA) grupları içeren bir ve iki bölgeli yük frekans kontrol (YFK) sistemlerinin zaman gecikmesine bağlı kapsamlı bir kararlılık analizini sunulmaktadır. YFK sistemlerinde ölçüm birimleri ve haberleşme ağlarının yoğun kullanımından dolayı kaçınılmaz zaman gecikmeleri gözlenmektedir. Özellikle, sistemde yaşanan zaman gecikmeleri, sistemin dinamik performansını olumsuz etkileyerek kararlılık gecikme sınırının aşılması halinde sistemin kararsızlığına yol açabilmektedir. Dolayısıyla, elektrik güç sistemlerinin kararlılığı ve dinamik performansı üzerinde böylesi zaman gecikmelerinin etkisini incelemek önemlidir. Sistemin tolere edebileceği zaman gecikmesi üst sınırını hesaplamak için herhangi bir yaklaşıklık içermeyen iki analitik yöntem bu çalışmada önerilmiştir. Bu yöntemler frekans düzleminde tanımlanan Rekasius yerine koyma yöntemi ve üstel terimlerin yok edilmesi yöntemidir. Öncelikle, her iki yöntem kullanılarak EA toplayıcısı ve/veya DTC kontrol çevrimi içeren bir ve iki bölgeli YFK sistemlerinde oransal-integral (PI) denetleyici parametre değerlerinin tanımlanan bir seti için sistemin kararlılığını kaybetmeden tolere edebileceği kararlılık gecikmesi payları hesaplanmıştır. Daha sonra, herhangi bir zaman gecikme değeri için EA toplayıcısı ve/veya DTC kontrol çevrimi içeren bir ve iki bölgeli YFK sistemlerinin kararlılığını garantileyen tüm denetleyici kazanç değerlerini hesaplayan etkili bir grafiksel yöntem kullanılmıştır. Bu yaklaşım denetleyici parametre düzleminde kararlılık sınır eğrisini ve kararlılık bölgesini elde etmeye dayalıdır. Ancak, yenilenebilir enerji kaynaklarının güç dalgalanmaları, haberleşme zaman gecikmeleri ve sistem parametrelerindeki değişimlerden kaynaklanan belirsizlikten dolayı, EA toplayıcısı ve/veya DTC kontrol içeren YFK sistemlerinin tüm kararlı kılıcı denetleyici parametre değerleri istenilen dinamik performansı ve sistem kararlılığını garanti edemez. Gürbüz kararlılık problemini çözmek için, gürbüz PI denetleyici setini içeren gürbüz kararlılık bölgelerinin hesaplanması önemlidir. Parametrelerinin belirli bir aralıkta değiştiği YFK sistemlerinin gürbüz kararlılığını sağlamak için sadece dört polinom üzerine dayalı Kharitonov teoremi önerilmektedir. Son olarak, önerilen yöntemler kullanılarak elde edilen tüm teorik sonuçların doğruluğu benzetim çalışmaları ile gösterilmiştir.

PROJE ÇIKTILARI:

  1. Naveed, A., Sönmez, Ş. and Ayasun, S., “Impact of Load Sharing Schemes on the Stability Delay Margins Computed by Rekasius Substitution Method in Load Frequency Control System with Electric Vehicles Aggregator”, International Transactions on Electrical Energy Systems vol. 31, no. 5, pp. 1-18, May 2021. https://doi.org/10.1002/2050-7038.12884 (SCI-Expanded).
  2. Naveed, A., Sönmez, Ş. and Ayasun, S., “Impact of electric vehicle aggregator with communication time delay on stability regions and stability delay margins in load frequency control system”, Accepted for publication in Journal of Modern Power Systems and Clean Energy 2020. https://doi.org/10.35833/MPCE.2019.000244 (SCI-Expanded).
  3. Katipoğlu, D., Sönmez, Ş., Ayasun, S., and Naveed, A., “The effect of demand response control on stability delay margins of load frequency control systems with communication time delays”, Accepted for publication in Turkish Journal of Electrical Engineering & Computer Sciences 2020. https://doi.org/10.3906/elk-2006-165 (SCI-Expanded).
  4. Naveed, A., Sönmez, Ş. and Ayasun, S., “Impact of Electric Vehicles Aggregators with Communication Delays on Stability Delay Margins of Two-Area Load Frequency Control System”, Accepted for publication in Transactions of the Institute of Measurement and Control, 2021 (SCI-Expanded).
  5.  Naveed, A., Sönmez, Ş. and Ayasun, S., “Determination of Stability Margins in Single Area Load Frequency Control System having Incommensurate Communication Delays due to Plug-in Electric Vehicles”, Eurasian Journal of Science Engineering and Technology 1(1), 11-19, 2020.
  1. Tek B.,  Sönmez, Ş. and Ayasun, S., “Delay-dependent Stability Analysis Considering Dynamic Demand Response and Electric Vehicle Aggregator Integration in Two-Area Load Frequency Control Systems”, Turkish Journal of Electrical Power Energy Systems (TEPES), Vol.1, Issue. 1, pp. 19-25,  April 2021 (DOI:10.5152/tepes.2021.21006)
  2. Naveed, A., Sönmez, Ş. and Ayasun, S., “Stability regions in the parameter space of PI controller for LFC system with EVs aggregator and incommensurate time delays”, 2019 IEEE 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, s. 461-466, 12-15 June, 2019.
  3. Katipoğlu, D., Sönmez, Ş. and Ayasun, S. “Stability Delay Margin Computation of Load Frequency Control System with Demand Response”, 2019 IEEE 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, s. 473-478, 12-15 June, 2019.

  1. Naveed, A., Sönmez, Ş. and Ayasun, S., “Stability Analysis of a Single-Area Load Frequency Control System with Electric Vehicles Group and Communication Time Delays”, Proceedings of International Turkic World Congress on Science and Engineering (UTUFEM), Niğde, Turkey, s. 897-905, 17-18 June, 2019.
  2. Naveed, A., Sönmez, Ş. and Ayasun, S., “Identification of Stability Delay Margin for Load Frequency Control System with Electric Vehicles Aggregator using Rekasius Substitution”, 2019 IEEE Milan PowerTech, Milan, Italy, s. 1-6, 23-27 June, 2019.
  3. Naveed, A., Zerdali, E., Sönmez, Ş. and Ayasun, S., “Optimization of PI Controller Gains using Genetic Algorithm for Time-Delayed Load Frequency Control Systems with Electric Vehicles Aggregator”, 2019 IEEE 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, s. 76-80, 28-30 November 2019.
  4. Naveed, A., Sönmez, Ş. and Ayasun, S., “Damping Based Relative Stability Regions in Load Frequency Control System with Plug-in Electric Vehicles and Communication Delays”, 2020 IEEE 2nd Global Power, Energy and Communication Conference (GPECOM), Izmir, Turkey, s. 202-207, 20-23 October, 2020.
  5. Naveed, A., Katipoğlu, D., Sönmez, Ş. and Ayasun, S., “Delay-dependent stability analysis of a single-area load frequency control system enhanced by electric vehicles aggregator and demand response control”, TURK-COSE 2020: 2. International Turkic World Congress on Science and Engineering, Nur-Sultan (Astana), Kazakhistan, s. 546-554, 14-15 November, 2020.


KAYNAKLAR

  1. Ahn, C., Li, C.T., Peng, H. 2011. “Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid”, Journal of Power Sources, 196 (23), 10369–10379.
  2. Ayasun, S. 2009. “Computation of time delay margin for power system small-signal stability”, European Transactions on Electrical Power, 19 (7), 949-968.
  3. Ayasun, S., Eminoğlu, U., Sönmez, Ş. 2014. “Computation of stability delay margin of time-delayed generator excitation control system with a stabilizing transformer”, Mathematical Problems in Engineering, 2014, 1-10.
  4. Ayasun, S., Gelen, A. 2010. “Stability analysis of a generator excitation control system with time delays”, Electrical Engineering, 91 (6), 347-355.
  5. Babahajiani, P., Shafiee, Q., Bevrani, H. 2018. “Intelligent demand response contribution in frequency control of multi-area power systems”, IEEE Transactions on Smart Grid, 9 (2), 1282–1291.
  6. Bao, YQ., Li, Y., Wang, B., Hu, M., Chen, P. 2017. “Demand response for frequency control of multi-area power system”,  Journal of Modern Power Systems and Clean Energy, 5 (1), 20–29.
  7. Beil, I., Hiskens, I., Backhaus, S. 2016. “Frequency regulation from commercial building HVAC demand response”, Proceedings of the IEEE, 104 (4), 745-757.
  8. Bessa, R. J., Matos, M. A. 2010. “The role of an aggregator agent for EV in the electrical market”, In: Proceedings of 7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, Agia Napa, Cyprus, 7-10.
  9. Bessa, R. J., Matos, M. A., Soares, F. J. 2014. “Framework for the participation of EV aggregators in the electricity market”, In: Proceedings of 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 1-8.
  10. Bevrani, H. 2014. Robust Power System Frequency Control. Springer, New York.
  11. Bharti, K., Singh, V. P., Singh, S. P. 2020. “Impact of intelligent demand response for load frequency control in smart grid perspective”, IETE Journal of Research, 1-12.
  12. Bilh, A., Naik, K., El-Shatshat, R. 2018. “Evaluating electric vehicles’ response time to regulation signals in smart grids”, IEEE Transactions on Industrial Informatics, 14 (3), 1210-1219.
  13. Carreiroa, A. M., Jorgea, H. M., Antunesa, C. H. 2017. “Energy management systems aggregators: A literature survey”, Renewable and Sustainable Energy Reviews, 73, 1160-1172.
  14. Chen, J., Gu, G., Nett, C. N. 1995. “A new method for computing delay margins for stability of linear delay systems”, System and Control Letters, 26 (2), 101–117.
  15. Datta, M., Senjyu, T., Yona, A., Funabashi, T., Kim, C. H. 2011. “A frequency-control approach by photovoltaic generator in a PV-diesel hybrid power system”, IEEE Transactions on Energy Conversion, 26 (2), 559–571.
  16. Delille, G., Francois, B., Malarange, G. 2012. “Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia”, IEEE Transactions on Sustainable Energy, 3 (4), 931–939.
  17. Dong, C., Jia, H., Xu, Q., Xiao, J., Xu, Y., Tu, P., Lin, P., Li, X., Wang, P. 2018. “Time-delay stability analysis for hybrid Energy storage system with hierarchical control in DC micro-grids”, IEEE Transactions on Smart Grid, 9 (6), 6633-6645.
  18. Falahati, S., Taher, S.A., Shahidehpour, M. 2016. “A new smart charging method for EVs for frequency control of smart grid”, Electrical Power and Energy Systems, 83, 458–469.
  19. Fan, H., Jiang, L., Mao, C. 2016. “Frequency regulation of multi-area power systems with plug-in electric vehicles considering communication delays”, IET Generation, Transmission & Distribution, 10 (14), 3481-3491.
  20. Fazelinia, H., Sipahi, R., Olgac, N. 2007. “Stability robustness analysis of multiple time delayed systems using ‘‘building block” concept”, IEEE Transactions on Automatic Control, 52 (5), 799–810.
  21. Fernandez-Blanco, R., Arroyo, J. M., Alguacil, N., Guan, X. 2016. “Incorporating price-responsive demand in energy scheduling based on consumer Payment minimization”, IEEE Transactions on Smart Grid, 7 (2), 817–826.
  22. Fu, P., Niculescu, S. I., Chen. J. 2006. “Stability of linear neutral time-delay systems: exact conditions via matrix pencil solutions”, IEEE Transactions on Automatic Control, 51 (6), 1063-1069.
  23. Green, R. C., Wang, II., L., Alam, M. 2011. “The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook”, Renewable and Sustainable Energy Reviews, 15 (1), 544–553.
  24. Gu, K., Kharitonov, V.L., Chen, J. 2003. Stability of Time Delay Systems. Birkhauser Boston, MA.
  25. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G. P. 2013. “A survey on smart grid potential applications and communication requirements”, IEEE Transactıons on Industrıal Informatıcs, 9 (1), 28-41.
  26. Gündüz, H., Sönmez, Ş., Ayasun, S. 2017. “A comprehensive gain and phase margins based stability analysis of micro-grid frequency control system with constant communication time delays”, IET Generation, Transmission and Distribution, 11 (3), 719-729.
  27. Gündüz, H., Ayasun, S., Sönmez, Ş. 2019. “Zaman gecikmeli mikro-şebeke sistemlerin Rekasius yerine koyma yöntemiyle kazanç ve faz payı tabanlı kararlılık analizi”, Journal of Faculty of Engineering and Architecture of Gazi University, 34 (1), 553-567.
  28. Habibi, F., Naghshbandy, A. H., Bevrani, H. 2013. “Robust voltage controller design for an isolated Microgrid using Kharitonov’s theorem and D-stability concept”, International Journal of Electrical Power & Energy Systems, 44 (1), 656-665.
  29. Hajibandeh, N., Ehsan, M., Soleymani, S., Shafie-khah, M., Catalao, J. P. S. 2017. “The mutual impact of demand response programs and renewable energies: A survey”, Energies, 10 (9), 13
  30. Hamamcı, S. E., Köksal, M. 2010. “Calculation of all stabilizing fractional-order PD controllers for integrating time delays”, Computers and Mathematics with Applications, 59 (5), 1621-1629.
  31. Hosseini, S. A., Toulabi, M., Dobakhshari, A. S., Ashouri-Zadeh, A., Ranjbar, A. M. 2020. “Delay compensation of demand response and adaptive disturbance rejection applied to power system frequency control”, IEEE Transactions on Power Systems, 35 (3), 2037–2046.
  32. Hui, H., Ding, Y., Song, Y., Rahman, S. 2019. “Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error”, Applied Energy, 250, 161-174.
  33. Hua, C., Wang, Y. 2020. “Delay-dependent stability for load frequency control system via linear operator inequality”, IEEE Transactions on Cybernetics, 1-9.
  34. Han, S., Han, S., Sezaki, K. 2010. “Development of an optimal vehicle-to-grid aggregator for frequency regulation”, IEEE Transactions on Smart Grid, 1 (1), 65-72.
  35. Hund, T. D., Gonzalez, S., Barrett, K. 2010. “Grid-tied PV system energy smoothing”, 35th IEEE Photovoltaic Specialists  Conference (PVSC), Honolulu, USA, 2762-2766.
  36. Jia, H. J., Yu, X. D. 2008. “A simple method for power system stability analysis with multiple time delaysˮ, IEEE Power Engineering Society General Meeting, Pittsburgh, USA, 1-7.
  37. Jia, H., Li, X., Mu, Y., Xu, C., Jiang, Y., Yu, X., Wu, J., and Dong, C. 2018. “Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays”, Applied Energy, 210, 1363-1376.
  38. Jiang, L., Yao, W., Wu, Q.H., Wen, J.Y., Cheng, S.J. 2012. “Delay-dependent stability for load frequency control with constant and time-varying delays”, IEEE Transactions on Power Systems, 27 (2), 932-941.
  39. Jin, L., Zhang, C. K., He, Y., Jiang, L., Wu, M. 2019. “Delay-dependent stability analysis of multi-area load frequency control with enhanced accuracy and computation efficiency”, IEEE Transactions on Power Systems, 34 (5), 3687-3696.
  40. Katipoglu, D., Sönmez, Ş., Ayasun, S. 2019. “Stability delay margin computation of load frequency control system with demand response”, IEEE Global Power, Energy and Communication Conference (GPECOM), Nevşehir, Turkey, 473-478.
  41. Katipoglu, D., Naveed, A., Sönmez, Ş., Ayasun, S. 2020. “The effect of demand response control on stability delay margins of load frequency control systems with communication time delays”, Accepted for Turkish Journal of Electrical Engineering & Computer Sciences (In Press).
  42. Khalil, A., Peng, A. S. 2018. “A new method for computing the delay margin for the stability of load frequency control systemsˮ, Energies, 11 (12), 3460.
  43. Khalil, A., Peng, A. S. 2018. “An accurate method for delay margin computation for power system stabilityˮ, Energies, 11 (12), 3466.
  44. Khalil, A., Peng, A. S. 2018. “Delay margin computation for load frequency control system with plug-in electric vehicles”, International Journal of Power and Energy Systems, 38 (8), 1-17.
  45. Kharitonov, V. L. 1978. “Asymptotic stability of an equilibrium position of a family systems of linear differential equations”, Differential’nye Uraveniya, 14 (11), 1483–1485.
  46. Ko, K. S., Sung, D. K. 2018. “The effect of EV aggregators with time-varying delays on the stability of a load frequency control system”, IEEE Transactions on Power Systems, 33 (1), 669-680.
  47. Ko, K., Sung, D. K. 2019. “The Effect of cellular network-based communication delays in an EV aggregator’s domain on frequency regulation service”, IEEE Transactions on Smart Grid, 10 (1), 65-73.
  48. Y., Pavković, D., Karbivska, T., Safronov, P., Bondarenko, O. 2020. “Robust control of battery-supercapacitor energy storage system using kharitonov theorem”, international conference on compatibility, power electronics and power engineering (CPE-POWERENG), Setubal, Portugal.
  49. Kundur, P. 1994. Power System Stability and Control. McGraw-Hill Inc., New York.
  50. Lamba, R., Singla, S. K., Sondhi, S. 2019. “Design of fractional order PID controller for load frequency control in perturbed two area interconnected system”, Electric Power Components and Systems, 47 (11-12), 998–1011.
  51. Li, G., Zhang, X. 2012. “Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations”, IEEE Transactions on Smart Grid, 3(1), 492–499.
  52. Li, Y. J., Xu, Z., Ngan, H. W., Wong, S. C. 2015. “A novel topology design for integration of offshore wind farm via high-voltage DC transmission”, Electric Power Components and Systems, 43(8), 1100–1112.
  53. Liu, J., Zhang, W., Liu, Y.2017. “Primary frequency response from the control of LED lighting loads in commercial buildings”, IEEE Transactions on Smart Grid, 8 (6), 2880-2889.
  54. Liu, H., Qi, J., Wang, J., Li, P., Li, C., Wei, H. 2018.“EV dispatch control for supplementary frequency regulation considering the expectation of EV owners”, IEEE Transactions on Smart Grid, 9 (4), 3763-3772.
  55. Liu, M., Yang, L., Gan, D., Wang, D., Gao, F., Chen, Y. 2007. “The stability of AGC systems with commensurate delays”, International Transactions on Electrical Energy Systems, 17 (6), 615-627.
  56. Liu, Z., Zhu, C., Jiang, Q. 2008. “Stability analysis of time delayed power system based on Cluster Treatment of Characteristic Roots method”, IEEE Power and Energy Society General Meeting, Pittsburgh, PA, 1-6.
  57. Liu, K., Seuret, A., Xia, Y., Gouaisbaut, F., Ariba, Y. 2019. “Bessel-Laguerre inequality and its application to systems with infinite distributed delays”, Automatica, 109, 108562.
  58. Louisell, J. 2001. “A matrix method for determining the imaginary axis eigenvalues of a delay system”, IEEE Transactions on Automatic Control, 46 (12), 2008–2012.
  59. Lucas, K. E., Pagano, D. J., Vaca-Benavides, D. A., Garcia-Arcos, R., Rocha, E. M., Medeiros, R. L. P., Rios, S. J. 2021. “Robust control of interconnected power electronic converters to enhance performance in dc distribution systems: A case of study”, IEEE Transactions on Power Electronics, 36 (4), 4851-4863.
  60. Luo, X., Xia, S., Chan, K. W. 2014. “A decentralized charging control strategy for plug-in electric vehicles to mitigate wind farm intermittency and enhance frequency regulation”, Journal of Power Sources, 248, 604 – 614.
  61. Macana, C. A., Mojica-Nava, E., Quijano, N. 2013. “Time-delay effect on load frequency control for microgrids”, IEEE International Conference on Networking, Sensing and Control (ICNSC), Evry, France, 544-549.
  62. Mak, K., Holland, B. L. 2002. “Migrating electrical power network SCADA systems to TCP/IP and ethernet networking”, Power Engineering Journal, 16 (6), 305-311.
  63. Masuta, T., Yokoyama, A. 2012. “Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters”, IEEE Transactions on Smart Grid, 3 (3), 1253-1262.
  64. Mu, Y., Wu, J., Ekanayake, J., Jenkins, N., Jia, H. 2013. “Primary frequency response from electric vehicles in the Great Britain power system”, IEEE Trans Smart Grid, 4 (2), 1142-1150.
  65. Munoz-Benavente, I., Hansen, A. D., Gomez-Lazaro, E., García-Sanchez, T., Fernandez-Guillamon, A., Molina-García, A. 2019. “Impact of combined demand-response and wind power plant participation in frequency control for multi-area power systems”, Energies, 12 (9), 1687.
  66. Naduvathuparambil, B., Valenti, M. C., Feliachi, A. 2002.“Communication delays in wide area measurement systems”, Thirty-Fourth Southeastern Symposium on System Theory, Alabama, Huntsville, USA, 118-122.
  67. Naveed, A., Sönmez, Ş., Ayasun, S. 2019. “Identification of stability delay margin for load frequency control system with electric vehicles aggregator using rekasius substitution”, In: Proceedings of 2019 IEEE Milan PowerTech. Milan, Italy, 1-6.
  68. Naveed, A., Sönmez, Ş., Ayasun, S. 2020. “The impact of electric vehicles aggregator with communication time delay on stability regions and stability delay margins of load frequency control system”, Journal of Modern Power Systems and Clean Energy, 1-7.
  69. Olgac, N., Sipahi, R. 2002. “An exact method for the stability analysis of time-delayed linear time invariant (LTI) systems”, IEEE Transactions on Automatic Control, 47 (5), 793-797.
  70. Olgac, N., Sipahi, R. 2004. “A practical method for analyzing the stability of neutral type LTI-time delayed systems”, Automatica, 40 (5), 847-853.
  71. Raouf, B., Akbarimajd, A., Dejamkhooy, A., SeyedShenava, S. 2018. “Robust distributed control of reactive power in a hybrid, wind diesel power system with STATCOM”, International Transactions on Electrical Energy Systems, 29 (4), e2780.
  72. Rekasius, Z.V. 1980. “A stability test for systems with delays”, Joint Automatic Control Conference, San Francisco, CA, TP9-A.
  73. Richardson, P., Flynn, D., Keane, A. 2012. “Optimal charging of elec-tric vehicles in low-voltage distribution systems”, IEEE Transactions on Power Systems, 27 (1), 268-279.
  74. Pekař, L., Gao, Q. 2018. “Spectrum Analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results”, IEEE Access, 6, 35457–35491.
  75. Pham, T. N., Nahavandi, S., Hien, L. V., Trinh, H., Po, K. 2017. “Static output feedback frequency stabilization of time-delay power systems with coordinated electric vehicles state of charge control”, IEEE Transactions on Power Systems, 32 (5), 3862-3874.
  76. Pillai, J., Bak-Jensen, B. 2011. “Integration of vehicleto-grid in the western Danish power system”, IEEE Transactions on Sustainable Energy, 2 (1), 12-19.
  77. Pourmousavi, S.A., Nehrir, M. H. 2012. “Real time central demand response for primary frequency regulation in microgrid”, IEEE Transactions on Smart Grid, 3 (4), 1988-1996.
  78. Pourmousavi, S. A., Nehrir, M. H. 2014. “Introducing dynamic demand response in the LFC model”, IEEE Transactions on Power Systems, 29 (4), 1562-1572.
  79. Quinn, C., Zimmerle, D., Bradley, T. H. 2010. “The effect of communication architecture on the availability, reliability, and economics of plug-in hybrid electric vehicle-to-grid ancillary services”, Journal of Power Sources, 195 (5), 1500-1509.
  80. Saadat, H. 1999. Power System Analysis, McGraw-Hill Inc., New York.
  81. Schweppe, F. C., Tabors, R. D., Kirtley, J. L., Outhred, H. R., Pickel, F. H.,Cox, A. J. 1980. "Homeostatic utility control," IEEE Transactions on Power Apparatus and Systems, (3), 1151-1163.
  82. Sekyung, H., Soohee, H., Sezaki, K. 2010. “Development of an optimal vehicle-to-grid aggregator for frequency regulation”, IEEE Transactions on Smart Grid, 1(1), 65-72.
  83. Seuret, A., Gouaisbaut, F. 2013. “Wirtinger-based integral inequality: Application to time-delay systems” Automatica, 49 (9), 2860-2866.
  84. Seuret, A., Gouaisbaut, F. 2015. “Hierarchy of LMI conditions for the stability analysis of time-delay systems”, Systems & Control Letters, 81, 1-7.
  85. Sharma, J., Hote, Y. V., Prasad, R. 2019. “PID controller design for interval load frequency control system with communication time delay”, Control Engineering Practice, 89, 154-168.
  86. Shi, Q., Cui, H., Li, F., Liı, Y., Ju, W., Sun, Y. 2017. “A hybrid dynamic demand control strategy for power system frequency regulation”, CSEE Journal of Power and Energy Systems, 3(2), 176-185.
  87. Shi, Q., Li, F., Liu, G., Shi, D., Yi, Z., Wang, Z. 2019. “Thermostatic load control for system frequency regulation considering daily demand profile and progressive recovery” IEEE Transactions on Smart Grid, 10 (6), 6259-6270.
  88. Shimizu, K., Masuta, T., Ota, Y., Yokoyama, A. 2010. “Load frequency control in power system using vehicle-to-grid system considering the customer convenience of electric vehicles”, Power System Technology (POWERCON), Hangzhou, China, 1-8.
  89. Simulink, 2019. Simulation and Model-Based Design. Natick, MathWorks, MA, USA.
  90. Singh, V. P., Samuel, P., Kishor, N. 2017. “Impact of demand response for frequency regulation in-two-area thermal power system”, International Transactions on Electrical Energy Systems, 27 (2), 1-23.
  91. Sondhi, S., Hote, Y. V. 2016. “Fractional order PID controller for perturbed load frequency control using Kharitonov’s theorem” International Journal of Electrical Power & Energy Systems, 78, 884-896.
  92. Sönmez, Ş., Ayasun, S., Eminoğlu, U. 2014. “Computation of time delay margins for stability of a single-area load frequency control system with communication delays”, WSEAS Transactions on Power Systems, 9, 67-76.
  93. Sönmez, Ş., Ayasun, S., Nwankpa, C. O. 2016. "An exact method for computing delay margin for stability of load frequency control systems with constant communication delays", IEEE Transactions on Power Systems, 31 (1), 370-377.
  94. Sönmez, Ş., Ayasun, S. 2016. " Stability region in the parameter space of PI controller for a single-area load frequency control system with time delay", IEEE Transactions on Power Systems, 31 (1), 829-830.
  95. Sönmez, Ş., Ayasun, S. 2016. "Effect of load increase and power system stabilizer on stability delay margin of a generator excitation control system", Turkish Journal of Electrical Engineering and Computer Science, 24 (6), 5183-5194.
  96. Sönmez, Ş., Ayasun, S. 2018. “Gain and phase margins based delay-dependent stability analysis of single-area load frequency control system with constant communication time delay”, Transactions of the Institute of Measurement and Control, 40 (5), 1701-1710.
  97. Sönmez S., Ayasun S. 2019. “Gain and phase margins-based delay margin computation of load frequency control systems using Rekasius substitution”, Transactions of the Institute of Measurement and Control, 41 (12), 3385-3395.
  98. Sönmez Ş., Ayasun S. 2019. “Rekasius yöntemi kullanılarak zaman gecikmeli jeneratör uyarma kontrol sisteminin maksimum zaman gecikmesinin hesaplanması”, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8 (2), 783 – 795.
  99. Sönmez, Ş. 2019. “Computation of stability regions for load frequency control systems including incommensurate time delays”, Turkish Journal of Electrical Engineering & Computer Sciences, 27 (6), 4596-4607.
  100. Sönmez Ş., Ayasun S. 2018. “Computation of PI controllers ensuring desired gain and phase margins for two-area load frequency control system with communication time delays”, Electric Power Components and Systems, 46 (8), 938-947.
  101. Söylemez, M. T., Munro, N., Baki, H. 2003. “Fast calculation of stabilizing PID controllers”, Automatica, 39 (1), 121–127.
  102. Su, J. H. 1995. “The asymptotic stability of linear autonomous systems with commensurate time delays”, IEEE Transactions on Automatic Control, 40(6), 1114-1117.
  103. Tan, N. 2005. “Computation of stabilizing PI and PID controllers for processes with time delay”, ISA Transaction, 44 (2), 213-223.
  104. Tan, N., Kaya, İ., Celaleddin, Y., Atherton, D. P. 2006. “Computation of stabilizing PI and PID controllersusing the stability boundary locus”, Energy Conversion and Management 47 (18-19), 3045-3058.
  105. Thangaiah, J. M., Parthasarathy, R. 2016. “Delay-dependent stability analysis of microgrid with constant and time-varying communication delays”, Electric Power Components and Systems, 44 (13), 1441-1452.
  106. Türksoy, Ö., Ayasun, S., Hameş, Y., Sönmez, S. 2020. “Computation of robust PI-based pitch controller parameters for large wind turbines”, Canadian Journal of Electrical and Computer Engineering, 43 (1), 57-63.
  107. Türksoy, Ö., Ayasun, S., Hameş, Y., Sönmez, S. 2019. “Gain-phase margins based delay dependent stability analysis of pitch control system of large wind turbines”, Transactions of the Institute of Measurement and Control, 41 (13), 3626-3636.
  108. Walton, K. E., Marshall, J. E. 1987. “Direct method for TDS stability analysis”, In IEE Proceedings D-Control Theory and Applications, 134 (2), 101-107.
  109. Wang, Y.J. 2011. “Graphical computation of gain and phase margin specifications-oriented robust PID controllers for uncertain systems with time-varying delay”, Journal of Process Control, 21 (4), 475-488.
  110. Wang, W., Xu, Y., Khanna, M. 2011. “A survey on the communication architrectures in smart grid”, Computer Networks, 55 (15), 3604-3629.
  111. Wang, J., Tse, N., Gao, Z. 2011. “Synthesis on-PI-based pitch controller of large wind turbine generator”, Energy Conversion and Management, 52 (2), 1288-1294.
  112. Weckx, S., D'Hulst, R., Driesen, J. 2015. “Primary and secondary frequency support by a multi-agent demand control system”, IEEE Transactions on Power Systems, 30 (3), 1394-1404.
  113. Veronica, A. J. S. J., Kumar, N. S., Gonzalez-Longatt, F. 2019. “Robust PI controller design for frequency stabilisation in a hybrid microgrid system considering parameter uncertainties and communication time delay”, IET Generation, Transmission & Distribution, 13 (14), 3048-3056.
  114. Vijay, P., Singh, V. P., Samuel, P., Kishor, N. 2016. “Impact of demand response for frequency regulation in two-area thermal power system”, International Transactions on Electrical Energy Systems, 27 (2), 1-23.
  115. Villena, J., Vigueras-Rodriguez, A., Gomez-Lazaro, E., Fuentes-Moreno, J. A., Munoz-Benavente, I., Molina-García, Á. 2015. “An analysis of decentralized demand response as frequency control support under critical wind power oscillations” Energies, 8 (11), 12881–12897.
  116. Vyhlídal, T., Zítek, P. 2009. “Mapping based algorithm for large-scale computation of quasi-polynomial zeros”, IEEE Transactions Automatic Control, 2054 (1), 171-177.
  117. Vyhlídal, T., Olgaç, N., Kučera, V. 2014. “Delayed resonator with acceleration feedback – Complete stability analysis by spectral methods and vibration absorber design”, Journal of Sound and Vibration, 333 (25), 6781–6795.
  118. Yan, Y., Qian, Y., Sharif, H., Tipper, D. 2013. “A survey on smart grid communication infrastructures: motivations, requirements and challenges”, IEEE Communications Surveys & Tutorials, 15 (1), 5-20.
  119. Yang, B., Makarov, Y., Desteese, J., Viswanathan, V., Nyeng, P., McManus, B., Pease, J. 2008. “On the use of energy storage technologies for regulation services in electric power systems with significant penetration of wind energy”, In 2008 5th International Conference on the European Electricity Market, 1-6.
  120. Yao, E., Wong, V. W., Schober, R. 2017. “Robust frequency regulation capacity scheduling algorithm for electric vehicles”, IEEE Transactions on Smart Grid, 8 (2), 984-997.
  121. Yao, W., Jiang, L., Wu, Q. H., Wen, J. Y., Cheng, S. J. 2011. “Delay-dependent stability analysis of the power system with a wide-area damping controller embedded”, IEEE Transactions on Power Systems, 26 (1), 233-240.
  122. Yao, W., Jiang, L., Wu, Q. H., Wen, J. Y., Cheng, S. J. 2014. “Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays”, IEEE Transactions on Power Systems, 29 (1), 318-329.
  123. Zaman, M. S. U., Bukhari, S. B. A., Hazazi, K. M., Haider, Z. M., Haider, R., Kim, C. H. 2018. “Frequency response analysis of a single-area power system with a modified LFC model considering demand response and virtual inertia”, Energies, 11 (4), 1-20.
  124. Zaman, M. S. U., Bukhari, S. B.  A., Haider, R., Khan, M. O., Baloch, S., Kim, C. H. 2020. “Sensitivity and stability analysis of power system frequency response considering demand response and virtual inertia”, IET Generation, Transmission & Distribution, 14 (6): 986-996.
  125. Zeng, H. B., Zhai, Z. L., He, Y., Teo, K. L., Wang, W. 2020. “New insights on stability of sampled-data systems with time-delay”, Applied Mathematics and Computation, 374, 125041.
  126. Zeng, H. B., Liu X. G., Wang, W. 2019. “A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems”, Applied Mathematics and Computation, 354, 1-8.
  127. Zhang, C. K., Jiang, L., Wu, Q.H., He, Y., Wu, M. 2013. “Delay-dependent robust load frequency control for time delay power systems”, IEEE Transactions on Power Systems 28 (3), 2192-2201.
  128. Zhang, C. K., Jiang, L., Wu, Q.H., He, Y., Wu, M. 2013. “Further results on delay-dependent stability of multi-area load frequency control”, IEEE Transactions on Power Systems, 28 (4), 4465-4474.
  129. Zhang, C. K., He, Y., Jiang, L., Wu, M., Zeng, H. B. 2016. “Delay-variation-dependent stability of delayed discrete-time systems”,  IEEE Transactions on Automatic Control, 61 (9), 2663-2669.
  130. Zhang, C. K., Long, F., He, Y., Yao, W., Jiang, L., Wu, M. 2020. “A relaxed quadratic function negative-determination lemma and its application to time-delay systems”,  Automatica, 113, 108764.
  131. Zhou, B., Yao, F., Littler, T., Zhang, H. 2016. “An electric vehicle dispatch module for demand-side energy participation”, Applied Energy, 177, 464-474.
  132. Zhou, S. J., Zeng, H. B., Xia, H. Q. 2020. “Load frequency stability analysis of time-delayed multi-area power systems with EVs aggregators based on Bessel-Legendre inequality and model reduction technique”, IEEE Access, 8, 99948-99955.
  133. Zhu, Q., Jiang, L., Yao, W., Zhang, C. K., Luo, C. 2017. “Robust load frequency control with dynamic demand response for deregulated power systems considering communication delays”, Electric Power Components and Systems, 45 (1), 75-87.