ROAD MATERIALS AND PAVEMENT DESIGN, vol.25, no.3, pp.454-473, 2024 (SCI-Expanded)
Previous studies have achieved accurate predictions for Marshall design parameters (MDPs), but their limited data and input variables might restrict generalization. In this study, machine learning (ML) was used to predict MDPs with more generalised models. To achieve this, a dataset was collected from six different papers. Inputs were material properties and their ratios in the mixture, while target features were six MDPs used in mixture design. Four ML algorithms were used including linear regression, polynomial regression, k nearest neighbour (KNN) and support vector regression (SVR). Also, the cross-validation (CV) method was used to detect the generalisation capability of the models. Accuracy of the SVR was the highest, however, in nested CV its performance was highly reduced. Therefore, KNN was recommended due to its second highest performance. The results demonstrated that prediction of MDPs from only material properties is possible and promising to use in mixture design.