Oligonucleotide Delivery with Cell Surface Binding and Cell Penetrating Peptide Amphiphile Nanospheres


Creative Commons License

Mumcuoglu D., Sardan M., Tekinay T., GÜLER M. Ö., TEKİNAY A. B.

MOLECULAR PHARMACEUTICS, cilt.12, sa.5, ss.1584-1591, 2015 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 5
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1021/acs.molpharmaceut.5b00007
  • Dergi Adı: MOLECULAR PHARMACEUTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1584-1591
  • Anahtar Kelimeler: oligonucleotide delivery, cell penetrating peptides, cellular internalization, cell surface proteoglycan binding peptide, ANTISENSE OLIGONUCLEOTIDES, SIRNA OLIGONUCLEOTIDES, RNA INTERFERENCE, THERAPEUTICS, MECHANISMS, VEHICLES, BIOLOGY
  • Gazi Üniversitesi Adresli: Evet

Özet

A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonudeotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonudeotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R-4 and R-8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R-8-PA and KRSR-PA. R-8 and R-8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs.