ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY, cilt.108, 2021 (SCI-Expanded)
The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), is a major pest of potato plants worldwide and is notorious for its ability to develop resistance to insecticides. Cry3 toxins synthesized by Bacillus thuringiensis ssp. tenebrionis have been used successfully to manage this pest. Resistance to Cry toxins is a concerning problem for many insect pests; therefore, it is important to determine the mechanisms by which insects acquire resistance to these toxins. Cadherin-like and ABC transporter proteins have been implicated in the mode of action of Cry toxins as mutations in these genes render lepidopterans resistant to them; however, clear consensus does not exist on whether these proteins also play a role in Cry3 toxin activity and/or development of resistance in coleopterans. In the current study, we identified the L. decemlineata orthologues of the cadherin (LdCAD) and the ABCB transporter (LdABCB1) that have been implicated in the mode of action of Cry toxins in other coleopterans. Suppression of LdABCB1 via RNA interference reduced toxin-related larval mortality, whereas partial silencing of LdCAD did not. Our results suggest that the ABCB is involved in the mode of action of Cry3Aa toxins; however, no evidence was found to support the role of cadherin as a receptor of Cry3Aa in L. decemlineata.