The negative and positive electrorheological behavior and vibration damping characteristics of colemanite and polyindene/colemanite conducting composite


Cetin B., Unal H. İ., EROL Ö.

SMART MATERIALS AND STRUCTURES, cilt.21, sa.12, 2012 (SCI-Expanded) identifier identifier

Özet

In this study, the electrorheological (ER) properties of colemanite and polyindene (94.8% PIn)/colemanite (5.2%) conducting composite were investigated by dispersion in silicone oil (SO). The zeta (zeta)-potentials and antisedimentation ratios of the materials were determined. Some parameters which affect the ER properties of all the dispersions such as the volume fraction, electric field strength (E), shear rate, frequency and temperature were investigated. The rather unusual behavior known as the negative ER effect was observed for colemanite/SO above E = 1.5 kV mm(-1) and for PIn/colemanite/SO under all values of the electric field strength even at high volume fraction. This negative ER response was converted to a positive one by the addition of non-ionic surfactant. Furthermore, glycerol was used as a polar promoter and observed to enhance the ER activity of the colemanite/SO system. Creep-recovery tests were applied to all the dispersions studied to investigate their behavior under sustained shear stress. Finally, 28% and 30% vibration damping capacities were achieved using an automobile shock absorber for the glycerol/colemanite/SO and non-ionic surfactant/PIn/colemanite/SO systems under the E = 0.17 kV mm(-1) condition, respectively.