AN INVESTIGATION ON DETERMINING OPTIMUM WALL RATIO–COST RELATIONSHIP OF SHEAR WALLED REINFORCED CONCRETE BUILDINGS


Erkan H., Doğan T. P.

CHALLENGE JOURNAL OF STRUCTURAL MECHANICS, cilt.6, sa.1, ss.1-9, 2020 (Hakemli Dergi)

Özet

Reinforced concrete walls are very efficient structural elements in terms of carrying the lateral loads that are expected to affect the structures during the service of the buildings. These elements, which are not used for economic reasons in buildings designed in areas with low seismic hazards, can actually provide a significant increase in performance with a very small increase in construction cost. In this study, a total of 9 building models have been created and the relationship between optimum reinforced concrete wall ratio and cost on these buildings has been investigated. The design and analysis of the models were carried out according to the criteria specified in TSC 2018. Three different structural systems specified in TSC 2018 were used in the designed models. These structural systems used; RC frame structures, RC wall-frame structures and RC wall structures. These structures were analyzed by the Response Spectrum Method which is a linear analysis method and base shear forces were obtained. Then, push-over analysis, which is a nonlinear analysis method, was applied to obtain the base shear forces that the structure can actually carry. After the analysis, the quantities of materials to be used for the construction of the structural systems of the models were calculated and current manufacturing prices and rough costs were calculated. In order to compare the obtained costs with the structural performances, nonlinear shear forces and linear shear forces ratios were calculated and the over strength factors were calculated for each model. In the light of the data obtained from the studies in the literature, when the over strength factors and cost values are examined together, it is concluded that the optimum design for the conditions specified in TSC 2018 will be provided with the RC wall ratio between 0.001 - 0.0016. It is concluded that the lateral load-carrying capacity of construction increases up to 650% by increasing the construction cost by 17% for the designed models.