Experimental and Numerical Investigation of Macroencapsulated Phase Change Materials for Thermal Energy Storage


Arslan B., İlbaş M.

MATERIALS, cilt.17, sa.12, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 12
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/ma17122804
  • Dergi Adı: MATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: aluminum encapsulation, heat exchanger, heat storage, paraffin, phase change material
  • Gazi Üniversitesi Adresli: Evet

Özet

Among the different types of phase change materials, paraffin is known to be the most widely used type due to its advantages. However, paraffin's low thermal conductivity, its limited operating temperature range, and leakage and stabilization problems are the main barriers to its use in applications. In this research, a thermal energy storage unit (TESU) was designed using a cylindrical macroencapsulation technique to minimize these problems. Experimental and numerical analyses of the storage unit using a tubular heat exchanger were carried out. The Ansys 18.2-Fluent software was used for the numerical analysis. Two types of paraffins with different thermophysical properties were used in the TESU, including both encapsulated and non-encapsulated forms, and their thermal energy storage performances were compared. The influence of the heat transfer fluid (HTF) inlet conditions on the charging performance (melting) was investigated. The findings demonstrated that the heat transfer rate is highly influenced by the HTF intake temperature. When the effect of paraffin encapsulation on heat transfer was examined, a significant decrease in the total melting time was observed as the heat transfer surface and thermal conductivity increased. Therefore, the energy stored simultaneously increased by 60.5% with the encapsulation of paraffin-1 (melting temperature range of 52.9-60.4 degrees C) and by 50.7% with the encapsulation of paraffin-2 (melting temperature range of 32.2-46.1 degrees C), thus increasing the charging rate.