Effect of shielding gas combination on microstructure and mechanical properties of MIG welded stainless steel 316


Acar I., GÜLENÇ B.

MATERIALS TESTING, cilt.63, sa.1, ss.97-101, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 63 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1515/mt-2020-0014
  • Dergi Adı: MATERIALS TESTING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.97-101
  • Anahtar Kelimeler: MIG welding, argon, hydrogen, mixed gas, mechanical properties, microstructure
  • Gazi Üniversitesi Adresli: Evet

Özet

The quality of welded joints depends on the most optimal welding parameters and the selection of shielding gas type. The shielding gas was selected for joining stainless steels through gas metal arc welding methods by considering properties such as chemical-metallurgical interaction of shielding gas and the molten weld metal during the welding process, heat transmission capability of the gas and cost. In this study, the effect of different shielding gas combinations on the mechanical and microstructural properties of 316 austenitic stainless steel joined by the metal inert gas (MIG) welding method was investigated. In the welding process, pure argon (100 % Ar), 98.5 % Ar + 1.5 % H-2 and 95 % Ar + 5 % H-2 were used as shielding gases. Tensile, hardness, and bending tests were conducted to determine mechanical properties of the welded samples. In addition, metallographic examinations were carried out to detect the macrostructural and microstructural properties of weld zones. According to the results obtained from the study, the highest tensile strength was obtained from the joints welded using 100 % Ar shielding gas. When the addition of H-2 into the Ar gas increased, the tensile strength of the welded samples decreased. As a result of the tensile test, fractures occurred in the base metal in all welded samples. In all welding parameters, the hardness of the weld metal was lower as compared to the heat affected zone (HAZ) and the base metal. As a result of the bending test, crack and tearing defects were found in the weld zone.