PROBLEM SET 2-1

1) Discuss the following overall reactions with respect to order

(a)
$$2A \longrightarrow 4B+C - r = kC_A$$

(b) $A+B \longrightarrow C - r = kC_A C_B^{-1}$
(c) $2A+B \longrightarrow 2C - r = kC_A C_C^{-1/2}$
(d) $2A+B \longrightarrow 2C - r = kC_A^2 C_B$

- 2) The second order rate constant for the reaction $A + B \longrightarrow C + D$ is 0.11 L/mol.sec. What is the concentration of C after 10 min. when the reactants are mixed with initial concentration of $[A]_0 = 0.05 \text{ mol/L}$, $[B]_0 = 0.1 \text{ mol/L}$
- 3) Hydrogen peroxide reacts with thiosulfate ion slightly acidic solution as follows:

$$H_2O_2 + 2S_2O_3^{-2} + 2H^{+2} \rightarrow 2H_2O + S_4O_6^{-2}$$

This reaction rate is independent of hydrogen ion concentration in the pH range 4 to 6. The following data were obtained at 25 °C and pH 5. Initial concentrations: $[H_2O_2] = 0.036 \text{ mol/L}, [S_2O_3^{-2}] = 0.0204 \text{ mol/L}.$

t/min	16	36	43	52
$[S_2O_3^{-2}]/10^{-3} \text{ mol/L}$	10.3	5.18	4.16	3.13

- (a) What is the order? (b) What is the rate constant?
- 4) (a) Integrate the rate equation

$$-\frac{dC}{dt} = kC^{1/2}$$

- (b) How could a group of data be checked graphically to see if they describe a half order
- (c) Derive an expression for the half life $t_{1/2}$ interms of k and C_o
- (d) What is the unit of k
- 5) A solution A is mixed with an equal volume of a solution of B containing the same number of moles and the reaction A + B → C occurs. At the end of 1 h, A is 75 % reacted. How much of A will be unreacted at the end of 2 h if the reaction is (a) first order in A and zero order in B (b) first order in both A and B (c) zero order in both A and B.
- 6) Show that for a first order reaction R → P the concentration of the product can be represented as a function of time [P] = a+bt+ct²+.....and express a, b, c, interms of [R]_o and k.
- 7) The following table gives kinetic data for the following reaction at 25 °C. $OCl^{-1} + I^{-} \longrightarrow OI^{-1} + Cl^{-1}$

$[OCl^{-}] (mol/L)$	[I ⁻] (mol/L)	$[OH^{-}] (mol/L)$	$d[OI^{-1}]/dt(10^{-4}mol/Ls)$
0.0017	0.0017	1	1.75
0.0034	0.0017	1	3.5
0.0017	0.0034	1	3.5
0.0017	0.0017	0.5	3.5

What is the rate law for the reaction and what is the value of the rate constant.

- 8) Consider the gaseous reaction; $cyclo-C_5H_8 \longrightarrow H_2 + cyclo-C_5H_6$ If P is the total pressure
- (a) How dP/dt related to $-d[C_5H_8]/dt$
- (b) If the reaction is first order what are the units of k
- (c) Derive the integrated rate equation in erms of P and P_o

9) The composition of a liquid reaction $2A \longrightarrow B$ was followed by spectrophotometric method

t(min)	0	10	20	30	40	8
[B] (mol/L)	0	0.089	0.153	0.2	0.23	0.312

Show the order is first order and find k.

10) For the reaction $A + B \longrightarrow C + D$ [A]₀=400 mmol/L, [B]₀=0.4 mmol/L gave the following data

t(s)	0	120	240	360	8
10 ⁴ [C] (mol/L)	0	2	3	3.5	4

And a run [A]₀=0.4 mmol/L, [B]₀=1000 mmol/L gave the following data

t(s)	0	69	208	485	8
$10^{4}[C] (mol/L)$	0	2	3	3.5	4

Find the rate law and constant if $-r=k[A]^2[B]$

11) For the reaction $OCl^{-1} + I^{-1} \longrightarrow OI^{-1} + Cl^{-1}$ in aqueous solutions at 25 °C initial rates r_o as a function of initial concentrations

10^{3} [OCl ⁻¹] (mol/L)	4	2	2	2
10 ³ [I ⁻¹] (mol/L)	2	4	2	2
10 ³ [OH ⁻¹] (mol/L)	1000	1000	1000	250
$10^{3} r_{o} (mol/Ls)$	0.48	0.5	0.24	0.94

Find the rate constant.

12) The decompositions of benzendiazonium chloride in water is given by

 $C_6H_5N_2^+ + H_2O \longrightarrow C_6H_5OH + N_2 + H_3O^+$

Since the concentration of water is nearly fixed we can determine the pseudo order with respect to benzendiazonium chloride as with a reaction having a single reactant. Moelwyn-Hughes and Johnson followed the reaction at 40°C by monitoring the pressure of nitrogen evolved by the reaction. The following data were taken with the pressure in arbitrary units.

Time (s)	0	120	360	600	1200	2400	3600
P∞ - P	60	21.55	19.45	17.6	13.62	8.15	4.88

- a) Determine the pseudo first order rate constant at this temperature.
- b) Find the pressure of evolved nitrogen at 1500s.
- 13) At t=0 butadiene was introduced to an empty vessel at 326°C and dimerization takes place $2C_4H_6 \longrightarrow C_8H_{12}$ followed by monitoring the total pressure. Show that reaction is second order. Find the rate constant.

Time (s)	0	0.731	1.751	2.55	3.652	5.403	7.14
P(torr)	632	584.2	535.4	509.3	482.8	453.3	432.8

14) The reaction between ethylene bromide (A) and potassium iodide (B) in 99% methanol (inert) has been found to be first order with respect to each reactant (second order overall). The reaction can be presented by,

 $C_2H_4Br_2 + KI \longrightarrow C_2H_4 + 2KBr + KI_3$ or $A + 3B \longrightarrow$ Products

Derive an equations for calculating the second-order rate constant k.