1) Discuss the following overall reactions with respect to order
(a) $2 \mathrm{~A} \longrightarrow 4 \mathrm{~B}+\mathrm{C}-r=k C_{A}$
(b) $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C} \quad-r=k C_{A} C_{B}{ }^{-1}$
(c) $2 \mathrm{~A}+\mathrm{B} \longrightarrow 2 \mathrm{C}-r=k C_{A} C_{C}^{-1 / 2}$
(d) $2 \mathrm{~A}+\mathrm{B} \longrightarrow 2 \mathrm{C}-r=k C_{A}{ }^{2} C_{B}$
2) The second order rate constant for the reaction $A+B \longrightarrow C+D$ is $0.11 \mathrm{~L} / \mathrm{mol} . \mathrm{sec}$. What is the concentration of C after 10 min . when the reactants are mixed with initial concentration of $[\mathrm{A}]_{\mathrm{o}}=0.05 \mathrm{~mol} / \mathrm{L},[\mathrm{B}]_{\mathrm{o}}=0.1 \mathrm{~mol} / \mathrm{L}$
3) Hydrogen peroxide reacts with thiosulfate ion slightly acidic solution as follows:
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{-2}+2 \mathrm{H}^{+2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{-2}$
This reaction rate is independent of hydrogen ion concentration in the pH range 4 to 6 . The following data were obtained at $25^{\circ} \mathrm{C}$ and pH 5. Initial concentrations:
$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.036 \mathrm{~mol} / \mathrm{L},\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{-2}\right]=0.0204 \mathrm{~mol} / \mathrm{L}$.

$\mathrm{t} / \mathrm{min}$	16	36	43	52
$\left[\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{-2}\right] / 10^{-3} \mathrm{~mol} / \mathrm{L}$	10.3	5.18	4.16	3.13

(a) What is the order? (b) What is the rate constant?
4) (a) Integrate the rate equation

$$
-\frac{d C}{d t}=k C^{1 / 2}
$$

(b) How could a group of data be checked graphically to see if they describe a half order
(c) Derive an expression for the half life $\mathrm{t}_{1 / 2}$ interms of k and C_{o}
(d) What is the unit of k
5) A solution A is mixed with an equal volume of a solution of B containing the same number of moles and the reaction $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}$ occurs. At the end of $1 \mathrm{~h}, \mathrm{~A}$ is 75% reacted. How much of A will be unreacted at the end of 2 h if the reaction is (a) first order in A and zero order in $B(b)$ first order in both A and B (c) zero order in both A and B.
6) Show that for a first order reaction $R \longrightarrow P$ the concentration of the product can be represented as a function of time $[\mathrm{P}]=\mathrm{a}+\mathrm{bt}+\mathrm{ct}^{2}+$ \qquad .and express a, b, c, interms of $[R]_{o}$ and k.
7) The following table gives kinetic data for the following reaction at $25^{\circ} \mathrm{C}$.
$\mathrm{OCl}^{-1}+\mathrm{I}^{-} \longrightarrow \mathrm{OI}^{-1}+\mathrm{Cl}^{-1}$

$\left[\mathrm{OCl}^{-}\right](\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{I}^{-}\right](\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{OH}^{-}\right](\mathrm{mol} / \mathrm{L})$	$\mathrm{d}\left[\mathrm{OI}^{-1}\right] / \mathrm{dt}\left(10^{-4} \mathrm{~mol} / \mathrm{Ls}\right)$
0.0017	0.0017	1	1.75
0.0034	0.0017	1	3.5
0.0017	0.0034	1	3.5
0.0017	0.0017	0.5	3.5

What is the rate law for the reaction and what is the value of the rate constant.
8) Consider the gaseous reaction;

$$
\text { cyclo- } \mathrm{C}_{5} \mathrm{H}_{8} \longrightarrow \mathrm{H}_{2}+\text { cyclo- } \mathrm{C}_{5} \mathrm{H}_{6}
$$ If P is the total pressure

(a) How dP/dt related to $-\mathrm{d}\left[\mathrm{C}_{5} \mathrm{H}_{8}\right] / \mathrm{dt}$
(b) If the reaction is first order what are the units of k
(c) Derive the integrated rate equation interms of P and P_{o}
9) The composition of a liquid reaction $2 \mathrm{~A} \longrightarrow \mathrm{~B}$ was followed by spectrophotometric method

$\mathrm{t}(\mathrm{min})$	0	10	20	30	40	∞
$[\mathrm{~B}](\mathrm{mol} / \mathrm{L})$	0	0.089	0.153	0.2	0.23	0.312

Show the order is first order and find k .
10) For the reaction $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}[\mathrm{A}]_{\mathrm{o}}=400 \mathrm{mmol} / \mathrm{L},[\mathrm{B}]_{\mathrm{o}}=0.4 \mathrm{mmol} / \mathrm{L}$ gave the following data

$\mathrm{t}(\mathrm{s})$	0	120	240	360	∞
$10^{4}[\mathrm{C}](\mathrm{mol} / \mathrm{L})$	0	2	3	3.5	4

And a run $[\mathrm{A}]_{0}=0.4 \mathrm{mmol} / \mathrm{L},[\mathrm{B}]_{0}=1000 \mathrm{mmol} / \mathrm{L}$ gave the following data

$\mathrm{t}(\mathrm{s})$	0	69	208	485	∞
$10^{4}[\mathrm{C}](\mathrm{mol} / \mathrm{L})$	0	2	3	3.5	4

Find the rate law and constant if $-\mathrm{r}=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$
11) For the reaction $\mathrm{OCl}^{-1}+\mathrm{I}^{-1} \longrightarrow \mathrm{OI}^{-1}+\mathrm{Cl}^{-1}$ in aqueous solutions at $25^{\circ} \mathrm{C}$ initial rates r_{0} as a function of initial concentrations

$10^{3}\left[\mathrm{OCl}^{-1}\right](\mathrm{mol} / \mathrm{L})$	4	2	2	2
$10^{3}\left[\mathrm{I}^{-1}\right](\mathrm{mol} / \mathrm{L})$	2	4	2	2
$10^{3}\left[\mathrm{OH}^{-1}\right](\mathrm{mol} / \mathrm{L})$	1000	1000	1000	250
$10^{3} \mathrm{r}_{\mathrm{o}}(\mathrm{mol} / \mathrm{Ls})$	0.48	0.5	0.24	0.94

Find the rate constant.
12) The decompositions of benzendiazonium chloride in water is given by
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}$
Since the concentration of water is nearly fixed we can determine the pseudo order with respect to benzendiazonium chloride as with a reaction having a single reactant. Moelwyn-Hughes and Johnson followed the reaction at $40^{\circ} \mathrm{C}$ by monitoring the pressure of nitrogen evolved by the reaction. The following data were taken with the pressure in arbitrary units.

Time (s)	0	120	360	600	1200	2400	3600
$\mathrm{P} \infty-\mathrm{P}$	60	21.55	19.45	17.6	13.62	8.15	4.88

a) Determine the pseudo first order rate constant at this temperature.
b) Find the pressure of evolved nitrogen at 1500 s.
13) At $\mathrm{t}=0$ butadiene was introduced to an empty vessel at $326^{\circ} \mathrm{C}$ and dimerization takes place $2 \mathrm{C}_{4} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{8} \mathrm{H}_{12}$ followed by monitoring the total pressure. Show that reaction is second order. Find the rate constant.

Time (s)	0	0.731	1.751	2.55	3.652	5.403	7.14
P(torr)	632	584.2	535.4	509.3	482.8	453.3	432.8

14) The reaction between ethylene bromide (A) and potassium iodide (B) in 99% methanol (inert) has been found to be first order with respect to each reactant (second order overall). The reaction can be presented by,
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}+\mathrm{KI} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{KBr}+\mathrm{KI}_{3} \quad$ or $\mathrm{A}+3 \mathrm{~B} \longrightarrow$ Products

Derive an equations for calculating the second-order rate constant k .

