PROBLEM SET 4
 (Mechanism of Chemical Reactions)

1. The mechanism for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is

$$
\begin{aligned}
& \stackrel{\mathrm{k}_{1}}{\mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{M}} \underset{\mathrm{k}_{2}}{\leftrightarrow} \mathrm{NO}_{2}+\mathrm{NO}_{3}+\mathrm{M} \\
& \mathrm{NO}_{2}+\mathrm{NO}_{3}^{\mathrm{k}_{3}} \mathrm{NO}+\mathrm{O}_{2}+\mathrm{NO}_{2} \\
& \mathrm{NO}+\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{4}} 2 \mathrm{NO}_{2}
\end{aligned}
$$

and the overall reaction is $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$. Find the rate expression.
2. The decomposition of ozone in the gas phase $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$ takes place through the following mechanism

$$
\begin{array}{ll}
\mathrm{O}_{3}+\mathrm{M} \leftrightarrow \mathrm{O}_{2}+\mathrm{O}+\mathrm{M} & \text { (slow) } \\
\mathrm{O}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2} & \text { (slow) }
\end{array}
$$

Derive the rate law.
3. Derive the rate expression for the reaction $\mathrm{CO}+\mathrm{Cl}_{2} \leftrightarrow \mathrm{COCl}_{2}$ if the mechanism of the reaction is as follows:

4. For the reaction

$$
2 \mathrm{NO}+2 \mathrm{H}_{2} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

The rate expression for this reaction is given to be third order.

$$
\mathrm{r}_{\mathrm{N} 2}=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right] .
$$

Show that the mechanism given below is consistent with this rate equation.

$$
\begin{aligned}
& 2 \mathrm{NO}+\mathrm{H}_{2} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}_{2} \text { (slow) } \\
& \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \text { (fast) }
\end{aligned}
$$

5. Consider the following mechanism:

$$
\begin{aligned}
& A+B \underset{k_{2}}{\stackrel{k_{1}}{\leftrightarrows}} C \\
& C \xrightarrow{k_{3}} D
\end{aligned}
$$

(a) Derive the rate law using the steady-state approximation to eliminate the concentration of C .
(b) Assuming that $\mathrm{k}_{3} \ll \mathrm{k}_{2}$, express the pre-exponential factor A and E_{a} for the apparent second order rate constant in terms $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} and $\mathrm{E}_{\mathrm{a} 1}, \mathrm{E}_{\mathrm{a} 2}$ and $\mathrm{E}_{\mathrm{a} 3}$ for the three steps.
6. The reaction $\mathrm{NO}_{2} \mathrm{Cl}=\mathrm{NO}_{2}+1 / 2 \mathrm{Cl}_{2}$ is first order and appears to follow the mechanism
$\mathrm{NO}_{2} \mathrm{Cl} \xrightarrow{k_{1}} \mathrm{NO}_{2}+\mathrm{Cl}$
$\mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Cl} \xrightarrow{\mathrm{k}_{2}} \mathrm{NO}_{2}+\mathrm{Cl}_{2}$
(a) Assuming a steady state for the chlorine atom concentration, show that the emprical first order rate constant can be identified with $2 \mathrm{k}_{1}$
(b) The following data were obtained at $180^{\circ} \mathrm{C}$. In a single experiment the reaction is first order, and the empirical rate constant is represented by k . Show that the reaction is second order at these low gas pressures and calculate the second order rate constant.

$\mathrm{c} / 10^{-8} \mathrm{~mol} \mathrm{~cm}^{-3}$	5	10	15	20
$\mathrm{k} / 10^{-4} \mathrm{~s}^{-1}$	1,7	3,4	5,2	6,9

7. The mechanism of the pyrolysis of acetaldehyde at $520^{\circ} \mathrm{C}$ and 0.2 bar is

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{k}_{1}} \mathrm{CH}_{3}+\mathrm{CHO} \\
& \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{k_{2}} \mathrm{CH}_{4}+\mathrm{CH}_{3} \mathrm{CO} \\
& \mathrm{CH}_{3} \mathrm{CO} \xrightarrow{\mathrm{k}_{3}} \mathrm{CO}+\mathrm{CH}_{3} \\
& \mathrm{CH}_{3}+\mathrm{CH}_{3} \xrightarrow{\mathrm{k}_{4}} \mathrm{C}_{2} \mathrm{H}_{6}
\end{aligned}
$$

What is the rate law for the reaction of acetaldehyde, using the usual assumptions? (As a simplification further reactions of the radical CHO have been omitted and is the rate equation may be ignored.)
8. The equations for $\left[\mathrm{A}_{2}\right]$ and $\left[\mathrm{A}_{3}\right]$ in section 18.4 give an indeterminate result if $\mathrm{k}_{1}=\mathrm{k}_{2}$. Rederive the equations, giving $\left[\mathrm{A}_{2}\right]$ and $\left[\mathrm{A}_{3}\right]$ as functions of time fort he special case that

$$
A_{1} \xrightarrow{k_{1}} A_{2} \xrightarrow{k_{1}} A_{3}
$$

9. A dimerization $2 \mathrm{~A} \longrightarrow \mathrm{~A}_{2}$ is found to be first order with a half life of 666 s . This somewhat surprising result is explained by postulating the following mechanism

$$
A \xrightarrow{k_{1}} A^{*} \quad A^{*}+A \xrightarrow{k_{2}} A_{2}
$$

Where $\mathrm{k}_{2} \gg \mathrm{k}_{1}$ (a) What is the value for the rate constant k_{1} ? (b) if the initial concentration of A is 0.05 M , how much time is required to reach $[\mathrm{A}]=0.0125 \mathrm{M}$?
10. Consider two consecutive first order nuclear decay reactions with the rate constants k_{1} and k_{2}

$$
A \xrightarrow{k_{3}} B \quad \text { and } \quad B \xrightarrow{k_{2}} C
$$

If $\mathrm{k}_{1}=\mathrm{k}_{2}=0.1340$ year $^{-1}$, draw $[\mathrm{B}] /[\mathrm{A}]_{0}$ plot.

11. For the reaction

$$
2 \mathrm{NO}+2 \mathrm{H}_{2} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

The overall rate expression is third order.
$\mathrm{R}_{\mathrm{N} 2}=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$
Show that two mechanism below consistent with rate equation
a)

$$
\begin{align*}
& 2 \mathrm{NO}+\mathrm{H}_{2} \xrightarrow{k_{1}} \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}_{2} \text { (slow) } \\
& \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \xrightarrow{k_{2}} 2 \mathrm{H}_{2} \mathrm{O} \quad \text { (fast) } \tag{fast}
\end{align*}
$$

b) $2 \mathrm{NO} \stackrel{k_{1}}{\longleftrightarrow} \mathrm{~N}_{2} \mathrm{O}_{2}$ (fast)

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \xrightarrow{k_{3}} \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O} \text { slow } \\
& \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \xrightarrow{k_{4}} 2 \mathrm{H}_{2} \mathrm{O} \quad \text { (fast) }
\end{aligned}
$$

