PROBLEM SET 3

1. The gas phase reaction proceeds in a batch reactor at $100^{\circ} \mathrm{C}$ and 1 atm.

$$
A \rightarrow 2 B
$$

The time versus volume change data are obtained using pure A initially. Find reaction rate expression by using the data given below.

t, \min	0	1	3	5	6	8	10	12	14
$\mathrm{~V} / \mathrm{V}_{0}$	1.0	1.20	1.48	1.66	1.72	1.82	1.88	1.92	1.95

2. Pure gaseous A is prepared under refrigeration and is introduced into a thin-walled capillary which acts as reaction vessel as shown in Figure 1. No appreciable reaction occurs during handling. The reaction vessel is rapidly plunged into a bath of boiling point water, reactant A decomposes to completion according to the reaction $\mathrm{A} \rightarrow \mathrm{R}+\mathrm{S}$, and the following data are obtained:

Time, min	0.5	1	1.5	2	3	4	6	10	∞
Length of capillary occupied by reaction mixture, cm	6.1	6.8	7.2	7.5	7.85	8.1	8.4	8.7	9.4

Find the rate equation in units of moles, liters and minutes.

3. When alkanes are heated up, they loose hydrogen and alkenes are produced. For example,

$$
\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \quad ; \quad \mathrm{K}=0.36 \quad \text { at } 1000 \mathrm{~K}
$$

If this is the only reaction that occurs when ethane is heated upto 1000 K , at what total pressure will ethane be (a) 10% dissociated and (b) \%90 dissociated to ethylene and hydrogen?
4. The following reaction reaches equilibrium at $370^{\circ} \mathrm{C}$ and 1 atm .

$$
2 \mathrm{HCl}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \leftrightarrow \mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Initially, pure HCl and $95 \% \mathrm{O}_{2}\left(5 \% \mathrm{~N}_{2}\right)$ are mixed to maintain $\mathrm{HCl} / \mathrm{O}_{2}=4$ (in mole) and fed to the reactor at $65{ }^{\circ} \mathrm{C}$ and 1 atm . Reaction product flow leaves the reactor at $370^{\circ} \mathrm{C}$ and is in equilibrium.
Find the mole fraction of Cl_{2} in product flow. DATA:

Component	$\mathrm{Cp}(\mathrm{cal} / \mathrm{mole} \mathrm{K})$	$\Delta \mathrm{H}_{\mathrm{f}} \mathrm{f}^{(\mathrm{cal} / \mathrm{mole})}$	$\Delta \mathrm{G}_{\mathrm{f}} \mathrm{f}(\mathrm{cal} / \mathrm{mole})$
O_{2}	7.4	--	--
$\mathrm{H}_{2} \mathrm{O}$	8.6	-57798	-54636
Cl_{2}	8.9	--	--
HCl	7.5	-22063	-22769
$\mathrm{~N}_{2}$	7.0	--	--

5. Isopropenyl allyl ether in the vapor state isomerizes to allyl acetone according to a first order rate equation. The following equation gives the influence of temperature on the rate constant (in s^{-1}): $\mathrm{k}=5.4 \times 10^{11} \mathrm{e}^{-123000 / \mathrm{RT}}$
where the activation energy is expressed in $\mathrm{J} \mathrm{mol}^{-1}$. At $150^{\circ} \mathrm{C}$, how long will it take to build up a partial pressure of 0.395 bar of allyl acetone, starting with 1 bar of isopropenyl allyl ether?
6. The following rate constants were obtained for the first order decomposition of acetone bicarboxylic acid in aqueous solution:

$\mathrm{t} /{ }^{0} \mathrm{C}$	0	20	40	60
$\mathrm{k} / 10^{-5} \mathrm{~s}^{-1}$	2.46	47.5	576	5480

(a) Calculate the energy of activation.
(b) Calculate the pre-exponential factor A .
(c) What is the half life of this reaction at $80^{\circ} \mathrm{C}$?
7. A gas reaction $\mathrm{A} \leftrightarrow 2 \mathrm{~B}$ is first order in A and goes to completion in a reaction vessel of constant volume and temperature with the half life of 10 min . If the initial pressure of A is 1 bar , what are the partial pressures of A and B at 10 min .
8. For the reaction $\mathrm{OCl}^{-1}+\mathrm{I}^{-1} \longrightarrow \mathrm{OI}^{-1}+\mathrm{Cl}^{-1}$ in aqueous solutions at $25^{0} \mathrm{C}$ initial rates r_{0} as a function of initial concentrations

$10^{3}\left[\mathrm{OCl}^{-1}\right] \mathrm{mol} / \mathrm{L}$	4	4	2	2
$10^{3}\left[\mathrm{I}^{-1}\right] \mathrm{mol} / \mathrm{L}$	2	4	2	2
$10^{3}\left[\mathrm{OH}^{-1}\right] \mathrm{mol} / \mathrm{L}$	1000	1000	1000	250
$10^{3} \mathrm{r}_{0} \mathrm{~mol} / \mathrm{L}$	0.48	0.5	0.24	0.94

Find the rate law.
9. a) Find the activation energy of the reaction whose rate constant is multiplied by 6.5 when T is increased from 300 to $310^{\circ} \mathrm{C}$.
b) For the reaction with $\mathrm{Ea}=19 \mathrm{KJ} / \mathrm{mol}(4.5 \mathrm{Kcal} / \mathrm{mol})$, by what factor k multiplied when T increases from 300 to $310{ }^{\circ} \mathrm{C}$.
10. The hydrolysis of $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{C}-\mathrm{CI}$ specific reaction rate constants are as follows:

$\mathrm{t},{ }^{\circ} \mathrm{C}$	0	25	35	45
$\mathrm{k}, \mathrm{s}^{-1}$	1.06×10^{-5}	3.19×10^{-4}	9.86×10^{-4}	2.92×10^{-3}

a) Calculate the activation energy.
b) Calculate the pre-exponential factor.
11. The composition of a liquid reaction $2 \mathrm{~A} \longrightarrow \mathrm{~B}$ was followed by spectrophotometric method

$\mathrm{t}(\mathrm{min})$	0	10	20	30	40	∞
$[\mathrm{~B}] \mathrm{mol} / \mathrm{L}$	0	0.089	0.153	0.2	0.23	0.312

Show the order is first order and find k .

