PROBLEM SET - 2-2

(CHEMICAL KINETICS)

1) The reaction between ethylene bromide (A) and potassium iodide (B) in 99% methanol (inert) has been found to be first order with respect to each reactant (second order overall). The reaction can be presented by,

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}+3 \mathrm{KI} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{KBr}+\mathrm{KI}_{3} \quad \text { or } A+3 B \rightarrow \operatorname{Pr} \text { oducts }
$$

a) Derive an equation for calculating the second-order rate constant k .
b) At $60^{\circ} \mathrm{C}$ in one set of experiments, for which $\mathrm{C}_{\text {Ао }}=0.0266$ and $\mathrm{C}_{\text {во }}=0.2237 \mathrm{~mol} / \mathrm{L}$, the bromide (A) was 59.1% reacted at the end of 15 h . Calculate the value of the rate constant, k , and specify the units.
2) The first order reaction $\mathbf{A} \rightarrow \mathbf{B}$ is carried out in a constant-volume batch reactor $\left(\mathrm{k}=0.23 \mathrm{~min}^{-1}\right)$.
a) Derive the equation for time as a function of reactant concentration.
b) Calculate the time necessary to reduce the number of moles of A to 1% of its initial value.
3) For a gas reaction at 400 K the rate is reported as;

$$
-r_{A}=-\frac{1}{V} \frac{d n_{A}}{d t}=k C_{A}^{2}, \quad \mathrm{~mol} / \mathrm{m}^{3} . \mathrm{s}
$$

What is the value of the rate constant for this reaction if the rate equation is expressed as;
4) The rate constants for two different reactions are given:
for rxn. 1

$$
\begin{aligned}
& \mathrm{k}=4.852 \times 10^{8} \mathrm{~s}^{-1} \text { at } 190^{\circ} \mathrm{C} \text { and } \\
& \mathrm{k}=2.203 \times 10^{4} \mathrm{~s}^{-1} \text { at } 103^{\circ} \mathrm{C}
\end{aligned}
$$

for rxn. 2

$$
\begin{aligned}
& \mathrm{k}=4.852 \times 10^{8} \mathrm{~s}^{-1} \text { at } 190^{\circ} \mathrm{C} \text { and } \\
& \mathrm{k}=8.886 \times 10^{6} \mathrm{~s}^{-1} \text { at } 103^{\circ} \mathrm{C}
\end{aligned}
$$

a) Calculate the activation energy for the two reactions.
b) Find out the temperature rises needed to double the reaction rate, at $103^{\circ} \mathrm{C}$ for each reaction.
c) Comment on the results of part a and b.
5) Liquid A decomposes in a batch reactor. Initially there is 1 mole/lt A. 50% of A is converted in a 5 minute run. How much longer would it take to reach 75% conversion?
a) For first order kinetics.
b) For second order kinetics.
6) The gas phase reaction $\mathbf{A} \rightarrow \mathbf{B}+\mathbf{C}$ is to be carried out isothermally in a $20 \mathrm{dm}^{3}$ constant-volume batch reactor. Twenty moles of pure A is initially placed in the reactor. The reactor is well mixed.
a) If the reaction is first order : $-\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}}$ with $\mathrm{k}=0.865 \mathrm{~min}^{-1}$

Calculate the time necessary to reduce the number of moles of A in the reactor to 0.2 mole.
b) If the reaction is second order : $-\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}}{ }^{2}$ with $\mathrm{k}=2 \mathrm{dm}{ }^{3} / \mathrm{mol}^{2} \mathrm{~min}^{-1}$.

Calculate the time necessary to consume 19.0 mol of A .
c) If the temperature is $127^{\circ} \mathrm{C}$, what is the initial total pressure? What is the final total pressure assuming the reaction goes to completion ?
7) The first order reversible liquid reaction. A $\mathbf{R}, \mathrm{C}_{\text {Ао }}=0.5 \mathrm{~mol} /$ liter, $\mathrm{C}_{\mathrm{Ro}}=0$ takes place in a batch reactor. After 8 minutes, conversion of a is 33.3% while equilibrium conversion is 66.7%. Find the rate equation for this reaction.
8) Aqueous A at a concentration of $\mathrm{C}_{\mathrm{A} 0}=1 \mathrm{~mol} / \mathrm{L}$ is introduced into a batch reactor where it reacts away to form product R according to stoichiometry $\mathbf{A} \rightarrow \mathbf{R}$. The concentration of A in the reactor is monitored at various times, as shown below:

Table

t, min	0	100	200	300	400
$\mathrm{C}_{\mathrm{A}}, \mathrm{mol} / \mathrm{m}^{3}$	1000	500	333	250	200

For $\mathrm{C}_{\mathrm{A} 0}=500 \mathrm{~mol} / \mathrm{m}^{3}$, find the conversion of reactant after 5 hours in the batch reactor.
9) Find the overall order of the irreversible reaction

$$
2 \mathrm{H}_{2}+2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

From the following constant-volume data using equimolar amounts of hydrogen and nitric oxide :
Table

Total Pressure, mm Hg	200	240	280	320	360
Half-life, sec	265	186	115	104	67

10) Moelwn-Hughes has tabulated the following values of the rate constant for the reaction:

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2}
$$

$\mathrm{T},{ }^{\circ} \mathrm{K}$	288.1	298.1	313.1	323.1	338.1
$\mathrm{k}, \mathrm{sec}^{-1}$	1.04×10^{-5}	3.38×10^{-5}	2.47×10^{-4}	7.59×10^{-4}	4.87×10^{-3}

If the rate constant obeys Arrhenius law, determine the pre-exponential factor and activation energy.

