PROBLEM SET - 1-2 KINETIC THEORY OF GASES

1. What is the ratio of the probability that a gas molecules have two times the mean speed to the probability that they have the mean speed?
2. For $\mathrm{CH}_{4}(\mathrm{~g})$ at 300 K and 1 bar, calculate the probability that a molecule picked at random has its speed in the range 400.000 to $400.001 \mathrm{~m} / \mathrm{s}$. This interval is small enough to be considered infinitesimal.
3. For CO_{2} at 500 K and for N_{2} at 300 K calculate
(a) $\left\langle v^{2}\right\rangle^{1 / 2}$
(b) $\langle v\rangle$
(c) v_{mp}
4. Find the molecular weight of hydrocarbon gas that effuses 0.872 times as fast as O_{2} through a small hole the temperatures and pressures being equal.
5. Use $\mathrm{F}(v) \mathrm{d} v$ function for v to find $\left\langle v^{3}\right\rangle$ for ideal gas molecule. Does $\left\langle v^{3}\right\rangle$ equal to $\left\langle v^{2}\right\rangle\langle v\rangle$.
6. Calculate the total molecular translational kinetic energy at $25^{\circ} \mathrm{C}$ and 1 atm for 2 moles of N_{2}.
7. The average translational kinetic energy for a molecule (ϵ) is given by

$$
\epsilon=\frac{1}{2} m\left\langle v^{2}\right\rangle
$$

where m is the mass of the molecule and $\left\langle v^{2}\right\rangle$ is the average of the square of the velocity. Given $\left\langle v^{2}\right\rangle=\frac{3 k T}{m}$, where k is Boltzmann's constant, calculate the ratio of the kinetic energies at $200^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
8. For 1.00 mol of O_{2} at 300 K and 1.00 atm , calculate (a) the number of molecules whose speed lies in the range 500.00 to $500.001 \mathrm{~m} / \mathrm{s}$ (b) the number of molecules with v_{z} in the range 150.00 to $150.002 \mathrm{~m} / \mathrm{s}$
9. For molecular oxygen at $25^{\circ} \mathrm{C}$, a) Define collision frequency, b) Define collision density.
c) calculate the collision frequency Z_{1} and the collision density Z_{11} at a pressure of 1 bar. ($d_{\mathrm{O}_{2}}=3.61 \times 10^{-10} \mathrm{~m}$)
10. What are the mean free paths in meters for O_{2} at (a) 1 bar pressure and (b) 0.1 Pa pressure?
11. For an equimolar mixture of H_{2} and I_{2} at 500 K and 1 atm , calculate the number of collisions per second per cm^{3} between $\mathrm{H}_{2}-\mathrm{H}_{2}$ and $\mathrm{H}_{2}-\mathrm{I}_{2}$ molecules. ($\left.d_{\mathrm{H}_{2}}=2.18 \times 10^{-8} \mathrm{~cm}\right)\left(d_{I_{2}}=3.76 \times 10^{-8} \mathrm{~cm}\right)$
12. Find \bar{v} for (a) H_{2} at $0^{\circ} \mathrm{C}$ and 1 atm , (b) N_{2} at $25^{\circ} \mathrm{C}$ and 1 atm .
13. For a gas with collision diameter of $3 \times 10^{-8} \mathrm{~cm}$, calculate the mean free path at $0^{\circ} \mathrm{C}$ and 1 atm .
14. Calculate the thermal conductivity of Argon at 300 K and 15 Mbar . Gas is confined in a cubic vessel of side 15 cm , one wall being 305 K and one opposite at 295 K . What is the rate of flow of energy as heat from one wall to the other?
15. For 1.00 mol of O_{2} at 300 K and 1.00 atm , calculate (a) the number of molecules whose speed lies in the range 500.00 to $500.001 \mathrm{~m} / \mathrm{s}$ (b) the number of molecules with v_{z} in the range 150.00 to $150.002 \mathrm{~m} / \mathrm{s}$ (c) the number of molecules that simultaneously have v_{z} in the range 150.00 to $150.001 \mathrm{~m} / \mathrm{s}$ and have v_{x} in the range 150.00 to $150.001 \mathrm{~m} / \mathrm{s}$.

