Introduction

Hardness is a characteristic of a solid material expressing its resistance to permanent or plastic deformation. There are three general types of hardness measurements: (1) scratch hardness, (2) Indentation hardness, and (3) rebound or dynamic hardness. Among three only indentation hardness is of major engineering interest for metals. Some of the scales used for indentation hardness in engineering - Rockwell, Vickers, Brinell, and Knoop - can be compared using practical conversion tables for a particular material. The different techniques are shown in Figure 1.

Figure 1. Different hardness test techniques.
When testing metals, indentation hardness correlates linearly with tensile strength. This important relation permits economically important nondestructive testing of bulk materials. There are several mechanisms of hardening of a material system. Some are listed below

1. Strain Hardening (Brass)
2. Precipitation Hardening (Al alloy)
3. Martensitic Transformation (Rapid Quenching) (Steel)
4. Refining Grain Size
5. Solid Solution Strengthening

The indentation techniques involve Brinell, Rockwell, Vickers and Knoop. Different types of indenters are applied for each type. The standard test methods according to the American Society Testing and Materials (ASTM) available are, for instance, ASTM E10-15a (Standard test method for Brinell hardness of metallic materials), ASTM E18-16 (Standard test method for Rockwell hardness of metallic materials), ASTM E92-16 (Standard test method for Vickers hardness of metallic materials), ASTM E384-16 (Standard Test Method for Microindentation Hardness of Materials) and ASTM E140-12b (Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and

Leeb Hardness) These hardness testing techniques and conversion tables are selected in relation to specimen dimensions, type of materials and the required hardness information.

Brinell Hardness Test

The Brinell test was devised by a Swedish researcher at the beginning of the 20th century. The test comprises forcing a hardened steel ball indentor into the surface of the sample using a standard load as shown in Fig.1(a). The diameter/load ratio is selected to provide an impression of an acceptable diameter. The ball may be 10,5 or 1 mm in diameter, the load may be 3000,750 or 30 kgf , The load, P, is related to the diameter, D by the relationship $\mathrm{P} / \mathrm{D}^{2}$ and this ratio has been standardised for different metals in order that test results are accurate and reproducible. For steel the ratio is 30:1-for example a 10 mm ball can be used with a 3000 kgf load or a 1 mm ball with a 30 kgf load. For aluminium alloys the ratio is $5: 1$. The load is applied for a fixed length of time, usually 30 seconds. When the indentor is retracted two diameters of the impression, d_{1} and d_{2}, are measured using a microscope with a calibrated graticule and then averaged as shown in Fig.1(b).

(a) Brinell indentation

(b) measurement of impression diameter

Fig. 1. Brinell Hardness Test (Ref.: http://www.twi-global.com/technical-knowledge/job-knowledge/hardness-testing-part-1-074/)

The Brinell hardness number is calculated as:

$$
H B W=\frac{2 F_{k g f}}{\pi D\left[D-\sqrt{D^{2}-d^{2}}\right]}
$$

where:
Fkgf = test force in kgf,
$D=$ diameter of the indenter ball in mm , and
$d=$ measured mean diameter of the indentation in mm

Vickers Hardness Test and Microhardness

The Vickers hardness test operates on similar principles to the Brinell test, the major difference being the use of a square based pyramidal diamond indentor rather than a hardened steel ball. Also, unlike the Brinell test, the depth of the impression does not affect the accuracy of the reading so the P / D^{2} ratio is not important. The diamond does not deform at high loads so the results on very hard materials are more reliable. The load may range from 1 to 120 kgf and is applied for between 10 and 15 seconds.

As illustrated in Fig.2(b) two diagonals, d_{1} and d_{2}, are measured, averaged and the surface area calculated then divided into the load applied. As with the Brinell test the diagonal measurement is converted to a hardness figure by referring to a set of tables. The hardness may be reported as Vickers Hardness number (VHN), Diamond Pyramid Number (DPN) or, most commonly, Hv xxx where 'xx' represents the load used during the test.

Fig. 2. Vicker hardness test (Ref.: http://www.twi-global.com/technical-knowledge/job-knowledge/hardness-testing-part-1-074/)

Calculation of the Vickers Hardness Number-The Vickers hardness number is based on the indentation test force F in kgf divided by the surface area A_{S} of the indentation in mm^{2}.

$$
\mathrm{HV}=\frac{\text { Test Force }}{\text { Surface Area }}=\frac{\mathrm{F}_{(\mathrm{kgf})}}{\mathrm{A}_{\mathrm{s}\left(\mathrm{~mm}^{2}\right)}}
$$

Macroindentation Vickers hardness is typically determined using indentation test forces in kilogramsforce (kgf) and indentation diagonals measured in millimetres (mm). The Vickers hardness number, in terms of kgf and mm, is calculated as follows:

$$
\mathrm{HV}=1.8544 \times \frac{\mathrm{F}_{(\mathrm{kgf})}}{\mathrm{d}_{\mathrm{v}(\mathrm{~mm})}^{2}}
$$

Also, the micro-hardness test has a number of applications varying from being a metallurgical research tool to a method of quality control. The test may be used to determine the hardness of different microconstituents in a metal, as shown in Fig.3. Where an impression would be damaging, for instance on a finished product, micro-hardness tests, particularly the ultrasonic test, may be used for quality control purposes. Micro-hardness testing also finds application in the testing of thin foils, case hardened items and decarburised components.

Microstructure of X210CrW12 steel and load 200 mN

Fig. 3. Microhardness test samples (Ref.: http://metlab.co.nz/microstructures-gallery/ , Researchgate)

Generally more than one indentation is made on a test specimen. It is necessary to ensure that the spacing between indentations is large enough so that adjacent tests do not interfere with each other. For most testing purposes, the minimum recommended spacing between separate tests, and minimum distance between an indentation and the edge of the specimen are illustrated in Fig. 4. For some applications, closer spacing of indentations than those shown in Fig. 4 may be desired. If closer indentation spacing is used, it shall be the responsibility of the testing laboratory to verify the accuracy of the testing procedure.

Fig.4. Minimum Recommended Spacing for Vickers and Knoop Indentations

Rockwell Hardness Test

This hardness test uses a direct reading instrument based on the principle of differential depth measurement. Rockwell testing differs from Brinell testing in that the Rockwell hardness number is based on an inverse relationship to the measurement of the additional depth to which an indenter is forced by a heavy (major) load beyond the depth resulting from a previously applied (minor) load. Initially a minor load is applied, and a zero datum position is established. The major load is then applied for a specified period and removed, leaving the minor load applied. The resulting Rockwell number represents the difference in depth from zero datum position as a result of the application of major load. The entire procedure requires only 5 to 10 s .

There are two general classifications of the Rockwell test: the Rockwell hardness test and the Rockwell superficial hardness test. The significant difference between the two test classifications is in the test forces that are used. For the Rockwell hardness test, the preliminary test force is $10 \mathrm{kgf}(98 \mathrm{~N})$ and the total test forces are $60 \mathrm{kgf}(589 \mathrm{~N}), 100 \mathrm{kgf}(981 \mathrm{~N})$, and 150 kgf (1471 N). For the Rockwell superficial hardness test, the preliminary test force is $3 \mathrm{kgf}(29 \mathrm{~N})$ and the total test forces are $15 \mathrm{kgf}(147 \mathrm{~N}), 30$ $\mathrm{kgf}(294 \mathrm{~N})$, and $45 \mathrm{kgf}(441 \mathrm{~N})$. Indenters for the Rockwell hardness test include a diamond spheroconical indenter and tungsten carbide ball indenters of specified diameters.

The general principle of the Rockwell indentation hardness test is illustrated in Fig. 5. The test is divided into three steps of force application and removal.

Step 1—The indenter is brought into contact with the testspecimen, and the preliminary test force F0 is applied. After holding the preliminary test force for a specified dwell time,the baseline depth of indentation is measured.
Step 2-The force on the indenter is increased at a controlled rate by the additional test force $F 1$ to achieve the total test force F. The total test force is held for a specified dwell time.
Step 3-The additional test force is removed, returning to the preliminary test force. After holding the preliminary test force for a specified dwell time, the final depth of indentation is measured. The Rockwell hardness value is derived from the difference h in the final and baseline indentation depths while under the preliminary test force. The preliminary test force is removed and the indenter is removed from the test specimen.

Fig. 5. Rockwell Hardness Test Method (Schematic Diagram)
Calculation of the Rockwell Hardness Number-During a Rockwell test, the force on the indenter is increased from a preliminary test force to a total test force, and then returned to the preliminary test force. The difference in the two indentation depth measurements, while under the preliminary test force, is measured as h (see Fig. 5). The unit measurement for h is mm . From the value of h, the Rockwell hardness number is derived. The Rockwell hardness number is calculated as:

For scales using a diamond spheroconical indenter (see Tables 1 and 2):

$$
\text { Rockwell Hardness }=100-\frac{\mathrm{h}}{0.002} \quad \text { Rockwell Superficial Hardness }=100-\frac{\mathrm{h}}{0.001}
$$

For scales using a ball indenter (see Tables 1 and 2):

$$
\text { Rockwell Hardness }=130-\frac{\mathrm{h}}{0.002} \quad \text { Rockwell Superficial Hardness }=100-\frac{\mathrm{h}}{0.001}
$$

TABLE 1 Rockwell Hardness Scales

Scale Symbol	Indenter	Total Test Force, kgf	Dial Figures		
B	$1 / 16$-in. (1.588-mm) ball	100	red		
C	diamond	150	black		Copper alloys, soft steels, aluminum alloys, malleable iron, etc.
:---					
Steel, hard cast irons, pearlitic malleable iron, titanium, deep case hardened steel, and other					
materials harder than B100.					

TABLE 2 Rockwell Superficial Hardness Scales

Total Test Force, kgf (N)	Scale Symbols				
	N Scale, Diamond Indenter	$\begin{aligned} & \text { T Scale, } 1 / 16 \text {-in. } \\ & (1.588-\mathrm{mm}) \text { Ball } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { W Scale, } 1 / 8 \text {-in. } \\ & (3.175-\mathrm{mm}) \text { Ball } \end{aligned}$	$\begin{aligned} & \text { X Scale, } 1 / 4 \text {-in. } \\ & (6.350-\mathrm{mm}) \text { Ball } \end{aligned}$	$\begin{aligned} & \text { Y Scale, } 1 / 2 \text {-in. } \\ & (12.70-\mathrm{mm}) \text { Ball } \end{aligned}$
15 (147)	15 N	15T	15W	15X	15 Y
30 (294)	30 N	30 T	30W	30X	30Y
45 (441)	45N	45T	45W	45X	45Y

References

-- ASM Metals’ Handbook
-- ASTM standarts
-- Materials Science and Engineering, Eighth Edition, William D. Callister and David G. Rethwisch
-- Web

TASKS

1. Explain the relationship between hardness and tensile strength values.
2. Which metal does provide the highest hardness values? Why?
3. Find Hardness Conversion Tables from the American Society for Mechanical Engineers (ASME) Handbooks web or located in the References Section of the Library. Convert following HRC's to HB and HV values using the tables: 42, 53, 60 (Mark the values also on the table. Attach only the table as an appendix to your lab report!)
4. Discuss the advantages and disadvantages of the Brinell, Vickers and Rockwell Hardness Tests.

Approximate Hardness Conversion Numbers for Non-Austenitic Steels (Rockwell C Hardness Range) ${ }^{A, B}$

Rockwell C Hardness Number 150 kgf (HRC)	Vickers Hardness Number (HV)	Brinell Hardness Number ${ }^{\text {c }}$		Knoop Hardness, Number 500-gf and Over (HK)	Rockwell Hardness Number		Rockwell Superficial Hardness Number			Sclero- scope Hard- ness Number ${ }^{D}$	Rockwell C Hardness Number 150 kgf (HRC)
		$10-\mathrm{mm}$ Standard Ball, 3000-kgf (HBS)	$10-\mathrm{mm}$ Carbide Ball, 3000-kgf (HBW)		A Scale, 60-kgf (HRA)	$\begin{gathered} \text { D Scale, } \\ \text { 100-kgf } \\ \text { (HRD) } \end{gathered}$	$\begin{aligned} & \text { 15-N Scale, } \\ & 15-\mathrm{kgf} \\ & \text { (HR } 15-\mathrm{N}) \end{aligned}$	$\begin{aligned} & \text { 30-N Scale, } \\ & 30-\mathrm{kgf} \\ & \text { (HR } 30-\mathrm{N}) \end{aligned}$	$\begin{aligned} & \text { 45-N Scale, } \\ & 45-\mathrm{kgf} \\ & \text { (HR } 45-\mathrm{N}) \end{aligned}$		
68	940	920	85.6	76.9	93.2	84.4	75.4	97.3	68
67	900	895	85.0	76.1	92.9	83.6	74.2	95.0	67
66	865	870	84.5	75.4	92.5	82.8	73.3	92.7	66
65	832	...	(739)	846	83.9	74.5	92.2	81.9	72.0	90.6	65
64	800	...	(722)	822	83.4	73.8	91.8	81.1	71.0	88.5	64
63	772	...	(705)	799	82.8	73.0	91.4	80.1	69.9	86.5	63
62	746	...	(688)	776	82.3	72.2	91.1	79.3	68.8	84.5	62
61	720	...	(670)	754	81.8	71.5	90.7	78.4	67.7	82.6	61
60	697	...	(654)	732	81.2	70.7	90.2	77.5	66.6	80.8	60
59	674	...	634	710	80.7	69.9	89.8	76.6	65.5	79.0	59
58	653	...	615	690	80.1	69.2	89.3	75.7	64.3	77.3	58
57	633	...	595	670	79.6	68.5	88.9	74.8	63.2	75.6	57
56	613	...	577	650	79.0	67.7	88.3	73.9	62.0	74.0	56
55	595	...	560	630	78.5	66.9	87.9	73.0	60.9	72.4	55
54	577	...	543	612	78.0	66.1	87.4	72.0	59.8	70.9	54
53	560	\ldots	525	594	77.4	65.4	86.9	71.2	58.6	69.4	53
52	544	(500)	512	576	76.8	64.6	86.4	70.2	57.4	67.9	52
51	528	(487)	496	558	76.3	63.8	85.9	69.4	56.1	66.5	51
50	513	(475)	481	542	75.9	63.1	85.5	68.5	55.0	65.1	50
49	498	(464)	469	526	75.2	62.1	85.0	67.6	53.8	63.7	49
48	484	451	455	510	74.7	61.4	84.5	66.7	52.5	62.4	48
47	471	442	443	495	74.1	60.8	83.9	65.8	51.4	61.1	47
46	458	432	432	480	73.6	60.0	83.5	64.8	50.3	59.8	46
45	446	421	421	466	73.1	59.2	83.0	64.0	49.0	58.5	45
44	434	409	409	452	72.5	58.5	82.5	63.1	47.8	57.3	44
43	423	400	400	438	72.0	57.7	82.0	62.2	46.7	56.1	43
42	412	390	390	426	71.5	56.9	81.5	61.3	45.5	54.9	42
41	402	381	381	414	70.9	56.2	80.9	60.4	44.3	53.7	41
40	392	371	371	402	70.4	55.4	80.4	59.5	43.1	52.6	40
39	382	362	362	391	69.9	54.6	79.9	58.6	41.9	51.5	39
38	372	353	353	380	69.4	53.8	79.4	57.7	40.8	50.4	38
37	363	344	344	370	68.9	53.1	78.8	56.8	39.6	49.3	37
36	354	336	336	360	68.4	52.3	78.3	55.9	38.4	48.2	36
35	345	327	327	351	67.9	51.5	77.7	55.0	37.2	47.1	35
34	336	319	319	342	67.4	50.8	77.2	54.2	36.1	46.1	34
33	327	311	311	334	66.8	50.0	76.6	53.3	34.9	45.1	33
32	318	301	301	326	66.3	49.2	76.1	52.1	33.7	44.1	32
31	310	294	294	318	65.8	48.4	75.6	51.3	32.5	43.1	31
30	302	286	286	311	65.3	47.7	75.0	50.4	31.3	42.2	30
29	294	279	279	304	64.8	47.0	74.5	49.5	30.1	41.3	29
28	286	271	271	297	64.3	46.1	73.9	48.6	28.9	40.4	28
27	279	264	264	290	63.8	45.2	73.3	47.7	27.8	39.5	27
26	272	258	258	284	63.3	44.6	72.8	46.8	26.7	38.7	26
25	266	253	253	278	62.8	43.8	72.2	45.9	25.5	37.8	25
24	260	247	247	272	62.4	43.1	71.6	45.0	24.3	37.0	24
23	254	243	243	266	62.0	42.1	71.0	44.0	23.1	36.3	23
22	248	237	237	261	61.5	41.6	70.5	43.2	22.0	35.5	22
21	243	231	231	256	61.0	40.9	69.9	42.3	20.7	34.8	21
20	238	226	226	251	60.5	40.1	69.4	41.5	19.6	34.2	20

${ }^{A}$ In the table headings, force refers to total test forces.
${ }^{B}$ Annex A1 contains equations converting determined hardness scale numbers to Rockwell C hardness numbers for non-austenitic steels. Refer to 1.12 before using conversion equations.
${ }^{c}$ The Brinell hardness numbers in parentheses are outside the range recommended for Brinell hardness testing in 8.1 of Test Method E10.
${ }^{D}$ These Scleroscope hardness conversions are based on Vickers-Scleroscope hardness relationships developed from Vickers hardness data provided by the National Bureau of Standards for 13 steel reference blocks, Scleroscope hardness values obtained on these blocks by the Shore Instrument and Mfg. Co., Inc., the Roll Manufacturers Institute, and members of this institute, and also on hardness conversions previously published by the American Society for Metals and the Roll Manufacturers Institute.

Approximate Hardness Conversion Numbers for Non-Austenitic Steels (Rockwell B Hardness Range) ${ }^{\text {A, } B}$

Rockwell B Hardness Number, 100-kgf (HRB)	Vickers Hardness Number (HV)	Brinell Hardness Number, 3000-kgf, (HBS)	Knoop Hardness Number, 500-gf, and Over (HK)	Rockwell A Hardness Number, 60-kgf, (HRA)	Rockwell F Hardness Number, 60-kgf, (HRF)	Rockwell Superficial Hardness Number			Rockwell B Hardness Number, 100-kgf, (HRB)
						$\begin{aligned} & \text { 15-T Scale, } \\ & \text { 15-kgf, } \\ & \text { (HR 15-T) } \end{aligned}$	$\begin{aligned} & \text { 30-T Scale, } \\ & \text { 30-kgf, } \\ & \text { (HR 30-T) } \end{aligned}$	$\begin{aligned} & \text { 45-T Scale, } \\ & \text { 45-kgf, } \\ & \text { (HR 45-T) } \end{aligned}$	
100	240	240	251	61.5	...	93.1	83.1	72.9	100
99	234	234	246	60.9	...	92.8	82.5	71.9	99
98	228	228	241	60.2	...	92.5	81.8	70.9	98
97	222	222	236	59.5	...	92.1	81.1	69.9	97
96	216	216	231	58.9	...	91.8	80.4	68.9	96
95	210	210	226	58.3	...	91.5	79.8	67.9	95
94	205	205	221	57.6	...	91.2	79.1	66.9	94
93	200	200	216	57.0	...	90.8	78.4	65.9	93
92	195	195	211	56.4	...	90.5	77.8	64.8	92
91	190	190	206	55.8	...	90.2	77.1	63.8	91
90	185	185	201	55.2	\ldots	89.9	76.4	62.8	90
89	180	180	196	54.6	...	89.5	75.8	61.8	89
88	176	176	192	54.0	...	89.2	75.1	60.8	88
87	172	172	188	53.4	...	88.9	74.4	59.8	87
86	169	169	184	52.8	...	88.6	73.8	58.8	86
85	165	165	180	52.3	...	88.2	73.1	57.8	85
84	162	162	176	51.7	...	87.9	72.4	56.8	84
83	159	159	173	51.1	...	87.6	71.8	55.8	83
82	156	156	170	50.6	...	87.3	71.1	54.8	82
81	153	153	167	50.0	...	86.9	70.4	53.8	81
80	150	150	164	49.5	...	86.6	69.7	52.8	80
79	147	147	161	48.9	...	86.3	69.1	51.8	79
78	144	144	158	48.4	...	86.0	68.4	50.8	78
77	141	141	155	47.9	...	85.6	67.7	49.8	77
76	139	139	152	47.3	\ldots	85.3	67.1	48.8	76
75	137	137	150	46.8	99.6	85.0	66.4	47.8	75
74	135	135	147	46.3	99.1	84.7	65.7	46.8	74
73	132	132	145	45.8	98.5	84.3	65.1	45.8	73
72	130	130	143	45.3	98.0	84.0	64.4	44.8	72
71	127	127	141	44.8	97.4	83.7	63.7	43.8	71
70	125	125	139	44.3	96.8	83.4	63.1	42.8	70
69	123	123	137	43.8	96.2	83.0	62.4	41.8	69
68	121	121	135	43.3	95.6	82.7	61.7	40.8	68
67	119	119	133	42.8	95.1	82.4	61.0	39.8	67
66	117	117	131	42.3	94.5	82.1	60.4	38.7	66
65	116	116	129	41.8	93.9	81.8	59.7	37.7	65
64	114	114	127	41.4	93.4	81.4	59.0	36.7	64
63	112	112	125	40.9	92.8	81.1	58.4	35.7	63
62	110	110	124	40.4	92.2	80.8	57.7	34.7	62
61	108	108	122	40.0	91.7	80.5	57.0	33.7	61
60	107	107	120	39.5	91.1	80.1	56.4	32.7	60
59	106	106	118	39.0	90.5	79.8	55.7	31.7	59
58	104	104	117	38.6	90.0	79.5	55.0	30.7	58
57	103	103	115	38.1	89.4	79.2	54.4	29.7	57
56	101	101	114	37.7	88.8	78.8	53.7	28.7	56
55	100	100	112	37.2	88.2	78.5	53.0	27.7	55
54	11	36.8	87.7	78.2	52.4	26.7	54
53	110	36.3	87.1	77.9	51.7	25.7	53
52	109	35.9	86.5	77.5	51.0	24.7	52
51	108	35.5	86.0	77.2	50.3	23.7	51
50	107	35.0	85.4	76.9	49.7	22.7	50
49	\ldots	...	106	34.6	84.8	76.6	49.0	21.7	49
48	...	\ldots	105	34.1	84.3	76.2	48.3	20.7	48
47	104	33.7	83.7	75.9	47.7	19.7	47
46	103	33.3	83.1	75.6	47.0	18.7	46
45	...	\ldots	102	32.9	82.6	75.3	46.3	17.7	45
44	101	32.4	82.0	74.9	45.7	16.7	44
43	\ldots	\ldots	100	32.0	81.4	74.6	45.0	15.7	43
42	99	31.6	80.8	74.3	44.3	14.7	42
41	98	31.2	80.3	74.0	43.7	13.6	41
40	97	30.7	79.7	73.6	43.0	12.6	40
39	96	30.3	79.1	73.3	42.3	11.6	39
38	95	29.9	78.6	73.0	41.6	10.6	38
37	94	29.5	78.0	72.7	41.0	9.6	37
36	93	29.1	77.4	72.3	40.3	8.6	36
35	...	\ldots	92	28.7	76.9	72.0	39.6	7.6	35
34	91	28.2	76.3	71.7	39.0	6.6	34
33	90	27.8	75.7	71.4	38.3	5.6	33
32	89	27.4	75.2	71.0	37.6	4.6	32
31	88	27.0	74.6	70.7	37.0	3.6	31
30	87	26.6	74.0	70.4	36.3	2.6	30

${ }^{\text {A }}$ In table headings, kgf refers to total test force.
${ }^{B}$ Annex $A 2$ contains equations converting determined hardness numbers to Rockwell B hardness numbers for non-austenitic steels. Refer to 1.12 before using conversion equations.

