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6. Wave Equations andTheir Solutions

For given charge and current distributions, ρ and~J, we first solve the following nonhomo-
geneous wave equations for potentials V and ~A.

∇2V − µε
∂2V

∂t2
= −ρ

ε

∇2 ~A− µε
∂2~A
∂t2

= −µ~J

With V and ~A determined, ~E and ~B can be found from the following equations by differ-
entiation.

~E = −∇V − ∂~A
∂t

~B = ∇× ~A

6.1 Solution of Wave Equations for Potentials
We now consider the solution of the nonhomogeneous wave equation for scalar electric po-
tential V .

∇2V − µε
∂2V

∂t2
= −ρ

ε
(1)

First, let’s find the solution for a point charge at time t, located at the origin of the coordinates.
Then by summing the effects of all charge elements in a given region we can find the total
solution. For a point charge at the origin it is convenient to use spherical coordinates. Because
of spherical symmetry, V depends only on R and t (not on θ and φ). V (R, t) satisfies the
following homogenous equation:

∇2V =
1

R2

∂

∂R

(
R2 ∂V

∂R

)
+

1

R2 sin θ
∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

R2 sin2 θ

∂2V

∂φ2
(2)

∇2V =
1

R2

∂

∂R

(
R2 ∂V

∂R

)
(3)

1

R2

∂

∂R

(
R2 ∂V

∂R

)
− µε

∂2V

∂t2
= 0 (Except at the origin) (4)
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Let’s introduce a new variable

V (R, t) =
1

R
U(R, t) (5)

∂V

∂R
=

∂

∂R

(
U

R

)
=

(
∂U
∂R

)
R− U

R2
(6)

R2 ∂V

∂R
= R

∂U

∂R
− U (7)

∂V

∂t
=

1

R

∂U

∂t
(8)

∂2V

∂t2
=

1

R

∂2U

∂t2
(9)

1

R2

∂

∂R

(
R

∂U

∂R
− U

)
− µε

1

R

∂2U

∂t2
= 0 (10)

∂

∂R

(
R

∂U

∂R
− U

)
=

∂U

∂R
+R

∂2U

∂R2
−∂U

∂R
= R

∂2U

∂R2
(11)

1

R2

∂

∂R

(
R

∂U

∂R
− U

)
=

1

R

∂2U

∂R2
(12)

1

R

∂2U

∂R2
− µε

1

R

∂2U

∂t2
= 0 (13)

∂2U

∂R2
− µε

∂2U

∂t2
= 0 (14)

One-dimensional homogeneous wave equation.

U = f

(
t− R

c

)
(15)

U = f

(
t+

R

c

)
does not corresspond to a physically useful solution. So we have

U(R, t) = f

(
t− R

c

)
, c =

1
√
µε

(16)

This represents a wave traveling in the positive R direction with a velocity c =
1

√
µε

.

V (R, t) =
1

R
U(R, t) (17)

V (R, t) =
1

R
f

(
t− R

c

)
(18)

It can be also shown that

V (R, t) =
1

R
f(R− c t) (19)
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f

R

c∆t

f(R) f(R− c∆t)

t = 0 t = ∆t

Direction of wave propagation

V (R, t) =
1

R
f

(
t− R

c

)
q R V (R, t)

Source Observation point

At an instant t, the potential at a distance R is a function of the charge that existed at the
instant

(
t− R

c

)
. A time interval ∆t = R

c
elapses before an observer at a distance R from the

charge is able to notice any change occuring in the charge. This potential is therefore referred
to as the retarded (gecikmeli) scalar potential.

To determine the function f
(
t− R

c

)
more precisely, let us consider a point very close to

the charge. In this case, the retardation may be ignored. If the charge varies according to the
law q(t), the potential is

V (R, t) =
q(t)

4πεR
(Close to the charge) (20)

We have found the solution of wave equation as

V (R, t) =
1

R
f

(
t− R

c

)
(21)

Comparing the last two equations we see that,

f

(
t− R

c

)
=

q
(
t− R

c

)
4πε

(22)

The resulting potential created by a varying point charge is

V (R, t) =
q
(
t− R

c

)
4πεR

, c =
1

√
µε

(23)
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The retarded potential at a point due to a cloud of charges of density ρ(t) is given by

V (R, t) =
1

4πε

∫
V ′

ρ
(
t− R

c

)
R

dv′ (V) (24)

Retarded scalar potential

In a similar way

~A(R, t) =
µ

4π

∫
V ′

~J
(
t− R

c

)
R

dv′ (Wb/m) (25)

Retarded vector potential

The electric andmagnetic fields in the case of varying charges and currents need some time
to change at points distant from the sources. In the quasi-static approximation we ignore this
time-retardation effect and assume instant response. This assumption is implicit in dealing
with circuit problems.

q R

t = 0 ∆t =
R

c

6.2 Source-Free Wave Equation

In problems of wave propagation we are interested in how an electromagnetic wave prop-
agates in a source-free region where ρ and ~J are both zero. In a simple (linear, isotropic,ho-
mogeneous) nonconducting medium (σ = 0) characterized by ε and µ, Maxwell’s equations
reduce to

∇× ~E = −∂~B
∂t

(26)

~B = µ ~H (27)
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∇× ~E = −µ
∂~H
∂t

(28)

∇× ~H =~J+
∂~D
∂t

(29)

~D = ε ~E (30)

~J = 0 (31)

∇× ~H = ε
∂~E
∂t

(32)

∇ · ~D = ρ (33)

ρ = 0 (34)

~D = ε ~E (35)

∇ · ~E = 0 (36)

∇ · ~B = 0 (37)

~B = µ ~H (38)

∇ · ~H = 0 (39)

∇× ~E = −µ
∂~H
∂t

(40)

∇× (∇× ~E) = −µ∇×

(
∂~H
∂t

)
(41)

∇× (∇× ~E) = −µ
∂

∂t
(∇× ~H) = −µ

∂

∂t

(
ε
∂~E
∂t

)
= −µε

∂2~E
∂t2

(42)

∇×∇× ~E = ∇(∇ · ~E)−∇2 ~E (43)

∇ · ~E = 0 (44)

∇×∇× ~E = −∇2 ~E (45)

−∇2 ~E = −µε
∂2~E
∂t2

(46)

∇2 ~E− µε
∂2~E
∂t2

= 0 (47)

c =
1

√
µε

(48)
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∇2 ~E− 1

c2
∂2~E
∂t2

= 0 (49)

Homogeneous vector wave equation

In a similar way

∇2 ~H− 1

c2
∂2~H
∂t2

= 0 (50)

Homogeneous vector wave equation
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