6. Wave Equations and Their Solutions

For given charge and current distributions, ρ and $\overrightarrow{\mathbf{J}}$, we first solve the following nonhomogeneous wave equations for potentials V and $\overrightarrow{\mathbf{A}}$.

$$
\nabla^{2} V-\mu \epsilon \frac{\partial^{2} V}{\partial t^{2}}=-\frac{\rho}{\epsilon}
$$

$$
\nabla^{2} \overrightarrow{\mathbf{A}}-\mu \epsilon \frac{\partial^{2} \overrightarrow{\mathbf{A}}}{\partial t^{2}}=-\mu \overrightarrow{\mathbf{J}}
$$

With V and $\overrightarrow{\mathbf{A}}$ determined, $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{B}}$ can be found from the following equations by differentiation.

$$
\begin{aligned}
& \overrightarrow{\mathbf{E}}=-\nabla V-\frac{\partial \overrightarrow{\mathbf{A}}}{\partial t} \\
& \overrightarrow{\mathbf{B}}=\nabla \times \overrightarrow{\mathbf{A}}
\end{aligned}
$$

6.1 Solution of Wave Equations for Potentials

We now consider the solution of the nonhomogeneous wave equation for scalar electric potential V.

$$
\begin{equation*}
\nabla^{2} V-\mu \epsilon \frac{\partial^{2} V}{\partial t^{2}}=-\frac{\rho}{\epsilon} \tag{1}
\end{equation*}
$$

First, let's find the solution for a point charge at time t, located at the origin of the coordinates. Then by summing the effects of all charge elements in a given region we can find the total solution. For a point charge at the origin it is convenient to use spherical coordinates. Because of spherical symmetry, V depends only on R and t (not on θ and ϕ). $V(R, t)$ satisfies the following homogenous equation:

$$
\begin{align*}
& \nabla^{2} V=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}} \tag{2}\\
& \nabla^{2} V=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right) \tag{3}\\
& \frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)-\mu \epsilon \frac{\partial^{2} V}{\partial t^{2}}=0 \quad \text { (Except at the origin) } \tag{4}
\end{align*}
$$

Let's introduce a new variable

$$
\begin{align*}
& V(R, t)=\frac{1}{R} U(R, t) \tag{5}\\
& \frac{\partial V}{\partial R}=\frac{\partial}{\partial R}\left(\frac{U}{R}\right)=\frac{\left(\frac{\partial U}{\partial R}\right) R-U}{R^{2}} \tag{6}\\
& R^{2} \frac{\partial V}{\partial R}=R \frac{\partial U}{\partial R}-U \tag{7}\\
& \frac{\partial V}{\partial t}=\frac{1}{R} \frac{\partial U}{\partial t} \tag{8}\\
& \quad \frac{\partial^{2} V}{\partial t^{2}}=\frac{1}{R} \frac{\partial^{2} U}{\partial t^{2}} \tag{9}\\
& \frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R \frac{\partial U}{\partial R}-U\right)-\mu \epsilon \frac{1}{R} \frac{\partial^{2} U}{\partial t^{2}}=0 \tag{10}\\
& \quad \frac{\partial}{\partial R}\left(R \frac{\partial U}{\partial R}-U\right)=\frac{\partial U}{\partial R}+R \frac{\partial^{2} U}{\partial R^{2}}-\frac{\partial U}{\partial R}=R \frac{\partial^{2} U}{\partial R^{2}} \tag{11}\\
& \frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R \frac{\partial U}{\partial R}-U\right)=\frac{1}{R} \frac{\partial^{2} U}{\partial R^{2}} \tag{12}\\
& \frac{1}{R} \frac{\partial^{2} U}{\partial R^{2}}-\mu \epsilon \frac{1}{R} \frac{\partial^{2} U}{\partial t^{2}}=0 \tag{13}\\
& \quad \frac{\partial^{2} U}{\partial R^{2}}-\mu \epsilon \frac{\partial^{2} U}{\partial t^{2}}=0 \tag{14}
\end{align*}
$$

One-dimensional homogeneous wave equation.

$$
\begin{equation*}
U=f\left(t-\frac{R}{c}\right) \tag{15}
\end{equation*}
$$

$U=f\left(t+\frac{R}{c}\right)$ does not corresspond to a physically useful solution. So we have

$$
\begin{equation*}
U(R, t)=f\left(t-\frac{R}{c}\right), \quad c=\frac{1}{\sqrt{\mu \epsilon}} \tag{16}
\end{equation*}
$$

This represents a wave traveling in the positive R direction with a velocity $c=\frac{1}{\sqrt{\mu \epsilon}}$.

$$
\begin{align*}
& V(R, t)=\frac{1}{R} U(R, t) \tag{17}\\
& V(R, t)=\frac{1}{R} f\left(t-\frac{R}{c}\right) \tag{18}
\end{align*}
$$

It can be also shown that

$$
\begin{equation*}
V(R, t)=\frac{1}{R} f(R-c t) \tag{19}
\end{equation*}
$$

At an instant t, the potential at a distance R is a function of the charge that existed at the instant $\left(t-\frac{R}{c}\right)$. A time interval $\Delta t=\frac{R}{c}$ elapses before an observer at a distance R from the charge is able to notice any change occuring in the charge. This potential is therefore referred to as the retarded (gecikmeli) scalar potential.

To determine the function $f\left(t-\frac{R}{c}\right)$ more precisely, let us consider a point very close to the charge. In this case, the retardation may be ignored. If the charge varies according to the law $q(t)$, the potential is

$$
\begin{equation*}
V(R, t)=\frac{q(t)}{4 \pi \epsilon R} \quad \text { (Close to the charge) } \tag{20}
\end{equation*}
$$

We have found the solution of wave equation as

$$
\begin{equation*}
V(R, t)=\frac{1}{R} f\left(t-\frac{R}{c}\right) \tag{21}
\end{equation*}
$$

Comparing the last two equations we see that,

$$
\begin{equation*}
f\left(t-\frac{R}{c}\right)=\frac{q\left(t-\frac{R}{c}\right)}{4 \pi \epsilon} \tag{22}
\end{equation*}
$$

The resulting potential created by a varying point charge is

$$
\begin{equation*}
V(R, t)=\frac{q\left(t-\frac{R}{c}\right)}{4 \pi \epsilon R}, \quad c=\frac{1}{\sqrt{\mu \epsilon}} \tag{23}
\end{equation*}
$$

The retarded potential at a point due to a cloud of charges of density $\rho(t)$ is given by

$$
\begin{equation*}
V(R, t)=\frac{1}{4 \pi \epsilon} \int_{V^{\prime}} \frac{\rho\left(t-\frac{R}{c}\right)}{R} d v^{\prime} \tag{24}
\end{equation*}
$$

Retarded scalar potential
In a similar way

$$
\begin{equation*}
\overrightarrow{\mathbf{A}}(R, t)=\frac{\mu}{4 \pi} \int_{V^{\prime}} \frac{\overrightarrow{\mathbf{J}}\left(t-\frac{R}{c}\right)}{R} d v^{\prime} \quad(\mathrm{Wb} / \mathrm{m}) \tag{25}
\end{equation*}
$$

Retarded vector potential
The electric and magnetic fields in the case of varying charges and currents need some time to change at points distant from the sources. In the quasi-static approximation we ignore this time-retardation effect and assume instant response. This assumption is implicit in dealing with circuit problems.

$$
K<\triangleleft \Delta \ggg \rightarrow+
$$

6.2 Source-Free Wave Equation

In problems of wave propagation we are interested in how an electromagnetic wave propagates in a source-free region where ρ and $\overrightarrow{\mathbf{J}}$ are both zero. In a simple (linear, isotropic, homogeneous) nonconducting medium ($\sigma=0$) characterized by ϵ and μ, Maxwell's equations reduce to

$$
\begin{align*}
& \nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \tag{26}\\
& \overrightarrow{\mathbf{B}}=\mu \overrightarrow{\mathbf{H}} \tag{27}
\end{align*}
$$

$$
\begin{equation*}
\nabla \times \overrightarrow{\mathbf{E}}=-\mu \frac{\partial \overrightarrow{\mathbf{H}}}{\partial t} \tag{28}
\end{equation*}
$$

$$
\begin{align*}
& \nabla \times \overrightarrow{\mathbf{H}}=\overrightarrow{\mathbf{J}}+\frac{\partial \overrightarrow{\mathbf{D}}}{\partial t} \tag{29}\\
& \overrightarrow{\mathbf{D}}=\epsilon \overrightarrow{\mathbf{E}} \tag{30}\\
& \overrightarrow{\mathbf{J}}=0 \tag{31}\\
& \quad \nabla \times \overrightarrow{\mathbf{H}}=\epsilon \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t} \tag{32}
\end{align*}
$$

$\nabla \cdot \overrightarrow{\mathbf{D}}=\rho$
$\rho=0$
$\overrightarrow{\mathbf{D}}=\epsilon \overrightarrow{\mathbf{E}}$

$$
\nabla \cdot \overrightarrow{\mathbf{E}}=0
$$

$\nabla \cdot \overrightarrow{\mathbf{B}}=0$
$\overrightarrow{\mathbf{B}}=\mu \overrightarrow{\mathbf{H}}$

$$
\begin{equation*}
\nabla \cdot \overrightarrow{\mathbf{H}}=0 \tag{39}
\end{equation*}
$$

$$
\begin{align*}
& \nabla \times \overrightarrow{\mathbf{E}}=-\mu \frac{\partial \overrightarrow{\mathbf{H}}}{\partial t} \tag{40}\\
& \nabla \times(\nabla \times \overrightarrow{\mathbf{E}})=-\mu \nabla \times\left(\frac{\partial \overrightarrow{\mathbf{H}}}{\partial t}\right) \tag{41}\\
& \nabla \times(\nabla \times \overrightarrow{\mathbf{E}})=-\mu \frac{\partial}{\partial t}(\nabla \times \overrightarrow{\mathbf{H}})=-\mu \frac{\partial}{\partial t}\left(\epsilon \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}\right)=-\mu \epsilon \frac{\partial^{2} \overrightarrow{\mathbf{E}}}{\partial t^{2}} \tag{42}\\
& \nabla \times \nabla \times \overrightarrow{\mathbf{E}}=\nabla(\nabla \cdot \overrightarrow{\mathbf{E}})-\nabla^{2} \overrightarrow{\mathbf{E}} \tag{43}\\
& \nabla \cdot \overrightarrow{\mathbf{E}}=0 \tag{44}\\
& \nabla \times \nabla \times \overrightarrow{\mathbf{E}}=-\nabla^{2} \overrightarrow{\mathbf{E}} \tag{45}\\
& -\nabla^{2} \overrightarrow{\mathbf{E}}=-\mu \epsilon \frac{\partial^{2} \overrightarrow{\mathbf{E}}}{\partial t^{2}} \tag{46}\\
& \nabla^{2} \overrightarrow{\mathbf{E}}-\mu \epsilon \frac{\partial^{2} \overrightarrow{\mathbf{E}}}{\partial t^{2}}=0 \tag{47}\\
& c=\frac{1}{\sqrt{\mu \epsilon}} \tag{48}
\end{align*}
$$

Erkan AFACAN, Gazi Üniversitesi, Mühendislik Fakültesi, Maltepe/Ankara

$$
\begin{equation*}
\nabla^{2} \overrightarrow{\mathbf{E}}-\frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{\mathbf{E}}}{\partial t^{2}}=0 \tag{49}
\end{equation*}
$$

Homogeneous vector wave equation
In a similar way

$$
\begin{equation*}
\nabla^{2} \overrightarrow{\mathbf{H}}-\frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{\mathbf{H}}}{\partial t^{2}}=0 \tag{50}
\end{equation*}
$$

Homogeneous vector wave equation

