

Gazi University Department of Mechanical Engineering 2023-2024 Spring

COURSE SYLLABUS

ME 430 INTERNAL COMBUSTION ENGINES

Course Code and Title:	ME430 Internal Combustion Engines
Course Level:	4 th year Technical Elective Course
Course Prerequisite (s) :	ME203, ME204, ME301, ME302
	Assoc. Prof. Dr. Fatih AKTAŞ
Instructor's Information's:	Office: 454
	fatihaktas@gazi.edu.tr
	https://avesis.gazi.edu.tr/fatihaktas

Course module description:	This course provides the material needed for the basic		
-	understanding of the operation and design of internal		
	combustion engines.		
Course module objectives:	At completing this module, the student should be able		
	to:		
	• Recognize the basic types of internal combustion		
	engines.		
	• Estimate the performance of internal combustion		
	engines		
	• Know the fundamental thermochemistry as applied to		
	fuels.		
	• Follow the various operational processes from intake		
	to exhaust.		
	• Be familiar with experimental and numerical analysis		
	method for internal combustion engines.		
	Pulkrabek, W.W., Engineering Fundamentals of the		
Ref. book & Supplementary Materials:	Internal Combustion Engine, Prentice Hall, New		
	Jersey, 2003.		
	John B. Heywood, Internal Combustion Engine Fundamentals, McGRAW Hill Book Comp., New		
	York, 1988.		
	Lacture Notes by F. Altes		
	Lecture Notes by F. Aktaş (Electronic conv. Bdf precentations)		
	(Electronic copy – Pdf presentations)		

Course Plan

Week	Topics
1	Introduction to ICE / Engine Classifications / Engine Components
2	Operation of Basic Engine Types / Engine Emissions and Air Pollution
3	Engine Characteristics and Operating Parameters-1
4	Engine Characteristics and Operating Parameters-2
5	Air Standard Ideal Cycles: Otto, Diesel, Dual Cycles / Thermal efficiencies
6	Analysis of Ideal Cycles/ Tutorial and Problem Solving
7	Thermochemistry of Fuel-Air Mixture
8	Midterm-I
9	Analysis of Engine Operations / Tutorial and Problem Solving
10	Air and Fuel Induction
11	Properties of Working Fluid / Charge Motion within the Cylinder
12	Introduction to Combustion Characteristics in SI and CI Engines
13	Midterm-II / Emissions and Air Pollution
14	Introduction to Experimental and Numerical Methods to Analyses ICE
15	Present and Future Studies on ICE'S

Assessment instruments

- Minimum attendance: 70%
- Midterms: 40 points
- Short reports and/ or presentations and/ or Short research projects / 10 points
- Quizzes / W3 W6 W11 / 6 points
- Home works / 4 points
- Final examination: 40 points

Allocation of Marks		
Assessment instruments	Point	
First examination / Midterm-I	20	
Second examination / Midterm-II		
Final examination / Final Exam	40	
Mini Research Projects, Quizzes, Homework's		
Total	100	

"The engine is the ideal teaching tool- it features all of the elements of engineering: materials, fluids, thermodynamics, lubrication, chemistry, electronics, etc. The only thing missing is nuclear reaction"

> Phil Myers Founder Engine Research Center University of Wisconsin, Madison, USA.