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Thermodynamics and Heat Transfer

m The science of thermodynamics deals with the
amount of heat transfer as a system
undergoes a process from one equilibrium
state to another, and makes no reference to
how long the process will take.

m The science of heat ftransfer deals with the
determination of the rates of energy that can
be transferred from one system to another as
a result of temperature difference.



Application Areas of Heat Transfer

Airplanes

Car radiators Power plants Refrigeration systems



Heat and Other Forms of Energy

m Energy can exist in numerous forms such as:
- thermal,
- mechanical,
- kinetic,
- potential,
- electrical,
- magnetic,
- chemical, and
- nuclear.

m Their sum constitutes the total energy E (or
e on a unit mass basis) of a system.

m The sum of all microscopic forms of energy is
called the internal energy of a system.



m Internal energy may be viewed as the sum of the
kinetic and potential energies of the molecules.

m The kinetic energy of the molecules is called sensible
heat.

m The internal energy associated with the phase of a
system is called latent heat.

m The internal energy associated with the atomic bonds
in @ molecule is called chemical (or bond) energy.

m The internal energy associated with the bonds within
the nucleus of the atom itself is called nuclear
energy.




Internal Energy and Enthalpy

m In the analysis of .
systems that involve fluid [ "
flow, we frequently
encounter the
combination of
properties u and Pv.

m The combination is .
defined as en'l'halpy Stdthll'laI Y Enerey = u
(h=u+Pv). fluid -

m The term Pv represents
the flow energy of the
fluid (also called the flow
work).



Specific Heats of Gases, Liquids,
and Solids

m Specific heat is defined as the energy
required to raise the temperature of a unit
mass of a substance by one degree.

m Two kinds of specific heats:
- specific heat at constant volume ¢, and
- specific heat at constant pressure c,
m The specific heats of a substance, in general,

depend on two independent properties such as
temperature and pressure.

m For an ideal gas, however, they depend on
temperature only.



Specific Heats

At low pressures all real gases approach ideal gas
behavior, and therefore their specific heats depend on
temperature only.

A substance whose specific volume (or density) does
not change with temperature or pressure is called an
incompressible substance.

The constant-volume and
constant-pressure specific
heats are identical for
incompressible

- -
L L I

substances. ‘* 0.45 LE] kg K
The specific heats of
incompressible substances

depend on temperature only.




Energy Transfer

Energy can be transferred to or from a given mass by two
mechanisms:

- heat transfer, and
- work.
The amount of heat transferred during a process is denoted by Q.

The amount of heat transferred per unit time is called heat
transfer rate, and is denoted by

The total amount of heat transfer Q during a time interval Dt can
be determined from

The rate of heat transfer per unit area normal to the direction of
heat transfer is called heat flux, and the average heat flux is
expressed as

O

b

— (W/m?2)

77 A
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The First Law of Thermodynamics

m The first law of thermodynamics states that energy
can neither be created nor destroyed during a process;
it can only change forms.

[ Total energy | [Total energy| [ Change in the |

entering the | — | leaving the | = | total energy of
\  system | |\ system [ | thesystem |

m The energy balance for any system undergoing any
process can be expressed as (in the rate form)

Ein o lt'.L-.'-l.lr. =

internal

Rate of net energy transfer Rate ernal
by heat, work, and mass kinetic, potential, etc., enargies
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m In heat transfer problems it is convenient
to write a heat balance and to treat the
conversion of nuclear, chemical,
mechanical, and electrical energies into
thermal energy as heat generation.

m The energy balance in that case can be
expressed as

E"in o ':-._'-"Ilnl.ll_ + JE;-_'--:n - _ AE thermal, system

Net |'|-._":.Lr. 2 Change _i|'| thermal
fransier ENeErgy of the 'i::-"ill.'l'l'l
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Energy Balance

Closed systems Steady-Flow Systems

m Stationary closed When kinetic and potential

system, no work: energies are negligible,
and there is ho work
interaction

ransfer = "”Cp(Tj - Tl)
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Heat Transfer Mechanisms

m Heat can be transferred in three basic
modes:
- conduction,
- cohvection,
- radiation.

m All modes of heat
transfer require the
existence of a temperature difference.

m All modes are from the high-temperature
medium to a lower-temperature one.

14



CONDUCTION

m Conduction: the transfer of heat from
one part of a material to another part of
the same material, or from one material
to another in physical contact with ift,
without any appreciable displacement of
the molecules.

The rate of heat conduction through a ’/ l

medium depends on:

the geometry of the medium
the thickness
the material of the medium

the temperature difference across the
medium.

-
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The rate of heat conduction through a
plane layer is proportional to the
temperature difference across the
layer and the heat transfer area, but is
inversely proportional to the thickness
of the layer.

(Area)( Temperature difference)
Thickness

Rate of heat conduction o

where the constant of proportionality
k is the thermal conductivity of the
material, which is a measure of the
ability of a material to conduct heat

FIGURE 1-22

Heat LOHdUL[lOH through a large plan
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In the limiting case of [N reduces to

20°C

0 = 4010 W/m?

which is called Fourier's law of heat
conduction after J. Fourier, who expressed it
first in his heat transfer text in 1822.

Here, dT/dx is the temperature gradient,
which is the slope of the temperature curve
on a T-x diagram at location x. 0C

(a) Copper (k=401 W/m-°C)

O = 1480 W/m?

(b) Silicon (k = 148 W/m-°C)

FIGURE 1-23

The rate of heat conduction through a
solid is directly proportional to

its thermal conductivity.

FIGURE 1-24

In heat conduction analysis, A represents|
the area normal to the direction
of heat transfe

The negative sign in the above equation ensures that heat

transfer in the positive x direction is a positive quantity. o



EXAMPLE 16—-1 The Cost of Heat Loss through a Roof

The roof of an electrically heated home is 6 m long, & m wide, and 0.25 m
thick, and is made of a flat layer of concrete whose thermal conductivity is
k= 0.8W/m - "C (Fig. 16-4). The temperatures of the inner and the outer sur-
faces of the roof one night are measured to be 15°C and 4°C, respectively, for a
period of 10 hours. Determine (&) the rate of heat loss through the roof that
night and (b) the cost of that heat loss to the home owner if the cost of elec-
tricity is $0.08/kWh.

SOLUTION The inner and outer surfaces of the flat concrete roof of an electri-
cally heated home are maintained at specified temperatures during a night. The
heat loss through the roof and its cost that night are to be determined.
Assumptions 1 Steady operating conditions exist during the entire night since
the surface temperatures of the roof remain constant at the specified values.
2 Constant properties can be used for the roof.

Properties The thermal conductivity of the roof is given to be
k= 0.8Wm - °C.

Analysis (&) Noting that heat transfer through the roof is by conduction and
the area of theroof is A =6 m X 8 m = 48 m2, the steady rate of heat trans-
fer through the roof is determined to be

I — T (15 —4)°C

T =~ = (0.8 W/m - °C)(48 m?) ——=—— = 1690 W = 1.69 kW

e 0.25 m

(b) The amount of heat lost through the roof during a 10-h period and its cost
are determined from

O = O At = (1.69 KW)(10 h) = 16.9 kWh

Cost = (Amount of energy)(Unit cost of energy)
= (16.9 KkWh)($0.08/kWh) = $1.35

Discussion The cost to the home owner of the heat loss through the roof that
night was $1.35. The total heating bill of the house will be much larger since
the heat losses through the walls are not considered in these calculations.

Concrete roof

FIGURE 1-25

Schematic for Example 1-5.




Thermal Conductivity

Thermal Conductivity: a measure of a solid material to conduct heat
(the rate of heat transfer through a unit thickness of the material
per unit area per unit temperature difference).

TABLE 1-1

The thermal conductivitie:

materials at room tem
Material

Diamond

Silver

Gold
Aluminum
lran
Mercury ()
Glass

od (oak)
Helium (g)
Soft rubber
Glass fiber
Air (g)
Urethane, rigid foam

*Multiply by 0.5778 to convert to Btu/h - ft - °F.

k

(, W/m . °C*

2300
429
401
317
237
80.2
8.54
0.78
0.72
0.607
0.37
0.17
0.1652
0.13
0.043
0.026
0.026

heater

l Insulation

Sample
material

Insulation

ke A(T, - T,_,)Q

FIGURE 1-26
A simple experimental setup to
determine the thermal conductivit
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NONMETALLIC
CRYSTALS

Diamond
Graphite

L 000

FURE
k. i METALS
Wim-2C METAL
ALLOYS

Silicon
Silver carbide

Copper -
Aluminum Beryllium L

: ide
NONMETALLIC| alloys ox
SOLIDS

Oxides Bronze
Steel
Nichrome | Manganese Quartz

LIQUIDS
Mercury

Water
I_NS ULATORS

Fibers

GASES ' Rubber

Hydrogen | Wood
Helium

Air FIGURE 1-27
Carbon ———— The range of thermal conductivity of
dioxide | various materials at room temperature.




GAS
+* Molecular
collisions
+ Molecular
diffusion

LIQUID
* Molecular
collisions
x Molecular
diffusion

SOLID
* Lattice vibrations
* Flow of free
electrons

FIGURE 1-28

he mechanisms of heat conduction 1n
different phases of a substance.

TABLE 1-2

The thermal conductivity of an

alloy I1s usually much lower than

the thermal conductivity of either
metal of which it is composed

Pure metal or kK, W/m - °C,
alloy at 300 K

Copper 401
Nickel 91
Constantan

(55% Cu, 45% Ni) 23

Copper
Aluminum

Commercial bronze
(90% Cu, 10% Al)




Diamonds

\ Type Ila
Type IIb

Typel

Solids
Liquids

Tungsten

TABLE 1-3

Thermal conductivities of materials
vary with temperature

Pyroceram glass

Aluminum oxide

k, W/m - °C
T. K Copper Aluminum

100 482 302
200 413 237
300 401 237
400 393 240

Clear fused quartz

Helium

1200

600 379 231
800 366 218

FIGURE 1-29

The variation of the thermal
conductivity of various solids,
liquids, and gases with temperature.
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Thermal Diffusivity

Heat Capacity of a Material: the product pC, which is frequently
encountered in heat transfer analysis.

Thermal Diffusivity: another material property that appears in the
transient heat conduction analysis, representing how fast heat
diffuses through a material.

o Heat conducted

Heat stored

where the thermal conductivity k represents how well a material
conducts heat, and the heat capacity pC, represents how much
energy a material stores per unit volume.

The thermal diffusivity of a material can be viewed as the ratio
of the heat conducted through the material to the heat stored

per unit volume.
23



TABLE 1-4

The thermal diffusivities of some
materials at room temperature

Silver 149 x 10~
Gold 127 % 10-6
Copper 113 x 10~
Aluminum 97.5 % 10-6
Iron 22.8 X 1076
Mercury (1) 1.7 % 10-6
Marble 2 X 107®
Ice 2 % 10°°
Concrete 75 % 10-6
Brick b2 x 1076
Heavy soil (dry) 52 % 10~
Glass .34 x 10°6
Glass wool .23 x 10-°
Water (1) 14 % 10-%
Beef . % 108
Wood (oak) 13 % 10-%

*Multiply by 10.76 to convert to ft%/s.



CONVECTION

Convection: the mode of energy transfer between a solid surface
and the adjacent, moving liquid or gas (involving the combined effects
of conduction and fluid motion).

Velocity
variation Forced Natural

of air > convection convection

Hot Block
FIGURE 1-32 FIGURE 1-33

Heat transfer from a hot The cooling of a boiled egg
surface to air by convection. by forced and natural convection.

Forced Convection: where the fluid is forced to flow over the
surface by external means such as a fan, pump, or the wind.

Natural (or Free) Convection: where the fluid motion is caused by
buoyancy forces that are induced by density differences due to
the variation of femperature in the fluid. 25



The rate of convection heat transfer is observed to be proportional
to the temperature difference, and is conveniently expressed by
Newton's law of cooling as

i:-i';_'}-.."l.'l'l v — lri'lll"ﬂl [ { T.; T .T'.ri b

TABLE 1-5

h : Convection heat transfer
coefficient in W/m2°C Type of

A.: Surface area through convection
which convection heat Free convection of
gases

’rr'ansfer takes place Free convection of
T, : Surface temperature liquids 10-1000
T . Temperature of the fluid Forced convection

o0 o of gases 25-250
sufficiently far from the Forced convaction
surface of liquids 50-20,000

Boiling and
condensation 2500-100,000

*Multiply by 0.176 to convert to Btu/h - ft2 - °F.
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ExAMPLE 1—g  Measuring Convection Heat Transfer Coefficient

A 2-m-long, 0.3-cm-diameter electrical wire extends across a room at 15°C, as
shown in Fig. 16-13. Heat is generated in the wire as a result of resistance
heating, and the surface temperature of the wire is measured to be 152°C in
steady operation. Also, the voltage drop and electric current through the wire
are measured to be 60 V and 1.5 A, respectively. Disregarding any heat transfer
by radiation, determine the convection heat transfer coefficient for heat trans-
fer between the outer surface of the wire and the air in the room.

SOLUTION The convection heat transfer coefficient for heat transfer from an
electrically heated wire to air is to be determined by measuring temperatures
when steady operating conditions are reached and the electric power consumed.
Assumptions 1 Steady operating conditions exist since the temperature read-
ings do not change with time. 2 Radiation heat transfer is negligible.

Analysis When steady operating conditions are reached, the rate of heat loss
from the wire will equal the rate of heat generation in the wire as a result of
resistance heating. That is,

O = E generae = VI = (60 V)(1.5A) = 90 W

The surface area of the wire is
A, = wDL = 7(0.003 m)(2 m) = 0.01885 m?

Newton's law of cooling for convection heat transfer is expressed as

.

Qconv = hA: {Ts —T.)

Disregarding any heat transfer by radiation and thus assuming all the heat loss
from the wire to occur by convection, the convection heat transfer coefficient is
determined to be

Qeonv o0 W

- = = 34.9 W/m?- °C
AT, —T.) (001885 my(152— 15yC o Wt C

h

Discussion Note that the simple setup described above can be used to deter-
mine the average heat transfer coefficients from a variety of surfaces in air.
Also, heat transfer by radiation can be eliminated by keeping the surrounding
surfaces at the temperature of the wire.

Schematic for Example 1-8.




RADIATION

Radiation: the energy emitted by matter in the form of
electromagnetic waves (or photons) as a result of the changes in the
electronic configurations of the atoms or molecules.

Thermal Radiation: the form of radiation emitted by bodies because
of their temperature.

Radiation is a volumetric phenomenon, and all solids, liquids, and gases
emit, absorb, or transmit radiation to varying degrees.

Radiation is usually considered to be a surface phenomenon for solids
that are opaque to thermal radiation such as metals, wood, and rocks
since the radiation emitted by the interior regions of such material
can never reach the surface, and the radiation incident on such bodies
is usually absorbed within a few microns from the surface.

28



The maximum rate of radiation that can be emitted from a surface at
an absolute ftemperature T, (in K or R) is given by the Stefan-
Boltzmann law as

= A, T?

0)

=" emit, max

o : The Stefan-Boltzmann constant (56.669x10-8 W/m?2-K%

Blackbody: the idealized surface that emits radiation at this maximum

rate. .
Qemit. max O-Ts

Blackbody Radiation: = 1452 W/m®

the radiation emitted by ———
a blGCkbOdy Blackbody (€ = 1)

FIGURE 1-35

Blackbody radiation represents the

maximum amount of radiation that

can be emitted from a surface

at a specified temperature. 59




The radiation emitted by all real surfaces is less than the radiation
emitted by a blackbody at the same temperature, and is expressed as

where € is the emissivity of the surface.

Emissivity: a measure of how closely a
surface approximates a blackbody for
which €=1.

Its value is in the range 0 < €<1

Absorptivity (a): the fraction of the
radiation energy incident on a
surface that is absorbed by the
surface.

A blackbody absorbs the entire
radiation incident on it and is a
perfect absorber (a= 1) as it is a
perfect emitter.

TABLE 1-6

Emissivities of some materials
at 3

Material Emissivity

Aluminum foil 0.07
Anodized aluminum 0.82
Polished copper 0.03
Polished golc 0.03
Poli silver 0.02
Polished stainless steel 0.17
Black paint 0.98
White paint 0.90
White paper 0.92-0.97
Asphalt pavement 0.85-0.93
Red brick 0.93-0.96
Human skin 0.95
Wood 0.82-0.92
Soil 0.93-0.96
Water 0.96
Vegetation 0.92-0.96

30



Kirchhoff's Law of Radiation: the
emissivity and the absorptivity of
a surface at a given temperature
and wavelength are equal.

ul'.-"

{._ absorhe I =L incident

W < +he rate at which
radiation is incident on the surface

and a is the absorptivity of the surface.

The net rate of radiation heat
transfer between two surfaces:

Qincident

Ot = (1 — @) Oy igent

Qabs =Q Qincident

FIGURE 1-36

The absorption of radiation incident on

ue surface of absorptivity «.
Surrounding
surfaces at
/ T

surr

Qemitted

e AT

Qrad - £O'A (T4 Tsurr)
FIGURE 1-37

Radiation heat transfer between a
surface and the surfaces surrounding it.
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Combined Heat Transfer Coefficient (h mpineq): including the effects
of both convection and radiation.

The total heat transfer rate to or from a surface by convection and
radiation:

Radiation is usually significant relative to conduction or natural
convection, but negligible relative to forced convection. Thus
radiation in forced convection applications is usually disregarded,
especially when the surfaces involved have low emissivities and low
to moderate temperatures.

32



ExampLE 1—g = Radiation Effect on Thermal Comfort

It is a common experience o feel “chilly” in winter and “warm™ in summer in
our homes even when the thermostat setting is kept the same. This is due to the
so called “radiation effect” resulting from radiation heat exchange between our
bodies and the surrounding surfaces of the walls and the ceiling.

Consider a person standing in a room maintained at 22°C at all times. The
inner surfaces of the walls, floors, and the ceiling of the house are observed to
be at an average temperature of 10°C in winter and 25°C in summer. Determine
the rate of radiation heat transfer between this person and the surrounding sur-

faces If the exposed surface area and the average outer surface temperature of
the person are 1.4 m? and 30°C, respectively (Fig. 16-17).

FIGURE 1-3

Schematic for Exam




SOLUTION The rates of radiation heat transfer between a person and the sur-
rounding surfaces at specified temperatures are to be determined In summer
and winter.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer by convection
Is not considered. 3 The person is completely surrounded by the interior sur-
faces of the room. 4 The surrounding surfaces are at a uniform temperature.

Properties The emissivity of a person is & = 0.95 (Table 16-6).

Analysis The net rates of radiation heat transfer from the body to the sur-
rounding walls, ceiling, and floor in winter and summer are

émd, winter E”A‘s {T}L o Ts_:trr, winter}
= (0.95)(5.67 X 108 W/m? - K*(1.4 m?)
X [(30 + 273 — (10 + 273)4] K*

=152 W

- _ . 4 _ 4
Qrad. summer FJIAS {Tr Tsurr. summer}

= (0.95)(5.67 X 108 W/m? - K*)(1.4 m?)
X [(30 + 273)* — (25 + 273)] K*

=409 W

Discussion MNote that we must use absolute femperatures in radiation calcula-
tions. Also note that the rate of heat loss from the person by radiation is almost
four times as large in winter than it is in summer, which explains the “chill” we
feel in winter even if the thermostat setting is kept the same.




SIMULTANEOUS HEAT TRANSFER

MECHANISMS

- Heat transfer is only by conduction in opaque
solids, but by conduction and radiation in
semitransparent solids.

* In the absence of radiation, heat transfer
through a fluid is either by conduction or
convection, depending on the presence of any
bulk fluid motion.

- Convection can be viewed as combined
conduction and fluid motion, and conduction in a
fluid can be viewed as a special case of
convection in the absence of any fluid motion.

* Heat transfer through a vacuum is by radiation
only since conduction or convection requires the
presence of a material medium.

T,| OPAQUE |7,
SOLID

—)

Conduction

GAS
T, T,

Radiation
2 modes

Conduction or
convection

r,| VACUUM |7

=

Radiation

FIGURE 1-39

Although there are three mechanisms of]

heat transfer, a medium may involve
only two of them simultaneously.
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:

|| . . . = . S _
a Consider a person standing in a breezy room at 20°C. Determine the total rate

:

EXAMPLE 1-10 Heat Loss from a Person

of heat transfer from this person if the exposed surface area and the average
outer surface temperature of the person are 1.6 m? and 29°C, respectively, and
the convection heat transfer coefficient is & W/m? - °C (Fig. 16-19).

SOLUTION The total rate of heat transfer from a person by both convection
and radiation to the surrounding air and surfaces at specified temperatures is to
be determined.

Assumptions 1 Steady operating conditions exist. 2 The person is completely
surrounded by the interior surfaces of the room. 3 The surrounding surfaces are
at the same temperature as the air in the room. 4 Heat conduction to the floor
through the feet is negligible.

Properties The emissivity of a person is & = 0.95 (Table 16-6).

Room
air

FIGURE 140

Heat transfer from the person
described in Example 1-10.




Analysis The heat transfer between the person and the air in the room will be
by convection (instead of conduction) since it is concelvable that the air in the
vicinity of the skin or clothing will warm up and rise as a result of heat transfer
from the body, initiating natural convection currents. It appears that the exper-
imentally determined value for the rate of convection heat transfer in this case
is 6 W per unit surface area (m?2) per unit temperature difference (in K or °C)
between the person and the air away from the person. Thus, the rate of convec-
tion heat transfer from the person to the air in the room is

*

annv = hAs {Ts - Tv}
= (6 W/m? - °C)(1.6 m*)(29 — 20)°C
= 864 W

The person will also lose heat by radiation to the surrounding wall surfaces.
We take the temperature of the surfaces of the walls, celling, and floor to be
equal to the air temperature in this case for simplicity, but we recognize that
this does not need to be the case. These surfaces may be at a higher or lower
temperature than the average temperature of the room air, depending on the
outdoor conditions and the structure of the walls. Considering that air does not
Intervene with radiation and the person Is completely enclosed by the sur-
rounding surfaces, the net rate of radiation heat transfer from the person to the
surrounding walls, ceiling, and floor Is

Qm =eoA, (T3 —T2.)

SUIT

= (0.95)(5.67 X 10~ W/m? - K¥(1.6 m?)
X [(29 + 273 — (20 + 273 K¢

=81.7TW




MNote that we must use absolufe temperatures in radiation calculations. Also
note that we used the emissivity value for the skin and clothing at room tem-
perature since the emissivity Is not expected to change significantly at a slightly
higher temperature.

Then the rate of total heat transfer from the body is determined by adding
these two quantities:
Quotal = Ceony T Orag = (86.4 + 81L.7)W = 168.1 W

=

Discussion The heat transfer would be much higher If the person were not
dressed since the exposed surface temperature would be higher. Thus, an im-
portant function of the clothes is to serve as a barrier against heat transfer.

In these calculations, heat transfer through the feet to the floor by conduc-
tion, which is usually very small, is neglected. Heat transfer from the skin by
perspiration, which is the dominant mode of heat transfer in hot environments,
Is not considered here,




EXAMPLE 1-11  Heat Transfer between Two Isothermal Plates

a Consider steady heat transfer between two large parallel plates at constant

m temperatures of 7, = 300 K and 7, = 200 K that are L = 1 cm apart, as shown

m in Fig. 16-20. Assuming the surfaces to be black (emissivity £ = 1), determine
the rate of heat transfer between the plates per unit surface area assuming the

E gap between the plates is (a) filled with atmospheric air, (b) evacuated, (c) filled
with urethane insulation, and (d) filled with superinsulation that has an appar-
ent thermal conductivity of 0.00002 W/m - °C.

[
SOLUTION The total rate of heat transfer between two large parallel plates at
specified temperatures is to be determined for four different cases.
Assumptions 1 Steady operating conditions exist. 2 There are no natural con-
vection currents in the air between the plates. 3 The surfaces are black and
thus e = 1.

Properties The thermal conductivity at the average temperature of 250 K is
k= 0.0219 W/m - °C for air (Table A-22}, 0.026 W/m - °C for urethane insula-
tion (Table A-28), and 0.00002 W/m - °C for the superinsulation.
Analysis (a) The rates of conduction and radiation heat transfer between the
plates through the air layer are

T, — T, (300 — 200)°C

Ouong = kA 7 = (0.0219 W/m - °C)(1 m?) ~——— =219 W

and

de =ecA(T{— T3
= (1)(5.67 X 108 W/m? - K*(1 m?)[(300 K)* — (200 K)*] = 368 W

Therefore,
Q[oml = annd + érad =219 + 368 = 53? W

The heat transfer rate in reality will be higher because of the natural convection
currents that are likely to occur in the air space between the plates.

FIGURE 1-41

Schematic for Example 1-11.




(b) When the air space between the plates is evacuated, there will be no con-
duction or convection, and the only heat transfer between the plates will be by
radiation. Therefore,

@m[aj = de = 368 W

(c) An opaque solid material placed between two plates blocks direct radiation
heat transfer between the plates. Also, the thermal conductivity of an insulating
material accounts for the radiation heat transfer that may be occurring through
the voids in the insulating material. The rate of heat transfer through the ure-
thane insulation is

T = (300 — 200)°C

- _ - _ 2 _ ; N-Tal 3 — M .
Qroal = Ceond = kA I (0.026 W/m - °C)(1 m?) —— 260 W

MNote that heat transfer through the urethane material is less than the heat
transfer through the air determined in (&), although the thermal conductivity of
the insulation is higher than that of air. This is because the insulation blocks
the radiation whereas air transmits it.

(d) The layers of the superinsulation prevent any direct radiation heat transfer
between the plates. However, radiation heat transfer between the sheets of su-
perinsulation does occur, and the apparent thermal conductivity of the super-
Insulation accounts for this effect. Therefore,

. T, — T, (300 — 200)°C

S - : 2 — 0 W
O = kA —— (0.00002 W/m - °C)(1 m?)—5— 0.2 W

which is 1agg of the heat transfer through the vacuum. The results of this exam-
ple are summarized in Fig. 16-21 to put them into perspective.

Discussion This example demonstrates the effectiveness of superinsulations,
which are discussed in Chap. 17, and explains why they are the insulation of
choice in critical applications despite their high cost.




(a) Air space

(b) Vacuum

(c) Insulation

|H
I.H HMI

(d) Superinsulation

FIGURE 1-42

Different ways of reducing heat transfer between two isothermal plates, and their effectiveness.
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exampLE 1—12  Heat Transfer in Conventional
and Microwave Ovens

The fast and efficient cooking of microwave ovens made them one of the es-
sential appliances in modern kitchens (Fig. 16-22). Discuss the heat transfer

mechanisms associated with the cooking of a chicken in microwave and con-
ventional ovens, and explain why cooking in a microwave oven is more efficient.

SOLUTION Food is cooked in a microwave oven by absorbing the electromag-
netic radiation energy generated by the microwave tube, called the magnetron.
The radiation emitted by the magnetron is not thermal radiation, since its emis-
sion is not due to the temperature of the magnetron; rather, it is due to the
conversion of electrical energy into electromagnetic radiation at a specified
wavelength. The wavelength of the microwave radiation is such that it is re-
flected by metal surfaces; fransmitted by the cookware made of glass, ceramic,
or plastic; and absorbed and converted to internal energy by food (especially the
water, sugar, and fat) molecules.

In a microwave oven, the radiation that strikes the chicken is absorbed by
the skin of the chicken and the outer parts. As a result, the temperature of the
chicken at and near the skin rises. Heat is then conducted toward the inner
parts of the chicken from its outer parts. Of course, some of the heat absorbed
by the outer surface of the chicken is lost to the air in the oven by convection.

In a conventional oven, the air in the oven Is first heated to the desired tem-
perature by the electric or gas heating element. This preheating may take sev-
eral minutes. The heat is then transferred from the air to the skin of the chicken
by natural convection in most ovens or by forced convection in the newer con-
vection ovens that utilize a fan. The air motion in convection ovens increases
the convection heat transfer coefficient and thus decreases the cooking time.
Heat is then conducted toward the inner parts of the chicken from its outer
parts as in microwave ovens.

Microwave ovens replace the slow convection heat transfer process in con-
ventional ovens by the instantaneous radiation heat transfer. As a result, micro-
wave ovens transfer energy to the food at full capacity the moment they are
turned on, and thus they cook faster while consuming less energy.

FIGURE 143
A chicken being cooked in ¢
microwave oven (Example 1-12).




t EXAMPLE 1-13  Heating of a Plate by Solar Energy

: A thin metal plate is insulated on the back and exposed to solar radiation at the
front surface (Fig. 16-23). The exposed surface of the plate has an absorptivity
of 0.6 for solar radiation. If solar radiation is incident on the plate at a rate of
700 W/m? and the surrounding air temperature is 25°C, determine the surface
temperature of the plate when the heat loss by convection and radiation equals

™ the solar energy absorbed by the plate. Assume the combined convection and

® radiation heat transfer coefficient to be 50 W/m?2 - °C.

SOLUTION The back side of the thin metal plate is insulated and the front
side Is exposed to solar radiation. The surface temperature of the plate is to be
determined when it stabilizes.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer through the
Insulated side of the plate is negligible. 3 The heat transfer coefficient remains
constant.

Properties The solar absorptivity of the plate is given to be o« = 0.6.

FIGURE 144
Schematic for Example 1-13




Analysis The absorptivity of the plate is 0.6, and thus 60 percent of the solar
radiation incident on the plate will be absorbed continuously. As a result, the
temperature of the plate will rise, and the temperature difference between the
plate and the surroundings will increase. This increasing temperature difference

will cause the rate of heat loss from the plate to the surroundings to increase.
At some point, the rate of heat loss from the plate will equal the rate of solar
energy absorbed, and the temperature of the plate will no longer change. The
temperature of the plate when steady operation is established is deter-
mined from

Egajned - Elost or “As {incident, solar — Iﬁrn:u:uml:uirua.:l‘J"l.s {Ts > =)

Solving for T, and substituting, the plate surface temperature is determined
to be
‘i’incident, solar 0.6 x {?DD “IJFIT]E\J'

=T, ta—F]——=2°C+ = 33.4°C
I,=T,+ « P 25°C 50 W/mZ . °C 33.4°C

Discussion MNote that the heat losses will prevent the plate temperature from
rising above 33.4°C. Also, the combined heat transfer coefficient accounts for
the effects of both convection and radiation, and thus it is very convenient
fo use in heat transfer calculations when its value Is known with reasonable
accuracy.




Concluding Points

- Differences between Thermodynamics and Heat Transfer?
* Basic Concepts of Thermodynamics

+ Heat Transfer Modes?

* Fourier's Law of Heat Conduction?

* Thermal Conductivity and Thermal Diffusivity?
* Natural (or Free) and Forced Convection?

» Convection and Newton's Law of Cooling?

- Radiation and Stefan-Boltzman Law?

* Blackbody and Emissivity?

- Kirchhoff's Law of Radiation?

- Combined Heat Transfer Coefficient?

- Simultaneous Heat Transfer Mechanisms?
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HEAT AND MASS TRANSFER

Heat Conduction Equaﬁon



Outline

- Introduction

One-dimensional heat conduction equation
* General heat conduction equation
Boundary and initial conditions

Solution of one-dimensional heat conduction
problems

Heat generation in a solid
Variable thermal conductivity

- Conclusions



Objectives

To understand multidimensionality and ftime dependence of heat
transfer, and the conditions under which a heat transfer problem
can be approximated as being one-dimensional.

To obtain the differential equation of heat conduction in various
coordinate systems, and simplify it for steady one-dimensional
case.

To identify the thermal conditions on surfaces, and express them
mathematically as boundary and initial conditions.

To solve one-dimensional heat conduction problems and obtain the
temperature distributions within a medium and the heat flux.

To analyze one-dimensional heat conduction in solids that involve
heat generation.

To evaluate heat conduction in solids with temperature-dependent
thermal conductivity.



Introduction

» Although heat transfer and temperature are closely
related, they are of a different nature.

» Temperature has only magnitude

> it is a scalar quantity.

Heat transfer has direction as well as magnitude
It 1S a vector quantity.

* We work with a coordinate system and indicate direction
with plus or minus signs.




The driving force for any form of heat transfer is the temperature
difference.

The larger the temperature difference, the larger the rate of heat
transfer.

Three prime coordinate systems:
- rectangular (T(x,y, z, 1)),
- cylindrical (T(r, f, z, 1)),

- spherical (T(r, f,q,t)). r=——==5-—-—----




Classification of conduction heat transfer problems:
steady versus transient heat transfer,
multidimensional heat transfer,
heat generation.
15°C 7°C  15°C 7°C

Steady implies no \ / N /
change with time at

any point within the ) 0 ) O - O

medium

Transient implies Time =2 pPM Time =5 P™m
variation with time 1500 . soC

or time dependence N N




Multidimensional Heat Transfer

Heat transfer problems are also classified as being:
- one-dimensional,
- two dimensional,
- three-dimensional.

In the most general case, heat transfer through a medium is three-
dimensional. Elowever', some problems can be classified as two- or one-
dimensional depending on the relative magnitudes of heat transfer rates
in different directions and the level of accuracy desired.

The rate of heat conduction through a medium in a specified direction
(say, in the x-direction) is expressed by Fourier's law of heat conduction
for one-dimensional heat conduction as:

Tﬂ

. {

Ucona = —,ﬂ';{% (W) slope ‘g<0
Heat is conducted in the direction of T
decreasing temperature, and thus the |
temperature gradient is negative when m—
heat is conducted in the positive x - Heat flow
direction.




Multidimensional Heat Transfer

One-dimensional if the femperature in the medium varies in one
direction only and thus heat is transferred in one direction, and the
variation of temperature and thus heat transfer in other directions

are negligible or zero.

Two-dimensional if the temperature in a medium, in some cases, varies
mainly in fwo primary directions, and the variation of temperature in
the third direction (and thus heat transfer in that direction) is

negligible.

Megligible
heat transfer

Frimary
direction of
heat transfer

FIGURE 2-6

Heat transfer through the window
of a house can be taken to be
one-dimensional.

S0°CY

B0°C "

FIGURE 2-5
Two-dimensional heat transfer 8
in a long rectangular bar.



General Relation for Fourier's Law
of Heat Conduction

The heat flux vector at a point P on the surface of the figure must
be perpendicular to the surface, and it must point in the direction
of decreasing temperature

If nis the normal of the isothermal A
surface at point P, the rate of heat conduction '
at that point can be expressed by Fourier's law
as

i

Qn = _kAE (W)

_— An isotherm

In rectangular coordinates,
the heat conduction vector
can be expressed in terms |5 __ya or
of its components as "

- C o L. : oT
Qn :QXI +Qy_l +sz S Qy = — E
which can be determined T

from Fourier's law as Q, =—kA —



Heat Generation

Examples:

- electrical energy being converted to heat
at a rate of I°R,

- fuel elements of nuclear reactors,
- exothermic chemical reactions.
Heat generation is a volumetric phenomenon.

The rate of heat generation units : W/m3 or
Btu/h - f13.

The rate of heat generation in a medium may
vary with time as well as position within the
medium.

The total rate of heat generation in a medium
of volume V can be determined from

E.gen = jégen dV (W)
\

FIGURE 2-9

Heat is generated in the heating coils
of an electric range as a result of the
conversion of electrical energy to heat.

Solar
radiation

x

S~ Solar energy

absorbed by
water

Water

Cpent®) =4 ahonebed!¥)

FIGURE 2-10

The absorption of solar radiation by

water can be treated as heat

generation. 10



: EXAMPLE 2-2 Heat Generation in a Hair Dryer

B The resistance wire of a 1200-W hair dryer is 80 cm long and has a diameter

B of D = 0.3 cm (Fig. 2-12). Determine the rate of heat generation in the wire

B per unit volume, in Wicm?®, and the heat flux on the outer surface of the wire
as a result of this heat generation.

given. The heat generation and the heat flux are to be determined.
Assumptions Heat is generated uniformly in the resistance wire.

Analysis A 1200-W hair dryer converts electrical energy into heat in the wire
at a rate of 1200 W. Therefore, the rate of heat generation in a resistance wire
s equal to the power consumption of a resistance heater. Then the rate of heat
generation in the wire per unit volume is determined by dividing the total rate
of heat generation by the volume of the wire,

. Epo  Eg 1200 W

= = = 212 W/em?®
# " Vywe  (#DY4)L  [#(0.3 cm)/4](80 cm) e

Similarly, heat flux on the outer surface of the wire as a result of this heat gen-
eration is determined by dividing the total rate of heat generation by the sur-

[
N

SOLUTION The power consumed by the resistance wire of a hair dryer is
face area of the wire,

E., . 1200 W

Qs Agire 1 (0.3 em)(80 cm)
mDL

= 15.9 W/em?

Discussion MNote that heat generation is expressed per unit volume in W/iem?
or Btu/h - ft*, whereas heat flux is expressed per unit surface area in Wiem? or
Btu/h - ft=,

Hair dryer
1200 W

FIGURE 2-12

Schematic for Example 2-2.
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One-Dimensional Heat Conduction
Equa‘l'ion - Plane Wall

Rate of heat Rate of heat Rate of heat Rate of change of
conductlon conductlon + generatlon inside | — | the energy content
at x at x+A4x the element of the element

REY
Ege,-’ Volume
- :,r element
__j!-"‘ *-,__hq_h
_ i
Sl o | I"--t.
lement 287~ g
Q Q. . +E _ Aeenen 5
T T = I : | e
X+ AX gen,element At 3 '~
L B | i
—8 | I Ir___
] L | I L -
7 NQI---'I- T Jl_._ | I T
I N e e
\ ] = T K4 Ax ;"J- gl
54 - i o
g B ’__., e,
e -
P il
D_\_H-\-\-‘-."-h

1l



I

: Il element !

'Q Qx+Ax' 'Egen element T At :
— — — * [ — — e —

‘ 'ﬂ' L _,_ —_——a

* The change I m thé energy content and the rate of heat
generation cam:fe expressed as

S <y LA N

& T
{AEelementz' Et+4t —E =mc (Tt+At -1 ) "0 CAAX (T”At Tt)u

\ I
PR

« Substituting i/n’to.above eguatlon,,/We get -
'IQ Qx+Ax\|ﬂ_egenAAX ‘ZI,OCAAX Tt+it Tt \‘l

 Dividing by AAX,,takmg_the’lm\lt as Ax—=> 0 and At=> 0,

and from Fourier’s law: e
L2 (0T e, - e T

A OX OX ot 13



The area A is constant for a plane wall > the one dimensional
transient heat conduction equation in a plane wall is

of(, 0T oT
' ivity: —| k—|+€,, = pC—
Variable conductivity ax( axj on = PC—
o OT  Cn _10T . K
Constant conductivity: 2k aoa P

The one-dimensional conduction equation may be reduces to the
following forms under special conditions

i 1) Steady-stat T Cen
-S g _
eady-state 7T
i : o°T 14T
< 2) Transient, no heat generation: Fv s
, d°T
\_ 3) Steady-state, no heat generation: =0

dx?
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One-Dimensional Heat Conduction
Equation - Long Cylinder

Rate of heat| | Rate of heat Rate of heat Rate of change of
conduction | ©| conduction | +|generation inside | —| the energy content
atr at r+Ar the element of the element
_ element
Q Q +E =
r+Ar gen,element

At

1J



|

' Pl element !

'Q Qr+Ar' IEgen element ¥ At :
— — * —-— e - — —-— o -

‘ 'ﬂ' L _,_ -

* The change I m thé energy content and the rate of heat
generation cam:fe expressed as

o L VN

[T/ |
'AE Et+4t —E, =mc (Tt+At =T ) "0 CAAT (Tt+At thu

element/'

\ |

. Substltutlng m’to.Eq 2—1{3 We gef AN
'Q Qr+Ar\IH—egenAAr ‘leCAAr THA;t Tt \‘I

 Dividing by AAr,,takmg_the’llnNt as Ar-> 0 dnd 4t-> 0,

and from Fourier’s law: ~e___."

16( 6T oT
=90 kA é ot
Aar( 8rj e 16




Noting that the area varies with the independent variable r
according to A=2xrL, the one dimensional transient heat
conduction equation in a long cylinder becomes

Variable conductivity: lﬁ(rk ﬁ}ré L
r or or o ot

. €.,
Constant conductivity: 1a(raTj+ en _ 1 OT
ror\ or k a ot

The one-dimensional conduction equation may be reduces
to the following forms under special conditions

4 1d( dT) &,
1) Steady-state: rar T Tk =0

< | 1o emy_aar
2) Transient, no heat generation: 5| " 5 |7 &

d( dT
_3) Steady-state, no heat generation: (" dr j: 0 17



One-Dimensional Heat Conduction
Equation - Sphere

18



EXAMPLE 2-4 Heat Conduction in a Resistance Heater

A 2-kW resistance heater wire with thermal conductivity k = 15 Wim - K, di-
ameter 0 = 0.4 cm, and length L = 50 cm is used to boil water by immersing
it in water (Fig. 2-19). Assuming the variation of the thermal conductivity of
the wire with temperature to be negligible, obtain the differential equation that
describes the variation of the temperature in the wire during steady operation.

SOLUTION The resistance wire of a water heater is considered. The differen-
tial equation for the variation of temperature in the wire is to be obtained.
Analysis The resistance wire can be considered to be a very long cylinder
since Its length 1s more than 100 times its diameter. Also, heat Is generated
uniformly in the wire and the conditions on the outer surface of the wire are
uniform. Therefore, it Is reasonable to expect the temperature in the wire to
vary in the radial r direction only and thus the heat transfer to be one-
dimensional. Then we have T = T(r) during steady operation since the tem-
perature in this case depends on ronly.

The rate of heat generation in the wire per unit volume can be determined
from

B Egw 2000 W
oy = = = -
= Ve (DML [(0.004 m)¥4](0.5 m)

Moting that the thermal conductivity is given to be constant, the differential
equation that governs the variation of temperature in the wire is simply

Eq. 2-27,

= 0.318 X 10° W/m?

14, ar)

{%lgrn _
I dr rdr._ =

k
which is the steady one-dimensional heat conduction equation in cylindrical
coordinates for the case of constant thermal conductivity.
Discussion MNote again that the conditions at the surface of the wire have no
effect on the differential equation.

L

— Reslstance
heater

FIGURE 2-19

Schematic for Example 2—4.

19



General Heat Conduction Equation

77N
Qz+Azl\
h YRR
Volume element \‘ /\] l Q}. +,\ﬁjr
.=\ T»‘ -
[ Q
7 \\ ~
l 6 gon AXAYAZ RN

gen

/'*/

z Q A
. \~ PA }“HAX Ay ~
y Il

X '\ Qz /
Rate of heat  Rate of heat Rate of heat  Rate of change
conduction - conduction 4 generation — of the energy
atx,y,and z at x+4x, y+4y, inside the content of the
l and z+A4z element element

A A\ .

{Q + Q + Q \ 6X+AX y+Ay Qz+Az gen element —

element

At 20




Repeating the mathematical approach used for the one-
dimensional heat conduction the three-dimensional heat

conduction equation is determined to be

Two-dimensional

A

- [aZT 82T\ o°T € 10T
Constant conductivity: c Y e 2O
ox> oy° o° k a o

_ J

Y
Three-dimensional
& T 8T T &,
1) Steady-state: PV oy T2 T T

o°T o°T 62T 1T
< 2) Transient, no heat generation: 52 " 8y2 o> o ot

o7 aZT 62T
k3) Steady-state, no heat generation: PV ayz P

21



7

Cylindrical coordinates

10 oT 10T (, 0T of(,0l) | oT
——|K— |+ | K= |+ | K— [+€, = PC—
r or or) r°op\ o0¢ ) oz\ oz ot

Spherical coordinates

1of,,0T 1 o, dl 1 o, . o) . Gl
S| K — | K [t | ksind— |+, = pc—
ror\ or) resin“dog\ o) resingod il ot
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EXAMPLE 2-6 Heat Conduction in a Short Cylinder

A short cylindrical metal billet of radius A and height £ is heated in an oven to
a temperature of 800°F throughout and is then taken out of the oven and al-
lowed to cool in ambient air at 7., = 65°F by convection and radiation. As-
suming the billet is cooled uniformly from all outer surfaces and the variation
of the thermal conductivity of the material with temperature is negligible, ob-
tain the differential equation that describes the variation of the temperature in
the billet during this cooling process.

SOLUTION A short cylindrical billet is cooled in ambient air. The differential
equation for the variation of temperature is to be obtained.
Analysis  The billet shown in Fig. 2-25 is initially at a uniform temperature
and is cooled uniformly from the top and bottom surfaces in the z-direction as
well as the lateral surface in the radial r-direction. Also, the temperature at any
point in the ball changes with time during cooling. Therefore, this is a two-
dimensional transient heat conduction problem since the temperature within
the billet changes with the radial and axial distances r and z and with time f.
Thatis, T= Tir, z, t).

The thermal conductivity is given to be constant, and there is no heat genera-
tion in the billet. Therefore, the differential equation that governs the variation

of temperature in the billet in this case is obtained from Eq. 2-43 by setting
the heat generation term and the derivatives with respect to «» equal to zero. We
obtain

_ar
) PCat

| =
-'—'_‘—--.
1:|¢-‘u
- =
;Fa’lm
—

In the case of constant thermal conductivity, it reduces to

1a( a:r)+aﬂzr"=l£
rar\ ar a72 o« at

which is the desired equation.
Discussion  Mote that the boundary and initial conditions have no effect on the
differential equation.

Metal | 600°F T,
biller 1

FIGURE 2-25

Schematic for Example 2-6.
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Boundary and Initial Conditions

- Specified Temperature Boundary Condition
+ Specified Heat Flux Boundary Condition

» Convection Boundary Condition

» Radiation Boundary Condition

* Interface Boundary Conditions

* Generalized Boundary Conditions

24



Specified Temperature Boundary
Condition

For one-dimensional heat transfer
through a plane wall of thickness
L, for example, the specified
temperature boundary conditions
can be expressed as

T(0,t) =T,
T(L,t)=T,

] S
150°C It b 70°C
Oe >
X
100, r) = 150°C
T(L. 1) =70°C

The specified temperatures can be constant, which is the case
for steady heat conduction, or may vary with time.

25



Specified Heat Flux Boundary
Condition

The heat flux in the positive x- Heat
direction anywhere in the medium, flux ‘ Conduction
including the boundaries, can be

expressed by Fourier's law of heat ~ ©~ " )
cat

CondUCTion as Conduction| flux
e
¢ JT(L.1) _ g
dT Heat flux in the i
g=-k—= positive x- 04 T—.
dx direction L

The sign of the specified heat flux is determined by
inspection: positive if the heat flux is in the positive
direction of the coordinate axis, and negative if it is in
the opposite direction.

26



Two Special Cases

Insulated boundary
|‘/__

Thermal symmetry

Center plane

-/' ‘\ Zero !
Insulation T(x, 1) 60°C slope |
— Temperature
| <] distribution
_ (symmetric
Oft 1 I X : ' about center
: | plane)
|
700, 1
9TO. 1) _ . | R
dx = L x
T(L, 1) =60°C 2
oMLY
ox

TOY aT(0.1) _

0 0

GT(%,t)

0

OX OX

OX
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EXAMPLE 2-7 Heat Flux Boundary Condition

Consider an aluminum pan used to cook beef stew on top of an electric range.
The bottom section of the pan is L = 0.2 cm thick and has a diameter of D =
20 cm. The electric heating unit on the range top consumes 800 W of power
during cooking, and 90 percent of the heat generated in the heating element
is transferred to the pan. During steady operation, the temperature of the inner
surface of the pan is measured to be 110°C. Express the boundary conditions
for the bottom section of the pan during this cooking process.

oL, Waer

(-llﬂ"‘C
| Iﬂ[qj 1]

FIGURE 2-32
Schematic for Example 2-7.

SOLUTION An aluminum pan on an electric range top is considered. The
boundary conditions for the bottom of the pan are to be obtained.
Analysis  The heat transfer through the bottom section of the pan is from the
bottom surface toward the top and can reasonably be approximated as being
one-dimensional. We take the direction normal to the bottom surfaces of the
pan as the x axis with the origin at the outer surface, as shown in Fig. 2-32.
Then the inner and outer surfaces of the bottom section of the pan can be rep-
resented by x = 0 and x = L, respectively. During steady operation, the tem-
perature will depend on x only and thus T = T(x).

The boundary condition on the outer surface of the bottom of the pan at
x = 0 can be approximated as being specified heat flux since it is stated that
90 percent of the BOO W (i.e., 720 W) is transferred to the pan at that surface.

Therefare,
dT(0)
k o~ do
where
= Heat I:ran;feT rat.e _ 0.720 kW; — 979 kKW/m?
Bottom surface area (0.1 m)?

The temperature at the inner surface of the bottom of the pan is specified to
be 110°C. Then the boundary condition on this surface can be expressed as

Ly =110°C

where L = 0.003 m.
Discussion  MNote that the determination of the boundary conditions may re- 28
quire some reasoning and approximations.



Convection Boundary Condition

Heat conduction Heat convection
at the surface in - at the surface in
a selected - the same
direction direction
8T 0,t - |
( ) — hl[ —T (O,t)] Convection [ Conduction h,
| T,
miT,., -0, ] =k L0
oT (L,t
—k ( ) = h2 [T (L, t) —TOOZ] h Conduction | Convection
OX I, e
kLD (L - T, ]
ox 2 2
Oe TL—;
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EXAMPLE 2-8 Convection and Insulation Boundary Conditions

Steam flows through a pipe shown in Fig. 2-35 at an average temperature of
I. = 200°C. The inner and outer radil of the pipe are r, = 8 cm and r, =
8.5 cm, respectively, and the outer surface of the pipe is heavily insulated. If
the convection heat transfer coefficient on the inner surface of the pipe Is
h= 65 W/m? . K, express the boundary conditions on the inner and outer sur-
faces of the pipe during transient periods.

SOLUTION The flow of steam through an insulated pipe is considered. The
boundary conditions on the inner and outer surfaces of the pipe are to be
obtained.
Analysis During initial transient periods, heat transfer through the pipe mate-
rial predominantly i1s in the radial direction, and thus can be approximated as
being one-dimensional. Then the temperature within the pipe material changes
with the radial distance rand the time t. That is, T = T(r, t).

It is stated that heat transfer between the steam and the pipe at the inner sur-
face is by convection. Then taking the direction of heat transfer to be the posi-
tive r direction, the boundary condition on that surface can be expressed as

aT(r. 1)
—k—— = WIT., = T(r)]

The pipe is said to be well insulated on the outside, and thus heat loss through
the outer surface of the pipe can be assumed to be negligible. Then the bound-
ary condition at the outer surface can be expressed as

aliry 1)
ar E

Discussion Mote that the temperature gradient must be zero on the outer sur-
face of the pipe at all times.

[nsulation
I
1

FIGURE 2-35
Schematic for Example 2-8.
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Radiation Boundary Condition

Heat conduction Radiation exchange
atthesurfaceina | — at the surface in
selected direction the same direction
oT (0,t
—k ( : ) = 6'10|: surr 1 —T (O t) :| Radiation | Conduction
OX —»L}
aT (L t) €0 [Tj}l‘i | — 10, f)4] =-k %
—K = gZG[T (L t) o surr 2:| £ &
aX Tsurr. 1 Tsur;', 2
Conduction | Radiation
- aT(ai’ ), =&,0[T(L. - T, 2]

’

.
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Interface Boundary Conditions

At the interface the requirements are:
(1) two bodies in contact must have the same temperature at the area of

contact,
(2) an InTer'fC(CZ (Wthh |S a Interface
surface) cannot store any BN Mater

energy, and thus the heat flux A ) Bﬂ |
Gy, 8) = Ty(x, £

on the two sides of an
interface must be the same. f;{fﬂ\Qt

TA(XO’ t) = TB(XO’ t) Conduction | Conduction
T, (X, 1) OT5 (X, 1) i) 0T 0
—kA—Z—kB— _k.-i ke —_ka i
OX OX 0 T‘rﬂ' I
Generalized boundary condition FIGURE 2-37
Boundary conditions at the interface
of two bodies in perfect contact.
Heat transfer Heat transfer
to the surface — | from the surface
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EXAMPLE 2—-11 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness { = 0.2 m, thermal conductivity k =
1.2 Wim - °C, and surface area 4 = 15 m2. The two sides of the wall are main-
tained at constant temperatures of T, = 120°C and T, = 50°C, respectively, as
shown in Fig. 2-41. Determine (a) the variation of temperature within the wall
and the value of temperature at x = 0.1 m and (&) the rate of heat conduction
through the wall under steady conditions.

SOLUTION A plane wall with specified surface temperatures is given. The
variation of temperature and the rate of heat transfer are to be determined.
Assumptions 1 Heat conduction is steady. 2 Heat conduction is one-
dimensional since the wall is large relative to its thickness and the thermal

conditions on both sides are uniform. 3 Thermal conductivity is constant.
4 There is no heat generation.

Froperties  The thermal conductivity is given to be & = 1.2 Wim - °C.
Analysis  (a) Taking the direction normal to the surface of the wall to b= the
x-direction, the differantial equation for this problem can be expressed as

dir
i

=0

with boundary conditions

Ty = T} = 120°C
T(L) = T, = 50°C

The differential equation is linear and second order, and a quick inspection of
it reveals that it has a single term involving derivatives and no terms involving
the unknown function Tas a factor. Thus, it can be solved by direct integration.
Moting that an integration reduces the order of a derivative by one, the gen=ral
zolution of the differential equation above can be obtained by two simple suc-
cessive integrations, each of which introduces an integration constant.
Integrating the differential equation once with respect to x yizlds

ar
ax = ©
where &) is an arbitrary constant. Motice that the order of the derivative went
down by one as a result of integration. As a check, if we takes the derivative of
this equation, we will obtain the original differential equation. This equation is
not the solution yvet since it involves a derivative.

Integrating one more time, we obtain

Tix) = C1x + C2

Flane
wall
L et
TJ
(] T
FIGURE 241

Schematic for Example 2-11.

Differential equaiion:
4T _
dx

]

Irlegrase:

Irlegrate again:
T[J.'] = C]J.' T C!

Ceneral bitrary
solution constants

FIGURE 2-42

Obtaining the general solution of a
simple second order differential
equation by integration.
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paint, all occurrences of the dependent

which iz the general solution of the differential equation (Fig. 2-42). The gen-
eral solution in this cass resembles the general formula of a straight line whoss
slope is C, and whose value at x = 0 is C,. This is not surprising since the sec-
ond derivative represents the change in the slope of a function, and a zero sec-
ond derivative indicates that the slope of the function remains constant.
Thersfare, any strajght line is a solution of this differential equation.

The general sclution contains two unknown constants &) and C;, and thus
we nead two equations to determine them uniquely and obtain the specific so-
lution. These equations are obtained by forcing the general solution to satisfy
the specified boundary conditions. The application of 2ach condition yields one
equation, and thus we need to specify two conditions to determine the con-
stants € and Cs.

When applying a boundary condition to an equation, all occurrences of the
dependent and independent vanables and any derivatives are replaced by the
specified values. Thus the only unknowns in the resulting equations are the ar-
bitrary constants.

The first boundary condition can be interpreted as in the general solution, re-
place all the x's by zero and T(x) by T;. That is (Fig. 2-43),

TT'Q:"]=CLK|:|+C2 —F LH2=IJ

Beowndary cordition:

nm=T,
Creneral solifion:
T[J.'] = Cj.’.' S C!
Applving the boundary condifion;
Txi=Cx + 5y
T T
0 ]
FIGURE 243 T,

When applving a b-::pnda.w I:Dl'LIjJ.HDL] Subafifuting;
to the general solution at a specified
TJ=E|_:3':D+|:‘: —5 EE=TJ
and independent variables should be CI[CEI.H not involve x or T(x) after the
replaced by their specified values | boundary condition is applied.
at that point.

The second boundary condition can be interpreted as in the general salution,
replace all the x5 by L and Tlx) by T,. That is,

Hh-T
Substituting the C; and C. expressions into the general solution, we obtain
2= Ty
Ty =—5—x+T, (2-56)

which is the desired salution since it satisfies not anly the differential equation
but also the two specified boundary conditions. That is, differentiating Eq.
2-56 with respect to x twice will give d2T/dx?, which is the given differential
equation, and substituting x = 0 and x = L into Eq. 2-56 gives T(0) = T, and
TiL) = Ty, respectively, which are the specified conditions at the boundaries,

Substituting the given infarmation, the value of the temperature at x = 0.1 m
iz determined to be

(50 — 1200™C
0.2m

(b) The rate of heat conduction arywhers in the wall i= determined from
Fourier's law to be

Ti0.l my = (0.1 m) + 120°C = 85°C

Q= —RAZ = —KAC, = KA S5~ = kA~ (2-57)

The numerical valug of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be
Tl - I‘_\

0 = kA 7= (1.2 Wim - “C){15 m?)

(120 — 505°C
0.2m

= MM WY

Discussion  Mote that under steady conditions, the rate of heat conduction
through a plane wall is constant.
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EXAMPLE 2-15 Heat Loss through a Steam Pipe

Consider a steam pipe of length L = 20 m, inner radius n = & cm, outer radius
rz = 8 cm, and thermal conductivity k = 20 Wim - °C, as shown in Fig. 2-80. 5
The inner and outer surfaces of the pipe are maintainad at average tempera- g
tures of T; = 150°C and T, = 60°C, respectively. Obtain a general relation for m

the temperature distribution inside the pipe under steady conditions, and
determine the rate of heat loss from the steam through the pipe.

SOLUTION A steam pipe i3 subjected to specified temperatures on its
surfaces. The variation of temperature and the rate of heat transfer are to be
determined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
centerling and no variation in the axial direction, and thus T= Tir). 3 Thermal Schematic for Example 2-15.
conductivity is constant. 4 There is no heat generation.

Properties  The thermal conductivity is given to be & = 20 Wim - °C.

Analysls  The mathematical formulation of this problem can be expressed as

FIGURE 2-50

ar\rar) =
with boundary conditions
T(r,) = T, = 150°C
Tirs) = Ta = 60°C
Integrating the differential equation once with respect to rgives

dr
FE =
where C; is an arbitrary constant. We now divide both sides of this equation by

r to bring it to a readily integrable form,

ar _ 5
dr T



Again integrating with respect to r gives (Fig. 2-51)
Tinn=01nr + &5 ia)

We now apply both boundary conditions by replacing all cccurrences of rand
Tirdin Eq. (a) with the specified values at the boundaries. We get

Irp=T), —= Cilnn+G =T
TI:IE]=T3 — CL]HIE+E:=T2

which are two equations in two unknowns, &y and C,. Solving them simultane-
ously gives

o =2"h 4§ o=1,-2-1,
iy ™ =0 T gy

Substituting them into Eq. (a) and rearranging, the variation of temperature
within the pipe is determined to be

I rir) )

0 = iy

(- +T (2-58)
The rate of heat loss from the steam is simply the total rate of heat conduction
through the pipe, and is determined from Fourier's law to be

C‘l J b
= —k(27rl)— = —2=x =27k - ~
k(2mrLl) — 2wkLC, kL n(rir) (2-59)

; dar
IEn:g.lljl:m.‘-:r = _ME

The numerical value of the rate of heat conduction through the pipe is deter-
mined by substituting the given values

- (150 — 60PC

@ = 2m(20 Wim - °C)(20 m) = 786 kW

In(0.08/0.06)

Discussion MNote that the total rate of heat transfer through a pipe is con-
stant, but the heat flux ¢ = QU(2+rl) is not since it decreases in the direction

of heat transfer with increasing radius.

Differenial equation:
a [ dTY _
.:;‘rlnir dr ]l =0
Iniegrais:
dT
f; = C]
Drivicke by i == O)
ar_ 6
ar T
Irndegrate again:

ﬂ?'j:c']lﬂir'fl!:'z

which is the gereral solufion.

FIGURE 2-51

Basic steps involved in the solution
of the steady one-dimensional

heat conduction equation in
cylindrical coordinates.
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Heat Generation in Solids-
The Surface Temperature

Rate of Rate of energy
heat transfer | wm generation
romthe solid” ™ \jithin the solid

Q = égenV (W)
Q = hA% (Ts _TOO) (W)

Examples of
heat generation

) FIGURE 2-55 ‘J:h:’::;lﬂ
egenV At steady conditions, the entire heat —
Ts — Too + generated in a solid must leave the
hAg solid through its outer surface.
For a large plane wall of thickness - e €enl
2L (ASZZA\NaII and VZZLAwaII) s, plane wall o h
For a long solid cylinder of - _T . €4enlo e
radius Io (AS:27ZTOL and V= 721‘02L) seillieky — teo 2h u:\::l:u
. - FIGURE 2-54
For a solid Spher'e of radius o égen I Heat generation in solids is
(AS:47zr02 and V:4/37zr03) Ts,sphere =T _+ 3N commonly encountered in practice.
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Heat Generation in Solids -The maximum
Temperature in a Cylinder (the Centerline)

The heat generated within an inner
cylinder must be equal to the heat
conducted Thr'ough its outer surface.

_k'AY DI 'gen r
. FIGURE 2-56
SUbShTUT'ng These expr'eSSIOHS Heat conducted through a cylindrical
in.‘.o The ClbOVC equa-‘-ion Gnd shell of radius r is equal to the heat

generated within a shell.

separating the variables, we get

—k (27er)(:(;—T =€, (erL) —dT =- ezg’:(” rdr

; N
. /armi \
Integrating from r =0 where T(0) =T, to r=r, | ¢

T E
T, | T,
) |
- . Coenlo Heat generation
CYI'"der '-"“rm i, cylinder = "rll - }r = —H i
Pi 1 i
ane wa sphere IF'" Symmetry
, LJ & 2 line
AT _Cen AT _ e FIGURE 2-57
mzt. plane wall o] max, sphere 6l The maximum temperature in 38

a symmetrical solid with uniform
heat generation occurs at its center.



EXAMPLE 2-18 Heat Conduction in a Two-Layer Medium

Consider a long resistance wire of radius i = 0.2 cm and thermal cunductnr- i

ity ke = 15 Wim « "C in which heat is generated uniformly as a result nf
resistance heating at a constant rate of €., = 50 Wiem? (Fig. 2-61). The wire m
iz embedded in a 0.5-cm-thick layer of ceramic whose thermal conductivity is m
K aramic = 1.2 Wim . °C. If the outer surface temperature of the ceramic layer m
iz measurad to be T, = 45°C, determine the temperatures at the center of the ™
resistance wire and the interface of the wire and the ceramic layer under
steady conditions.

|

SOLUTION The surface and interface temperatures of a resistance wire cov-
ered with a ceramic layer are to be determined.

Assumptlons 1 Heat transfer is steady since there is no changs with time.

2 Heat transfer is one-dimensional since this two-layer heat transfer problem
posaesses symmetry about the centerline and irvolves no change in the axial
direction, and thus T= Tir). 3 Thermal conductivities are constant. 4 Heat
generation in the wire iz uniform.

Properties |t is given that k. = 15 Wim . °C and k..pni. = 1.2 W/m . ® C.

Analysis  Letting T; denate the unknown interface temperature, the heat trans-
fer problem in the wire can be formulated as

1 d I:ﬁr'.l.']rul' E'Eﬂ
f.::rrlz" dr ,]+ i =0
with
Tenin) =T,
drwjmfl}::' _
dr

This problem was solved in Example 2-18, and its solution was determined
to be

Tl = Ty + ——irf — r%) (a)

E‘
I:1'j:'.l.ur:

Interface

Ceramic layer
FIGURE 2-61
Schematic for Example 2-19.
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Moting that the ceramic layer does not involve any heat generation and its
outer surface temperature is specified, the heat conduction problem in that
layer can be expressed as

4 | Do} _

dr -t'r dr |

with
Iceram.i: li'ri = 1'-J'
Tceramic (F2) = T; = 45°C

This problem was solved in Example 2-15, and its solution was determined
to be

lnfﬂm

We have already utilized the first interface condition by setting the wire and
ceramic layer temperatures equal to T; at the interface r = r. The interface
temperature T; is determined from the second interface condition that the heat
flux in the wire and the ceramic layer at r = r; must be the same:

—k . M=—k Lrp——iy "-;’gmrl P

wire dr CETATI dr — 3 - erau:u-: ]:I'l[-.f'-_\.lf.l" :I | 'rl |

Saolving for T; and substituting the given values, the interface temperature is
determined to be

f-g'ﬂ"r] i)
Ty = In+ + 7,
! Hmmh:clﬁ .I"l i
(50 % 10° Wim*)0.002 m}*  0.007 m
- 59 C = 149.4°C
2{1.2 Wim - °C} I Gooam T 457 € = 19

Knowing the interface temperature, the temperature at the centerline (r = O)
is obtained by substituting the known quantities into Eq. (a),

EqenlT _ ag.g00 4 0% 10f Wim*)(0.002 mf* P
Mo 4% (I5Wm-°cy 7

Tire (O) = T +
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Variable Thermal Conductivity, k(T)

* The thermal conductivity of a
material, in general, varies with
Temperature.

* An average value for the thermal
conductivity is commonly used
when the variation is mild.

» This is also common practice for
other temperature-dependent
properties such as the density and
specific heat.

500 I
100 = _‘%sum
20 Copper |4
LT Gold |
200 — Aluminum ——
H"u“-“h‘
N Tungsten | ==
- 100 P— r
i Y - |
E - =] Plinl'umm
= 50 ~
e < Iron
= I, N
z AN n
a 20 ><"£ Stainless steel,
= o~ ;
5 _—~ AISI 304
= 10 Aluminum
P oxide
h“-“h‘_‘. )(
- Pyroceram ==
“ J';
- L~
F_,...--"'"'"'# Fused quartz
1L LT |

100 3000 5000 1000 2000 4000

Temperature (K}
FIGURE 2-62
Variation of the thermal conductivity
of some solids with temperature.
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Variable Thermal Conductivity for

One-Dimensional Cases

When the variation of thermal conductivity with
temperature k(T) is known, the average value of the
thermal conductivity in the femperature range
between T, and T, can be determined from

Flane wall

KTy =kjl+pBT)

f=0

k J; k(T 7 %
SO . e E
The variation in thermal conductivity of a material 0 —
with can often be approximated as a linear function
and CXPF‘CSSQd as The variation of te mpemtE:z LLlnREl i[ﬂiﬁ
k(T) = ko (1_|_ 'BT) wall during steady one-dimensional

heat conduction for the cases of

B is the temperature coefficient of thermal
conductivity.

constant and variable
thermal conductivity.

For a plane wall the femperature varies linearly during steady one-
dimensional heat conduction when the thermal conductivity is constant.
This is no longer the case when the thermal conductivity changes with

temperature (even linearly).
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Concluding Points

¢ One-Dimensional Heat Conduction
¢ General Heat Conduction Equation
¢ Boundary and Initial Conditions

¢ Solution of Steady One-Dimensional Heat Conduction
Problems

¢ Heat Generation in a Solid
¢ Variable Thermal Conductivity k (T )
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OUTLINE

- Steady Heat Conduction in Plane Walls

- Thermal Contact Resistance

- Generalized Thermal Resistance Networks

* Heat Conduction in Cylinders and Spheres

- Critical Radius of Insulation

- Heat Transfer from Finned Surfaces

- Heat Transfer in Common Configurations

- Conclusions



Steady Heat Conduction In Plane Walls

Heat transfer through the wall is in
the normal direction to the wall
surface, and no significant heat
transfer takes place in the wall in
other directions.

Heat transfer in a certain direction
is driven by the temperature
gradient in that direction.

There will be no heat transfer in a
direction in which there is no
change in temperature.

If the air femperatures in and
outside the house remain constant,
then heat TI‘GnSfCI" Thl"OUQh the wall Heat transfer through a wall is one-

of a house can be mode|ed as Steady imensional when the temperature of
and one-dimensiona/. the wall varies in one direction only.

1




L T,
Q-:-:um:l. wall dx = — kA dT

lx=0 Ir=T,

Integrating and rearranging

* Energy balance:

Rate of Rate of Rate of change
heat transfer | —| heat transfer | =| of the energy
into the wall out of the wall of the wall

FIGURE 3-2

. ffE*.J.':-‘:l] Under steady conditions,

GI f;_ = the temperature distribution in
n out df plane wall is a straight line.

0

Coond, wan — constant

wall wn’rh time at any point) and
- The Fourier's law of heat conduction for the wall:

dT

Do £
.t;_.u._:r_'und_ wall — —kA dx

where dT/dx= constant and T varies linearly with x. :



The Thermal Resistance Concept

Heat conduction through a plane wall is

= A (“"C/W)

T| _ T_- L
KA

I‘:JI"-"I'I d, wall — ]
F‘ wall

is the thermal resistance of the wall against heat conduction
(conduction resistance). The thermal resistance of a medium depends on
the geometry and the thermal properties of the medium.

Taking into account analogous to the
relation for electric current flow I:

(a) Heat flow

€
T AVAVAVAVAV A B

R

e

where R, = L/0_A is the electric resistance
and V, - V, is the voltage difference across
the resistance (o, is the electrical
conductivity).

(b) Electric current flow
FIGURE 3-3

Analogy between thermal
and electrical resistance concepts.




Newton's law of cooling for convection heat transfer rate:
Qc::::-nv =/ 'Lhis ' Tg o T:]'

can be rearranged as

which is the thermal resistance of the
surface against heat convection, or simply
the convection resistance of the surface.

When the convection heat transfer
coefficient is very large [[lskd . the
convection resistance becomes zero and
W8  That is, the surface offers no
resistance to convection, and thus it does ISP

not slow down the heat transfer process. | T

resistance at a surface.



The rate of radiation heat transfer between a surface of emissivity ¢
and area A_at temperature T. and the surrounding surfaces at some
average temperature T_,.. can be expressed as

m’T + T2 WT, + T,

SUTT # sl fT

(W/m? + K)

is the radiation heat transfer coefficient.
Both T, and T_,.. must be in K in the evaluation of h. ..

surr
When [#¥eE® the radiation effect can properly be accounted for by
replacing h in the convection resistance relation by
h

= Ny + Mooy (W/m? + K)

combined

l.'.‘l.'_'ll'l"l-

where is the . 7



Thermal Resistance Network

Q = Qcon\-' * Qrad
FIGURE 3-5

Schematic for convection and
-adiation resistances at a surface.

) R R
T’LI - T’f.’_) Thermal
+R _,+R network

conv, 2

conv, | wall

Electrical
analogy

FIGURE 3-6

The thermal resistance network for heat transfer through a plane wall subjected to convection on both sides,
and the electrical analogy.




o Rate of Rate of Rate of
Under ST@Gdy conditions heat convection | = | heat conduction | = | heat convection
into the wall through the wall from the wall

: .. ._ I, — T,
or Q = }Il J"':‘l.{?-::.:.] - T]_.} - JL":‘!. L = h‘n ""I‘IT'. T’_,:l'
) — T.:.:.] - Tl . Tl — T: . T: - T.:,_. 2
CTTUmA T LIkA | UhA
Io,—10 ITh—1, T),—Tu
Rc:nnv, | B R".'r'EIJ.] B

which can be rearranged as

Adding the numerators and denominators
yields

Wher‘e erlll HI onv, | + H vall + R
The thermal resistances are in ser'ies, and the equivalent thermal
resistance is determined by simply adding the individual resistances,

just like the electrical resistances connected in series.
9



The equation [l can be rearranged as PV OR (°C)

Here, the temperature drop across any layer is equal to the rate of
heat transfer times the thermal resistance across that layer.

For example,

L_2_0 02

478720 — 7 R

Ty e— MWW —4—AWWW—-WWW—e T
3°C/W

1+2+5 _
4+8+20_0'25

FIGURE 3-8

FIGURE 3-7 he temperature drop across a layer 1s
A useful mathematical identity. proportional to its thermal resistance.




*

Analogous to Newton's law of cooling as [UakeEY

U: the overall heat transfer coefficient

FIGURE 3-9

The thermal resistance network for
heat transfer through a two-layer
plane wall subjected to

convection on both sides.




Multilayer Plane Walls

The rate of steady heat transfer through a
plane wall consisting of two layers

R;.tq+ The total thermal resistance

o JIiI--{l_'-.'ll'l | + R vall, | + R vall, 2 T R
I L, L, I

hA kKA kLA ©hA

O conv,| wall, 2

T,
R

Tofind T,: Q =

conv, |

for the resistances I, - T,

conv,| +R

=1,
R

To find T)y:

wall, 1

I., — T,
Tofind Ty: Q =

Q — D -
ﬁc:n:nmr, 1 + Rw;a]l,l

conv,2

FIGURE 3-10

he evaluation of the surface and
@ It is limited to systems involving steady MRt
h . T.., are given and Q is calculated.
eat transfer with




EXAMPLE 3-1 Heat Loss through a Wall

Consider a 17-m-high, 5-m-wide, and 0.17-m-thick wall whose thermal con-
ductivity is k= 0.9 W/m - °C (Fig. 17-11). On a certain day, the temperatures
of the inner and the outer surfaces of the wall are measured to be 16°C and
2°C, respectively. Determine the rate of heat loss through the wall on that day.

ETNEERNNN

SOLUTION The two surfaces of a wall are maintained at specified tempera-
tures. The rate of heat loss through the wall is to be determined.

Assumptions 1 Heat transfer through the wall is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer Is one-
dimensional since any significant temperature gradients will exist in the direc-
tion from the indoors to the outdoors. 3 Thermal conductivity is constant.

Properties The thermal conductivity is given to be k = 0.9 W/m - °C.

> B

16°C 1\
2°C

L=03m
FIGURE 3-11
chematic for Example 3—1.




Analysis Noting that the heat transfer through the wall is by conduction and
the area of the wall is A =3 m X 5m = 15 m?, the steady rate of heat transfer
through the wall can be determined from Eq. 17-3 to be

T,—T (16 —2)°C

0= kA i 2 = (0.9 W/m - °C)(15 m2) S =630W

We could also determine the steady rate of heat transfer through the wall by
making use of the thermal resistance concept from
Q _ %qual]
wall

where

L 0.3 m

R, = (0.02222°C/W

wall — kA = (UQ Wim - OC)(IS II]‘:‘I)

Substituting, we get

_ (16—2°C _
C = 002222 CTW

630 W

Discussion This is the same result obtained earlier. Note that heat conduction
through a plane wall with specified surface temperatures can be determined
directly and easily without utilizing the thermal resistance concept. However,
the thermal resistance concept serves as a valuable tool in more complex heat
transfer problems, as you will see in the following examples.

- ::::::-Q 3
16°C
\‘2°C
Sm _
/

L=03m

FIGURE 3-11
chematic for Example 3—1.




EXAMPLE 3-2 Heat Loss through a Single-Pane Window

Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm
and a thermal conductivity of k = 0.78 W/m - °C. Determine the steady rate of
heat transfer through this glass window and the temperature of its inner surface
for a day during which the room is maintained at 20°C while the temperature of
the outdoors is —10°C. Take the heat transfer coefficients on the inner and
outer surfaces of the window to be h; = 10 W/m? - °C and h, = 40 W/m? - °C,
® which includes the effects of radiation.

BB B EEEREE.

SOLUTION Heat loss through a window glass is considered. The rate of
heat transfer through the window and the inner surface temperature are to be
determined.

Assumptions 1 Heat transfer through the window is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer through
the wall is one-dimensional since any significant temperature gradients will ex-
Ist in the direction from the indoors to the outdoors. 3 Thermal conductivity is
constant.

Properties The thermal conductivity is given to be k = 0.78 W/m - °C.

20°C x

h, = 10 W/m2-°C

— Glass

i

N _ioc

h, = 40 W/m2-°C




Analysis  This problem involves conduction through the glass window and con-
vection at its surfaces, and can best be handled by making use of the thermal
resistance concept and drawing the thermal resistance network, as shown in
Fig. 17-12. Noting that the area of the window is 4 = 0.8 m x 1.5 m
= 1.2 m?2, the individual resistances are evaluated from their definitions to be

1 1
R R _ _ = 0.08333°C/ W
i conv, 1 h] A (10 W/m? - 0(:)(12 ml\"
I 0.008 m .
R _L_ = 0.00855°C/ W
Blass T kA (0.78 W/m - °C)(1.2 m?)
R R 1 1 = 0.02083°C/ W

©nv2 T B A T (40 W/m? - °C)(1.2 m?)

Noting that all three resistances are in series, the total resistance is

Rt = Roony. 1 + Ryiass + Rogny 2 = 0.08333 + 0.00855 + 0.02083
= 0.1127°C/W

Then the steady rate of heat transfer through the window becomes

Ty — Ty [20 — (—10)I°C

e e e j r
Q R o11zrecrw - ~06W

Knowing the rate of heat transfer, the inner surface temperature of the window
glass can be determined from

o TW] — T] o
Q = Ril E— Tl = L] QRconv.l
i = 20°C — (266 W)(0.08333°C/W)
— —22°C

Discussion Note that the inner surface temperature of the window glass will be
—2.2°C even though the temperature of the air in the room is maintained at
20°C. Such low surface temperatures are highly undesirable since they cause
the formation of fog or even frost on the inner surfaces of the glass when the
humidity in the room is high.

— Glass

20°€

-10°C

h, =10 W/m2-°C h, =40 W/m2-°C

L =8 mm

IFIGURE 3-12
Schematic for Example 3-2.




EXAMPLE 3-3 Heat Loss through Double-Pane Windows

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two
4-mm-thick layers of glass (kK = 0.78 W/m - °C) separated by a 10-mm-wide
stagnant air space (kK = 0.026 W/m - °C). Determine the steady rate of heat

transfer through this double-pane window and the temperature of its inner sur-

face for a day during which the room is maintained at 20°C while the tempera-

ture of the outdoors is —10°C. Take the convection heat transfer coefficients on
m the inner and outer surfaces of the window to be h; = 10 W/m? - °C and h, =
m A0 W/m2 - °C, which includes the effects of radiation.

SOLUTION A double-pane window is considered. The rate of heat transfer
through the window and the inner surface temperature are to be determined.

FIGURE 3-1
Schematic for Example 3-3.




Analysis This example problem is identical to the previous one except that
the single 8-mm-thick window glass is replaced by two 4-mm-thick glasses that
enclose a 10-mm-wide stagnant air space. Therefore, the thermal resistance
network of this problem will involve two additional conduction resistances cor-
responding to the two additional layers, as shown in Fig. 17-13. Noting that the
area of the window is again 4 = 0.8 m x 1.5 m = 1.2 m?, the individual re-
sistances are evaluated from their definitions to be

1 1

Ri = Reonit = 372 = Howme - *Oy(12m)  D08BFCW

Ko = R = Rygass = kjfli = (0.78 w?&? %g;u.z mE) _ QooRTe/w
o = R = ﬁiii ~ (0.026 Wf?n-lol' f32:)(1.2 m2) 032057 C/W

Ro = Reony2 = h:A ~ (40 W/m? ol°c1)(1.2 LA

Moting that all three resistances are in series, the total resistance is

Rlota] = Rconv.l + Rg]ass.l + R:Lir + Rg]ass.? + Rconv.?
= 0.08333 + 0.00427 + 0.3205 + 0.00427 + 0.02083

= 0.4332°C/ W

Then the steady rate of heat transfer through the window becomes

Tay—T.;  [20—(—10)]°C
Roa  0.4332°C/W

0= =692W

which is about one-fourth of the result obtained in the previous example. This
explains the popularity of the double- and even triple-pane windows in cold
climates. The drastic reduction in the heat transfer rate in this case is due to
the large thermal resistance of the air layer between the glasses.

The inner surface temperature of the window in this case will be

T, = Ty — OR opy 1 = 20°C — (69.2 W)(0.08333°C/W) = 14.2°C

which is considerably higher than the —2.2°C obtained in the previous example.
Therefore, a double-pane window will rarely get fogged. A double-pane window
will also reduce the heat gain in summer, and thus reduce the air-conditioning
costs.

FIGURE 3-1

Schematic for Example 3-3.




THERMAL CONTACT RESISTANCE

In the analysis of heat conduction through multilayer solids, we
assumed "perfect contact” at the interface of two layers, and thus no
temperature drop at the interface.

Thermal Contact Resistance (Rc.): the resistance per unit interface area

Layer 2 Layer 1 @ Layer 2
¢ Temperature

No
temperature

T FIGURE 3-14
emperature % Interfac .. .
distribution | itertace — Temperature distribution and heat flow
lines along two solid plates pressed
against each other for the case of
(a) Ideal (perfect) thermal contact (b) Actual (imperfect) thermal contact [JEl‘fEC t and ill’][)&l‘f&(.‘ I contact.
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Applied load

Heat transfer through the interface
of fwo metal rods of cross-sectional
area A is the sum of the heat
transfers through the solid contact
spots and the gaps in the noncontact — EERUEN

areas and can be expressed as Upper test specimen

Loading shaft
Alignment collar

Lower test specimen

Q - QCCIHTEIE[ + QEJ.P

An analogous manner to Newton's law
of cooling:

Q = JEI!--: A "'i?-limarfﬂc:e.

A. the apparent interface area
(which is the same as the cross- [FHIFME

sectional area of the rods A typical experimental setup for

T. . the effective temperature the determination of thermal contact

interface’ : :
differ'ence at The in’rer'face resistance (from Song etal.).
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The thermal contact conductance is expressed as

e
: Jl Ti nterface

(W/m? + °C)

It is related to thermal contact resistance by

AT

interface

- (m? + °C/W)
Q/A

The thermal resistance of a 1-cm-thick layer of an insulating material
per unit surface area is

L__ 00lm
k 0.04 W/m- °C

R ¢, insulation —

= 0.25 m* - °C/W

whereas for a 1-cm-thick layer of copper, it is

L 0.01 m

R — = (.000026 m* - °C/W
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FIGURE 3-16

Effect of metallic coatings on
thermal contact conductance
(from Peterson).

Thermal contact conductance

TABLE 3-1

Thermal contact conductance

for aluminum plates with different
fluids at the interface for a surface
roughness of 10 um and interface
pressure of 1 atm (from Fried).

Contact
Fluid at the conductance, h.,
interface W/m? - K

Air 3640
Helium 9520
Hydrogen 13,900
Silicone oil 19,000
Glycerin 37,700




TABLE 3-2

Thermal contact conductance of some metal surfaces in air (from various sources)

Surface Pressure, he, ™
Material condition Roughness, pm Temperature, °C MPa W/m2 . °C

Identical Metal Pairs

416 Stainless steel Ground 2.54 90-200 . . 3800
304 Stainless steel Ground 1.14 20 1900
Aluminum Ground 2.54 150 . . 11,400
Copper Ground 1.27 20 . 143,000
Copper Milled 3.81 20 55,500
Copper (vacuum) Milled 0.25 30 . 11,400

Dissimilar Metal Pairs
Stainless steel- 2900
Aluminum 3600

Stainless steel- 16,400
Aluminum 20,800

Steel Ct-30- 50,000
Aluminum Ground 59,000

Steel Ct-30- 4800
Aluminum Milled 8300

42,000
Aluminum-Copper Ground 56,000

12,000
Aluminum-Copper Milled 22,000

*Divide the given values by 5.678 to convert to Btu/h - ft? - °F.

The thermal contact conductance is highest (with the lowest contact
resistance) for soft metals with smooth surfaces at high pressure.
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E EXAMPLE 3-4 Equivalent Thickness for Contact Resistance

m The thermal contact conductance at the interface of two 1-cm-thick aluminum

@ Plates is measured to be 11,000 W/m? - °C. Determine the thickness of the alu-
minum plate whose thermal resistance is equal to the thermal resistance of the
interface between the plates (Fig. 17-17).

SOLUTION The thickness of the aluminum plate whose thermal resistance
Is equal to the thermal contact resistance is to be determined.

Properties The thermal conductivity of aluminum at room temperature is
k=237 W/m - °C (Table A-25).

Analysis Noting that thermal contact resistance is the inverse of thermal con- Equivalent
aluminum

tact conductance, the thermal contact resistance is

1
R.=—= =0.909 X 104 m? - °C/W
° " h. 11,000 W/m? - °C -

For a unit surface area, the thermal resistance of a flat plate Is defined as

_L
R=%

where L is the thickness of the plate and k is the thermal conductivity. Setting
R = R, the equivalent thickness is determined from the relation above to be

L=kR,.= (237 W/m - °C)(0.909 X 10~*m? - °C/W) = 0.0215m = 2,15 cm




tEXAMPLE 3-5  Contact Resistance of Transistors

: Four identical power transistors with aluminum casing are attached on one side
of a 1-cm-thick 20-cm x 20-cm square copper plate (kK = 386 W/m - °C) by
screws that exert an average pressure of 6 MPa (Fig. 17-18). The base area of
each transistor is & cm?, and each transistor is placed at the center of a 10-cm
® 10-cm quarter section of the plate. The interface roughness is estimated to be
about 1.5 pum. All transistors are covered by a thick Plexiglas layer, which is a
poor conductor of heat, and thus all the heat generated at the junction of the
transistor must be dissipated to the ambient at 20°C through the back surface of
the copper plate. The combined convection/radiation heat transfer coefficient at
the back surface can be taken to be 25 W/m? - °C. If the case temperature of the

- _ _ . . _
m fransistor is not to exceed 70°C, determine the maximum power each transistor

m Can dissipate safely, and the temperature jump at the case-plate interface.
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SOLUTION Four identical power transistors are attached on a copper plate. For
a maximum case temperature of /0°C, the maximum power dissipation and the
temperature jump at the interface are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer can be ap-
proximated as being one-dimensional, although It Is recognized that heat con-
duction in some parts of the plate will be two-dimensional since the plate area
Is much larger than the base area of the transistor. But the large thermal con-
ductivity of copper will minimize this effect. 3 All the heat generated at the
junction is dissipated through the back surface of the plate since the transistors
are covered by a thick Plexiglas layer. 4 Thermal conductivities are constant.

Properties The thermal conductivity of copper is given to be k = 386 W/m - °C.
The contact conductance is obtained from Table 17-2 to be h, = 42,000
W/m? - °C, which corresponds to copper-aluminum interface for the case of
1.17-1.4 pm roughness and 5 MPa pressure, which is sufficiently close to
what we have.

Analysis The contact area between the case and the plate is given to be 8 cm?,
and the plate area for each transistor is 100 cm?2. The thermal resistance net-
work of this problem consists of three resistances in series (interface, plate, and
convection), which are determined to be

1 1
Lo =——=
interface hff'if (42.000 W/m? + OC)(S > 1074 mzj

= 0.030°C/W

L 0.01 m
Plate = kA T (386 W/m - °C)(0.01 m?)

1 1
o " h,A (25 W/m? - °C)(0.01 m?)

R = 0.0026°C/W

R = 4.0°C/W




The total thermal resistance Is then

Riotat = Rintertace T Rotate + Rambient = 0.030 + 0.0026 + 4.0 = 4.0326°C/W

MNote that the thermal resistance of a copper plate Is very small and can be
ignored altogether. Then the rate of heat transfer is determined to be

. AT (70 —20)°C
Q= Rom ~ 2.0326°C/W

=124 W

Therefore, the power transistor should not be operated at power levels greater
than 12.4 W if the case temperature is not to exceed 70°C.
The temperature jump at the interface is determined from

AT, e = OR e = (12.4 W)(0.030°C/ W) = ().37°C

which Is not very large. Therefore, even If we eliminate the thermal contact re-
sistance at the interface completely, we will lower the operating temperature of
the transistor in this case by less than 0.4°C.




GENERALIZED THERMAL RESISTANCE NETWORKS

For the composite wall consisting of isulation
two parallel layers, the total heat
transfer is the sum of the heat
transfers through each layer.

0=0,+0,
L R, = ik FIGURE 3-19
R TRy Thermal resistance
network for two parallel layers.
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For the combined series-parallel arrangement, the total rate of heat

transfer through this composite system is

with
R R,

Rtn:nt:ﬂ - Rll + R_}n + Rmn'-r - R] + R,

+ R?- + R-::-:unv

__L
FL"':‘!.E,

RI.'_:I'_‘IJ'J‘-’

Two assumptions:

(i) any plane wall normal to the x-axis is
isothermal and

(ii)) any plane parallel to the x-axis is
adiabatic.

Insulation

FIGURE 3-20

Thermal resistance network fo
combined series-parallel arraneement.
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HEAT CONDUCTION IN CYLINDERS AND SPHERES

The Fourier's law of heat conduction for heat
transfer through the cylindrical layer is

Qc:n:mni cyl = — kA E I‘\'TET '

dr

is the heat transfer area at
FIGURE 3-23

IOCGTIO“ r Heat is lost from a hot-water pipe to
the air outside in the radial direction,
2 and thus heat transfer from a long
dr= — kEdTl pipe is one-dimensional.

Jr=n A JT=T,

i Fa Q cond, '-'-1}']

We obtain
. L~ 1
Qeond. el = "o
< cond, cvl R vl
. + _ FIGURE 3-24
since Qc::::-nd.-:yl = constant. A long cylindrical pipe (or spherical

shell) with specified inner and outer
surface temperatures 7, and 75.




The thermal resistance of the cylindrical layer against heat
conduction, or simply the of the cylinder layer.

In(rs /1)) In(Outer radius/Inner radius)
R =————=
|

2Lk 27 X (Length) X (Thermal conductivity)

Repeating the analysis for by taking FEErES

= cond, sph o

with

R — = n Outer radius — Inner radius
,_:Ph s

drirn k4 (Outer radius)(Inner radius)(Thermal conductivity)

which is the thermal resistance of the spherical layer against heat

conduction, or simply the of the spherical
layer.
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The rate of heat transfer through a cylindrical or spherical layer
under steady conditions:

- 7
CONY, &

= Ryt + Ry + R

o i .
| In(r, /1)) 1
2

=7t t 5
(27rL)h, 2oLk (2ar,L)h,

R (+R, +R

conv, 2

FIGURE 3-25

The thermal resistance network
for a cylindrical (or spherical)
shell subjected to convection from

total — R conv,

cyl

- Rl.".'ll'l"-. | + RZ':-}‘l'I T JIl{jl.'-.'ll'l'--.f

B S S R T
(dmwriphy  dmrinnk  (4arih,

for a spherical layer.

A in the convection resistance relation R_,,=
1/hA is the surface area at which convection
occurs.

It is equal to for a

and A = 4mr? for a spherical surface of radius r. “



Multilayered Cylinders and Spheres

Steady heat fransfer through multilayered cylindrical or spherical
shells is treated like multilayered plane walls.

he thermal resistance network for heat transfer through a three-layered composite cylinder
subjected to convection on both sides.




R:otq iS the total thermal resistance, expressed as

Rt-JlnI - RL‘-Jm. l + RL'_':.'L I + RL‘}-I.J + Rc}-l. 3 + RL‘-JM.J
1 N In(r, /r)) N In(ry/ry) N In(ry/ry) N ]
B .|'IJ'|:‘"41| ETTLA| ETTLA: ETTLA'u, “_‘,-r‘jl_l

Here, A, =2 iyl and A, = 2 tryL

The total thermal resistance is
simply the arithmetic sum of the
individual thermal resistances in the
path of heat flow

. T.—T,
Q e e
chnv, 1 + JF;.-::«r].l 4
h(2mrl) ' 2wLk,

We can also calculate T, from

TE - ng TE o Tﬂﬂz

Q=R+ R+ R, In(rsiry I /ry) 1

2Lk, | 2nlk | h2mnl)

FIGURE 3-27

The ratio AT/R across any layer is
equal to Q, which remains constant in
one-dimensional steady conduction.




: EXAMPLE 3—7  Heat Transfer to a Spherical Container

:ﬁ. 17-m internal diameter spherical tank made of 2-cm-thick stainless steel
w (k= 15W/m - °C) is used to store iced water at 7., = 0°C. The tank is located
m N a room whose temperature is 7., = 22°C. The walls of the room are also at
m 22°C. The outer surface of the tank is black and heat transfer between the outer
®m surface of the tank and the surroundings Is by natural convection and radiation.
® The convection heat transfer coefficients at the inner and the outer surfaces of
*® the tank are h, = 80 W/m2 - °C and h, = 10 W/m2 - °C, respectively. Determine
: (a) the rate of heat transfer to the iced water in the tank and (b) the amount of
@ Ice at 0°C that melts during a 24-h period.

FIGURE 3-28

Schematic for Example 3-7.
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SOLUTION A spherical container filled with iced water is subjected to convec-
tion and radiation heat transfer at its outer surface. The rate of heat transfer
and the amount of ice that melts per day are to be determined.

Assumptions 1 Heat transfer is steady since the specified thermal conditions at
the boundaries do not change with time. 2 Heat transfer is one-dimensional
since there is thermal symmetry about the midpoint. 3 Thermal conductivity Is
constant.

Properties The thermal conductivity of steel is given to be k= 15 W/m - °C.
The heat of fusion of water at atmospheric pressure is h;; = 333.7 kl/kg. The
outer surface of the tank is black and thus its emissivity is e = 1.

Analysis (a) The thermal resistance network for this problem is given in
Fig. 17-28. Noting that the inner diameter of the tank is 0; = 3 m and the outer
diameter is D, = 3.04 m, the inner and the outer surface areas of the tank are

A, = wD3 = w(3 my = 28.3 m?
Ay = D% = 7(3.04 m)? = 29.0 m?

Also, the radiation heat transfer coefficient is given by

hrad = EU’(T% + Tﬁ%z){’Tg + Tﬂﬂl)

But we do not know the outer surface temperature 7, of the tank, and thus we
cannot calculate h,,,. Therefore, we need fo assume a T, value now and check
the accuracy of this assumption later. We will repeat the calculations If neces-
sary using a revised value for T,.




We note that 7, must be between 0°C and 22°C, but it must be closer
to 0°C, since the heat transfer coefficient inside the tank is much larger. Taking
T, = 5°C = 278 K, the radiation heat transfer coefficient is determined fo be

hog = (1)(5.67 X 1078 W/m? - KH[(295 K)? + (278 K)*][(295 + 278) K]
=534 W/m?-K =534 W/m? - °C
Then the individual thermal resistances become

1 1

fooem T AL (80 W/m? - °C)(28.3 m?)

R R _nTn_ (1.52 = 1.50) m
Lo Arkryiry 4ar (15 W/m - °C)(1.52 m)(1.50 m)

water L& = 0.000047°C/ W
1 1

R =R . = = = 0.00345°C/W

i) conv, 2 hi‘d‘}l flﬂ W}Fﬂlz . cc)(zg[} mz)
j— 1 = 0.00646°C/W

oAy (5.34 W/m? - °C)(29.0 m?)

R

FIGURE 3-28
Schematic for Example 3-7.




The two parallel resistances R, and R,.4 can be replaced by an equivalent resis-
tance Ry, determined from

Iced
water h,

oo

1 11 1

1
Roww R, Ry 0.00345 ' 0.00646

= 4447 W/°C

which gives

R

equiv

= 0.00225°C/W

MNow all the resistances are in series, and the total resistance Is determined
to be R

Ry = R; + R + Rygyi, = 0.000442 + 0.000047 + 0.00225 = 0.00274°C/W 1,

Then the steady rate of heat transfer to the iced water becomes
Rl

Tor— Ty (22 — 0)°C . ‘
) = = - =8029 W  (or Q =8.027 kl/s FIGURE 3-28
¢ R\l 0.00274°C/W ¢ ) Schematic for Example 3-7.

To check the validity of our original assumption, we now determine the outer
surface temperature from

* TIQ_TQ
C="%

_ » I, =1, 0OR equiv
equiv

= 22°C — (8029 W)(0.00225°C/W) = 4°C

which is sufficiently close to the 5°C assumed in the determination of the radi-
ation heat transfer coefficient. Therefore, there is no need to repeat the calcu-
lations using 4°C for Ts.




(b) The total amount of heat transfer during a 24-h period is

Q= Q Ar = (8.029 kI/s)(24 X 3600 s) = 673,700 kI

Moting that it takes 333.7 kJ of energy to melt 1 kg of ice at 0°C, the amount
of ice that will melt during a 24-h period is

_Q_ 6BI0K
Miee = .~ 3337 KIkg 1 ©

Therefore, about 2 metric tons of ice will melt in the tank every day.

Discussion An easier way to deal with combined convection and radiation at a
surface when the surrounding medium and surfaces are at the same tempera-
ture is to add the radiation and convection heat transfer coefficients and to treat
the result as the convection heat transfer coefficient. That is, to take h = 10
+ 5.34 = 15.34 W/m? - °C in this case. This way, we can ignore radiation since
Its contribution Is accounted for in the convection heat transfer coefficient. The
convection resistance of the outer surface in this case would be

1 ]

. = = — o 59 ; W
R combined Beombined A2 (15.34 W/m2 - °C)(29.0 I'ﬂ‘l) 0.00225°C/

which is identical to the value obtained for the equivalent resistance for the par-
allel convection and the radiation resistances.




CRITICAL RADIUS OF INSULATION BB

The rate of heat transfer from the insulated

pipe to the surrounding air is

T.
ul T] - T:-:- Tl - .T-:-:-
- Rins + RE:EIJ'J'-’ ].ﬂ{.i"“g_ ‘Illr].-' + 1
2wLk h(2r,L)

FIGURE 3-30
. . . 4 : An insulated cylindrical pipe
Per‘for‘m!ng the dlf.f.erenT'aT.lon an.d SOIVl.ng exposed to convection from the outer
for rs YIeldS the critical radius of insulation surface and the thermal resistance
fOf‘ a cylindr'ical bOdy to be network associated with it.

k

Fer, cylinder =

The critical radius of insulation for a spherical
shell is

!

e, sphere

k : the thermal conductivity of the insulation
h : the convection heat transfer coefficient on the
outer surface




tEXAMPLE 3—9 Heat Loss from an Insulated Electric Wire

: A 17-mm-diameter and 5-m-long electric wire Is tightly wrapped with a 2-mm-
thick plastic cover whose thermal conductivity is k = 0.15 W/m - °C. Electrical
measurements indicate that a current of 10 A passes through the wire and there
Is a voltage drop of 8 V along the wire. If the insulated wire is exposed to a
medium at T, = 30°C with a heat transfer coefficient of h = 12 W/m? - °C, de-

™ termine the temperature at the interface of the wire and the plastic cover in
steady operation. Also determine whether doubling the thickness of the plastic
cover will increase or decrease this interface temperature.

Schematic for Example 3-9.




SOLUTION An electric wire is tightly wrapped with a plastic cover. The inter-
face temperature and the effect of doubling the thickness of the plastic cover
on the interface temperature are to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no variation in the axial direction. 3 Thermal
conductivities are constant. 4 The thermal contact resistance at the interface is
negligible. 5 Heat transfer coefficient incorporates the radiation effects, if any.
Properties The thermal conductivity of plastic is given to be Kk = 0.15
W/m - °C.

Analysis Heat is generated in the wire and its temperature rises as a result of
resistance heating. We assume heat is generated uniformly throughout the wire
and is transferred to the surrounding medium in the radial direction. In steady
operation, the rate of heat transfer becomes equal to the heat generated within
the wire, which is determined to be

Q=W,=VI=(8V)10A) =80 W

The thermal resistance network for this problem involves a conduction resis-
tance for the plastic cover and a convection resistance for the outer surface in
series, as shown in Fig. 17-32. The values of these two resistances are deter-
mined to be

Ay = 27ry)L = 27(0.0035 m)(5 m) = 0.110 m?

1 1
S = 0.76°C/W
conv hr’-‘lg (12 W/m? - QC)(D 110 Iﬂz)
ln{rgf-"]) ln{SSHS) o
_ _ = (). W
plastic 2kl 2m(0.15 W/m - °C)(5 m) o8

, T 7,
O mmp o——\WWW—o—WWWW—o T,
R

plastic

FIGURE 3-32
Schematic for Example 3-9.




and therefore

Riat = Rotasic T Reony = 0.76 + 0.18 = 0.94°C/W

Then the interface temperature can be determined from

— In="1.+ QR total
= 30°C + (80 W)(0.94°C/W) = 105°C

MNote that we did not involve the electrical wire directly in the thermal resistance
network, since the wire involves heat generation.

To answer the second part of the question, we need to know the critical radius
of insulation of the plastic cover. It is determined from Eq. 17-50 to be

_k_015W/m-°C _ 19 &
Foe =3 12 W/m? - °C 0.0125 m = 12.5 mm

which is larger than the radius of the plastic cover. Therefore, increasing the
thickness of the plastic cover will enhance heat transfer until the outer radius
of the cover reaches 12.5 mm. As a result, the rate of heat transfer Q will in-
crease when the interface temperature T, is held constant, or T, will decrease
when Q Is held constant, which is the case here.

Discussion 1t can be shown by repeating the calculations above for a 4-mm-
thick plastic cover that the interface temperature drops to 90.6°C when the
thickness of the plastic cover is doubled. It can also be shown in a similar man-
ner that the interface reaches a minimum temperature of 83°C when the outer
radius of the plastic cover equals the critical radius.




HEAT TRANSFER FROM FINNED SURFACES

The rate of heat transfer from a surface at a temperature T,to the
surrounding medium at T is given by Newton's law of cooling as

. the heat transfer surface area
. the convection heat transfer coefficient

é-::cnn'-' = 'h"dl_'r 1 T;_: o T:-: }

There are two ways to increase the rate of heat transfer:
1) to increase the convection heat transfer coefficient h
2) to increase the surface area A,

Increasing h may require the installation of a pump or fan, or replacing
the existing one with a larger one, but this approach may or may not
be practical. Besides, it may not be adequate.

The alternative is to increase the surface area by attaching to the

surface extended surfaces called fins made of highly conductive
materials such as aluminum.
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Consider steady operation with no heat
generation in the fin with the following
assumptions:

* The thermal conductivity k of the
material remains constant.

- The  convection heat  transfer
coefficient h is constant and uniform
over the entire surface of the fin for
convenience in the analysis.

FIGURE 3-33

The thin plate fins of a car radiator
greatly increase the rate of heat transfer
to the air. (© Yunus Cengel, photo by
James Kleiser.)

ome innovative fin designs.



Fin Equation

Under steady conditions, the energy balance on this volume element
can be expressed as

Rate of heat Rate of heat Rate of heat
conduction into | = | conduction from the | + | convection from

Volume
element

the element at x element at x + Ax the element

¥

- and x Q-:u:nnd. X+ Ax + anv
with Qmm = hip Ax)(T —T.)

Substituting and dividing by Ax, we obtain

Q cond, x + Av Q cond, x

Ax +hp(T—T.)=0

FIGURE 3-35

Volume element of a fin at location x
having a length of Ax, cross-sectional

Taking the limit as Ax — O gives

d(-_ cond
dx

+ (T —T,)=10




From Fourier's law of heat conduction we have [EyN—_y dr

“dx

where A_: the cross-sectional area of the fin at location x

kA, ar ) —hp(T—T.)=0

“dx

e Specified

At the fin base we have temperature

s . . . (a) Specified temperature
The function u and its second derivative (5) Neglisible lisht 1688
must be constant mu/tlples of each (c¢) Convection

other (d) Convection and radiation

FIGURE 3-36

Ax) = Cie*™ + Che™

Boundary conditions at the
where C;and C, are arbitrary constants. fin base and the fin tip.

Boundary condition at fin base: #H0)=8,=T, —T.
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Infinitely Long Fin (Tsp +ip = T.)

For a sufficiently long fin of uniform cross section (Ac constant):

Boundary condition at fintip:  8(Ly=T(L) — T,=10

Verv long fin: T = A

Tx)=T.+(T,-T,)e kA

Very long fin: 0 = —kA dr = VhpkA (T, — T.)

= |ong fin < dx =0

p @ the perimeter

A_ : the cross-sectional ¥ " ’ ’ ’

area of the fin ‘ ‘ ‘ ‘

x_: the distance from Ot oss =Dt

the fin base FIGURE 3-38

Under steady conditions, heat transfe
from the exposed surfaces of the
fin is equal to heat conduction

to the fin at the base.

R i~ S (S

(p=nD,A, = nD%4 for a cylindrical fin)
i i FIGURE 3-37
inn = h[T(x) — T.] dAﬁn = hé(x) dAﬁH A long circular fin of uniform cross

section and the variation of
temperature along it.

ﬂ"‘-fln ﬂ"‘-ﬁn




Negligible Heat Loss from the Fin Tip
(Insulated fin tip, [ITENY )

The fin tip can be assumed to be insulated, and the condition at the
fin tip can be expressed as

Boundary condition at fin tip:

e Ilx)— T, cosha(L — x)
.-‘jii'llrl'{'a'f.]'{'e'.I"J'l'.‘"ﬂ'h' rp: — s =

T.'-_. — T.:.: cosh al

The rate of heat transfer from the fin can be determined again from
Fourier's law of heat conduction:

= —kA, “,T

dX |y =0

Adiabatic fin tip: O,

= nsulated ti}"

N hpkA (T, — T,.) tanh alL

The heat transfer relations for the very long fin and the fin with
negligible heat loss at the tip differ by the factor tanh alL, which
approaches 1 as L becomes very large.
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Convection (or Combined Convection and
Radiation) from Fin Tip

A practical way of accounting for the heat loss from the fin tip is
to replace the fin length L in the relation for The insulated tip
case by a corrected length defined as

Convection

Corrected fin length:

convection at the tip

Qﬁn

t: the thickness of the rectangular fins
D: the diameter of the cylindrical fins.

Insulated

(b) Equivalent fin with insulated tip

FIGURE 3-39

Corrected fin length L. is defined such
that heat transfer from a fin of length
L. with insulated tip is equal to heat
transfer from the actual fin of length L
with convection at the fin tip.




Fin Efficiency

In the limiting case of zero thermal
resistance or infinite thermal
conductivity, (=&l the temperature
of the fin will be uniform at the
base value of T,.

The heat transfer from the fin will
be maximum in this case and can be
expressed as

"gfi n, max hA fin { T.*"- o T )

(b) Surface with a fin

A,-m= 2XwXL+wXt

=2XwXL

FIGURE 340

Fins enhance heat transfer from
a surface by enhancing surface area.




Fin efficiency can be defined as:

Usin Actual heat transfer rate from the fin
[deal heat transfer rate from the fin
if the entire fin were at base temperature

Tfin = O

== fin, max

inn — Tfin o

= fin, max

= Tlfin "ll'r-'qi'in {T!’? - Tc,:]'

For the cases of constant cross section of
very long fins and fins with insulated tips,
the fin efficiency can be expressed as

. '[:} fin V l'ri'jl":"uﬁf.r"jll. {TI.', —T1..) 1 ,{_A-L
”'“"S " éfin.mnx - ';FAHH {Irl o T“} B L \' "Ilrt” Bl

{j fin _ VHpkA (T, —T.)tanhal  tanh oL fldeal and actual
B hAg, (T, — T..) N temperature distribution along a fin.

Winsulated tip — _°
P00

< fin, max

since Ay, = pL for fins with constant cross section.



TABLE 3-3

Efficiency and surface areas of comman fin configurations

Straight rectangular fins

tanhmL,
m = \/2hlkt Tin = L.
L.=L+ 2
Asin = 2wWL,

Straight triangular fins L hem _;«;:tt&)fl—.tﬂ)
=/ 2hikt =1 —
. S Ttin = 0L To2ml) —
Apn = 2WN L2 + (8202 ' __;-}J//‘

— W

7 —
Straight parabolic fins
—_— 5 V=(12) (1 —xiLy?
m = \2hikt Min = ———————
Agin = WL[C) + (L) In(E/L + Cy)] 1+ (2mb2+1
€, =1+ (t/)?
Clrcula-r fins of rectangular profile . Ky (mes) — I{me) K y(mirs) N
m = \/2hikt Tin = 2} () Ky (M) + Kolm) h(mig) T
Foe = fa + 12 L
Agn = 27(r2 — 1) _ 2n/m "
fin 2e 1 c2 =— 5 n
Fae — I
Pin fins of rectangular profile
PR
e = M ="
i = DL, mL. C__OP
]
Pin fins of triangular profile
2 (2mL)

m = ' 4h/kD

o i = mL 2mL)
Apn = — VL2 + (Dr2)?
2

Pin fins of paraboelic profile

m = \/4hikD 5
A = 221000 - LimeocyL + ¢ e N @mLB) + 1
f'n_SD[ sla = o5 (. a4 al] /

Cy =1+ 2(D1L)
Cs= 1+ (DLP

Pin fins of parabolic profile
(blunt tip)

m =\ 4hikD

wD* ]
Apn = E{[16U_JD)2 + 1]3'2 — 1}

3 h(4mL/3)
Tin = S mL Io(4mLI3)




L=L+12
 ——A, =Lt

/ W

E
—
=
=]
=
L
= —
=]
= —
5
=
==
[N

-_"'--,
-"'"--_.

1.2 | .4 .6 1.8

gzLi."Q[Mm;}}]ﬂ
FIGURE 3-42

Efficiency of straight fins of rectangular, triangular, and parabolic profiles.




My

D
\\‘ W
12

<l=r, ./

\ ey
T L=L+12 T
| A =Ly ——

R

0.1

0

0 0.2 04 06 08 1 [.2 1.4 1.6 1.8 2 26 28 3

g — LSQ(MP}]!Z

FIGURE 343

Efficiency of annular fins of constant thickness 7.




Fins with triangular and parabolic profiles contain less material and
are more efficient than the ones with rectangular profiles, and
thus are more suitable for applications requiring minimum weight
such as space applications.

An important consideration in the design of finned surfaces is the
selection of the proper fin length L. Normally the longer the fin,
the larger the heat transfer area and thus the higher the rate of
heat transfer from the fin.

The larger the fin, the bigger the mass, the higher the price, and
the larger the fluid friction. Therefore, increasing the length of
the fin beyond a certain value cannot be justified unless the added
benefits outweigh the added cost.

Fin lengths that cause the fin efficiency to drop below 60%
percent usually cannot be justified economically and should be
avoided. The efficiency of most fins used in practice is above 90%.
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Fin Effectiveness

The performance of fins expressed in terms of the fin effectiveness
£qin IS defined

Heat transfer rate from
the fin of base area A,

";_"J fin {;_J fin

hA, (T, — T..)  Heat transfer rate from
the surface of area A,

0

= no fin

A, . the cross-sectional area of the fin at

the base
N . the rate of heat transfer from this

area if no fins are attached to the surface.
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An effectiveness of &= 1 indicates that the addition of fins fo
the surface does not affect heat transfer at all.

An effectiveness of g, < 1 indicates that the fin actually acts as
insulation, slowing down the heat transfer from the surface.

An effectiveness of ¢, > 1 indicates that fins are enhancing heat
transfer from the surface, as they should.

Finned surfaces are designed on the basis of maximizing
effectiveness for a specified cost or minimizing cost for a desired
effectiveness.

The fin efficiency and fin effectiveness are related to each other
by

It:.-._:;llfil'| ‘.—:'} fin ”fil'l "III"dlfin { .T."J o T } L "q fin

=" o fin
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The effectiveness of a sufficiently long fin of uniform cross section
under steady conditions is determined to be

0 fin  VhApkA (T, —T.) | kp

Clongfin = 3~ " pA, (Ty— 1) \ hA. since A, = A,.

= no fin

In the design and selection of the fins, the following should be taken
Into account:

» The thermal conductivity k of the fin material should be as high as
possible. Thus it is no coincidence that fins are made from metals,
with copper, aluminum, and iron being the most common ones. Perhaps
the most widely used fins are made of aluminum because of its low
cost and weight and its resistance to corrosion.

* The ratio of the perimeter to the cross-sectional area of the fin
p/ A, should be as high as possible. This criterion is satisfied by thin
plate fins and slender pin fins.

* The use of fins is most effective in applications involving a low
convection heat transfer coefficient. 59



The rate of heat transfer for a surface containing n fins can be
expressed as

Qtnt;ﬂ. fin — Qunfin + Qﬂn

= hA unfin ( T{_, —T.)+ MNin A fin ( T!- - T.-l
= NAugin T Min ATy — To)

The overall effectiveness for a finned
surface is defined as the ratio of the ot
total heat transfer from the finned M A7 T
surface to the heat transfer from the /l

same surface if there were no fins.

t

I ‘.l/ w
e

'[a? total, fin h(A unfin + Mfin A fin )" T.'-_. o T )

i overall {:_f}ll_'lt'.'ll. no fin j“jlr“'.' fin { .T'I-J N T } Ano fin =wxH
Appfin =WXH-=3X({tXWw)
A, =2XLXw+itXw
Ano tin - The area of the surface when "= 2% L w (one fin)

there are no fins FIGURE 345
Various surface areas associated with a
rectangular surface with three fins.

Anfin + The area of the unfinned portion
of the surface @



Proper Length of a Fm

To get a sense of the proper length of a fin,
we compare heat transfer from a fin of finite
length to heat transfer from an infinitely long AT=0
fin under the same conditions. The ratio of
these two heat transfers is

High No
heat é heat
transfer ansf transfer

Heat transfer @ fin NV hpkA (T, — T..) tanh al

I = ——————— = tanh alL.
TR f.-_-'}lu.'-n_-_: fin \h Ji WA el TI.-] —T.)

Studies have shown that the error involved
in one-dimensional fin analysis is negligible
(less than about 1%) when

Because of the gradual temperature
drop along the fin, the region
near the ﬁn tip makes little or

The heat transfer performance of heat sinks is usually expr'essed in
terms of their thermal resistances R in °C/W, which is defined as

T—T.

I”"jihll ‘rthll T. o T )
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EXAMPLE 3—11 Selecting a Heat Sink for a Transistor

A 60-W power transistor Is to be cooled by attaching it to one of the commer-
clally available heat sinks shown in Table 1/7-4. Select a heat sink that will al-
low the case temperature of the transistor not to exceed 90°C in the ambient air
at 30°C.

SOLUTION A commercially available heat sink from Tahle 17-4 is to be se-
lected to keep the case temperature of a transistor below 90°C.

Assumptions 1 Steady operating conditions exist. 2 The transistor case is Iso-
thermal at 90°C. 3 The contact resistance between the transistor and the heat
sink 1s negligible.

qnaiys.fs The rate of heat transfer from a 60-W transistor at full power Is
Q@ = 60 W. The thermal resistance between the transistor attached to the heat
sink and the ambient air for the specified temperature difference is determined
to be

R_ﬁ}"_ (90 — 30)°C
S0 6O0W

= 1.0°C/W

Therefore, the thermal resistance of the heat sink should be below 1.0°C/W.
An examination of Table 17-4 reveals that the HS 5030, whose thermal resis-
tance i1s 0.9°C/W in the vertical position, is the only heat sink that will meet this
requirement.




TABLE 3-6

Combined natural convection and radiation thermal resistance of various
heat sinks used in the cooling of electronic devices between the heat sink and
the surroundings. All fi re made of aluminum 6063T-5, are black anodized,
and are 76 mm (3 in) long.
HS 5030 Sk R = 0.9°C/W (vertical)

o R = 1.2°C/W (horizontal)

Dimensions: 76 mm X 105 mm X 44 mm
Surface area: 677 cm?

R = 5°C/W

Dimensions: 76 mm X 38 mm x 24 mm
Surface area: 387 cm?

HS 6071

R
R

1.4°C/W (vertical)
1.8°C/W (horizontal)

Dimensions: 76 mm X 92 mm X 26 mm
Surface area: 968 cm?2

HS 6105 R = 1.8°C/W (vertical)
R = 2.1°C/W (horizontal)

Dimensions: 76 mm X 127 mm X 91 mm
Surface area: 677 cm?2

HS 6115 , R = 1.1°C/W (vertical)
' R = 1.3°C/W (horizontal)

Dimensions: 76 mm x 102 mm X 25 mm
Surface area: 929 cm?

R = 2.9°C/W (vertical)
R = 3.1°C/W (horizontal)

Dimensions: 76 mm X 97 mm x 19 mm
Surface area: 290 cm?

63



EXAMPLE 3—-12 Effect of Fins on Heat Transfer from Steam Pipes

Steam in a heating system flows through tubes whose outer diameter is
D, = 3 cm and whose walls are maintained at a temperature of 120°C. Circular
aluminum fins (k = 180 W/m - °C) of outer diameter D, = 6 cm and constant
thickness t = 2 mm are attached to the tube, as shown in Fig. 17-48. The
space between the fins i1s 3 mm, and thus there are 200 fins per meter length
of the tube. Heat is transferred to the surrounding air at 7, = 25°C, with a com-
bined heat transfer coefficient of h = 60 W/m?2 . °C. Determine the increase in
heat transfer from the tube per meter of its length as a result of adding fins.

SOLUTION Circular aluminum fins are to be attached to the tubes of a heating
system. The increase in heat transfer from the tubes per unit length as a result
of adding fins is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The heat transfer coeffi-
cient Is uniform over the entire fin surfaces. 3 Thermal conductivity is constant.
4 Heat transfer by radiation is negligible.

Properties The thermal conductivity of the fins is given to be
k= 180 W/m - °C.

t=2mm

3 mm



Analysis In the case of no fins, heat transfer from the tube per meter of its
length is determined from Newton's law of cooling to be

Anopn = DL = m(0.03 m)(1 m) = 0.0942 m?

*

an fin — h‘dlnn an(Tb - Tm)
= (60 W/m? - °C)(0.0942 m?)(120 — 25)°C
=537TW

The efficiency of the circular fins attached to a circular tube is plotted in Fig.
17-43. Noting that L = %{Dg - D)) = %{0.[}6 — 0.03) = 0.015 m in this case,
we have

ry+3t (0.03+3X0002)m
. 0015m ;

II / 2,0
fL+%i"!\;"%= (0.015 + 1 X 0.002) m X | ———20 W/ - €

\ (180 W/m - °C)(0.002 m) U'Q{”J

."'llﬁn = 217(?'22 — F'zl\,l + 271'.?"21’
= 27[(0.03 m)* — (0.015 m)?] + 27(0.03 m)(0.002 m)
= 0.00462 m?

Ofin = M5inCfin, max = MiinftAsin (Tp — 1)
= (.95(60 W/m? . °C)(0.00462 m‘l)( 120 — 25)°C
=250W




Heat transfer from the unfinned portion of the tube is

A = 7DS = 7(0.03 m)(0.003 m) = 0.000283 m?
Qunfin = hAunfin(Tb o Tm)
= (60 W/m? - °C)(0.000283 m?)(120 — 25)°C

= 1.60 W

unfin

Moting that there are 200 fins and thus 200 interfin spacings per meter length
of the tube, the total heat transfer from the finned tube becomes

Qtntﬂl, fin — PT(ijn + Qunfin) =200(250 + 1.6) W = 5320 W

Therefore, the increase in heat transfer from the tube per meter of its length as
a result of the addition of fins is

O = Ot fin — Ouopn = 5320 — 537 = 4783 W (per m tube length)

Discussion The overall effectiveness of the finned tube is

thal, fin 3320 W _

=0.9

Efin, overall — = _
Q[Dtﬂl, no fin 53? W

That 1s, the rate of heat transfer from the steam tube increases by a factor of
almost 10 as a result of adding fins. This explains the widespread use of finned
surfaces.




HEAT TRANSFER IN COMMON CONFIGURATIONS

* We have dealt with 1-D simple geometries.
@ The question: What happens if we have 2- or 3-D complicated

geometries?
*+ The steady rate of heat transfer between two surfaces at constant
temperatures T, and T, is expressed as

S : the conduction shape factor (which has the dimension of length)
k : the thermal conductivity of the medium between the surfaces

= The conduction shape factor depends on the geometry of the system
only.

A-comparison of the following equations reveals that the conduction
shape factor S is related to the thermal resistance R by R = 1/kS or
S =1/kR.
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TABLE 3-7

Conduction shape factors S for several configurations for use in Q = kS(T; — T») to determine the steady rate of heat
transfer through a medium of thermal conductivity k between the surfaces at temperatures T, and T;

(1) Isothermal cylinder of length L
buried in a semi-infinite medium
(L>>D and 7 > 1.5D)

_ oL
" In (42/D)

(2) Vertical isothermal cylinder of length L
buried in a semi-infinite medium
(L>>D)

P
In(4L/D)

(3) Two parallel isothermal cylinders
placed in an infinite medium
(Lz=Dy, Dy, 2)

(4) A row of equally spaced parallel isothermal

cylinders buried in a semi-infinite medium
(L>>D, z, and w>1.5D)

5o anL

In (ﬁ sinh 272
T W

(per cylinder)

(5) Circular isothermal cylinder of length L
in the midplane of an infinite wall
(z>0.50)

§o_2nL
In(8ziD)

(6) Circular isothermal cylinder of length L
at the center of a square solid bar of the
same length

§= 2al
In (1.08w/D)

(7) Eccentric circular isothermal cylinder
of length L in a cylinder of the same
length (L > D)

(8) Large plane wall

(continued)



TABLE 3-7 (Continued)

(9 A long cylindrical layer

_ 2ol
In (D,/D)

(10y A square flow passage
{a) Fora/b =14,

5= 2nL _
0.93 In (0.948a/b)

(b)Foraib < 1.41,

rL

D785 In {afb)

(11) A spherical layer

g DD,

D,-D,

(12) Disk buried parallel to
the surface in a semi-infinite
medium (z == 1)

S=4D

(S=2D whenz=10)

{13) The edge of two adjoining
walls of equal thickness

S=0.54w

( 14y Comer of three walls
of equal thickness

(15) Isothermal sphere buried in a
semi-infinite medium

___ 2nDh
1 - 0.25D0z

{16} Isothermal sphere buried
in a semi-infinite medium at T,
whose surface is insulated

Insulated

__ nD
| +0.2504z

T,‘;(m.e-di'uﬁn-'.. 3




EXAMPLE 3-13 ' Heat Loss from Buried Steam Pipes

A 30-m-long, 10-cm-diameter hot-water pipe of a district heating system is
buried in the soil 50 cm below the ground surface, as shown in Fig. 17-49. The
outer surface temperature of the pipe is 80°C. Taking the surface temperature
of the earth to be 10°C and the thermal conductivity of the soil at that location
fo be 0.9 W/m - °C, determine the rate of heat loss from the pipe.

SOLUTION The hot-water pipe of a district heating system is buried in the soil.
The rate of heat loss from the pipe is to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer is two-
dimensional (no change in the axial direction). 3 Thermal conductivity of the
soll Is constant.

Properties The thermal conductivity of the soil is given to be kK = 0.9 W/m - °C.

FIGURE 3-49
Schematic for Example 3—13.




Analysis The shape factor for this configuration is given Iin Table 17-5 to be

2wl

= In(4z/D)

since Zz = 1.5D, where 7 Is the distance of the pipe from the ground surface,
and D is the diameter of the pipe. Substituting,

27 X (30m)
" In(4 X 0.5/0.1)

=629m

Then the steady rate of heat transfer from the pipe becomes

Q = SK(T, — T5) = (62.9 m)(0.9 W/m - °C)(80 — 10)°C = 3963 W

Discussion Note that this heat is conducted from the pipe surface to the sur-
face of the earth through the soil and then transferred to the atmosphere by
convection and radiation.

Fz=OSm
SR e, SR

15 =10°C¢

| D=10cm )

Schematic for Example 3-13.

FIGURE 34



Concluding Points:

- Steady and One-Dimensional Modeling of Heat Transfer through a Wall
- Conduction and Convection Resistances

- Analogy between Thermal and Electrical Resistances

* Radiation and Combined Heat Transfer Coefficients

* Overall Heat Transfer Coefficient

* Heat Transfer through a Plane and Multilayer Plane Walls

» Thermal Contact Resistance

* Generalized Thermal Resistance Networks

- Heat Conduction in Multilayered Cylinders and Spheres

- Critical Radius of Insulation for Cylindrical and Spherical Bodies

* Heat Transfer from Finned Surfaces

» Fin Efficiency, Fin Effectiveness and Overall Effectiveness

* Important Considerations in the Design and Selection of Fins

* Heat Transfer in Common Configurations and Conduction Shape Factors
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HEAT AND MASS TRANSFER

Transient Heat Conduction



Outline

Lumped system analysis

Transient heat conduction in

- large plane walls

- long cylinders

- spheres

Transient heat conduction in semi-infinite solids

Transient heat conduction in multidimensional
systems



Objectives

To assess when the spatial variation of temperature is
negligible, and temperature varies nearly uniformly with time,
making the simplified lumped system analysis applicable,

To obtain analytical solutions for transient 1-D conduction
problems in rectangular, cylindrical, and spherical geomeftries
using the method of separation of variables, and understand
why a one-term solution is usually a reasonable approximation,

To solve the transient conduction problem in large mediums
using the similarity variable, and predict the variation of
temperature with time and distance from the exposed
surface, and

To construct solutions for multi-dimensional transient
conduction problems using the product solution approach.



Lumped System Analysis

» In heat transfer analysis, some bodies are essentially isothermal and can

be treated as a "lump” system.
* Thatis, T=T (1)

70°C
iH0°C

70°€

70°C  70°C

(a) Copper ball

(b) Roast beef

FIGURE 4-1

A small copper ball can be modeled
as a lumped system, but a roast
beef cannot.

A

/ S
h
SOLID BODY Ts

m = mass
V= volume
p = density
T; = initial temperature

I T=T0)

Q = hA(T.. - T(1)]

FIGURE 4-2
The geometry and parameters involved
in the lumped system analysis.



During a differential time interval df, the temperature of the body rises by a
differential amount dT. An energy balance of the solid for the time interval dt
can be expressed as

Heat transfer into the body The terease m the Ay
durine df energy qt the body /
© during dt h
SOLID BODY T
or m = mass
V =vol
hA(T,. — T) dt = mc, dT (4-1) o= density
Noting that m = pV and dT = d(T — T,) since T,, = constant, Eq. 4—1 can be Ty = ttiial fepotatice
rearranged as I T=T()
d(T —T,) hA, 0 =hA([T. - T()]
7 Ve dt (4-2)
% pPVCy FIGURE 4-2

o ‘ _ . . The geometry and parameters involved
Integrating from # = 0, at which T' = T;, to any time 7, at which T'= T1(7), gives  in the lumped system analysis.

| In—T,  hA; 43
n T.— T, pV(‘.'pf (4-3)

Taking the exponential of both sides and rearranging, we obtain

() — T, o
T.—T. ¢ (4-4)
where b is a positive
p=hAs (1/5) s quantity (so-called
pVc, ) the time constant).



Observations I(r)

Equation 4-4 enables us to
determine the temperature T(t) of 7=
a body at time t, or alternatively,
the time t required for the
temperature to reach a specified

value T(t).
The tfemperature of a body by2bs> b5
approaches the ambient :

temperature T exponentially.

The temperature of the body
changes rapidly at the beginning,
but rather slowly later on.

A large value of b indicates that

the body approaches the ambient FIGURE 4-3
temperature in a short time.

»
S

The temperature of a lumped
system approaches the environment
temperature as time gets larger.
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Once the temperature 7(7) at time ¢ is available from Eq. 4-4, the rate of con-
vection heat transfer between the body and its environment at that time can be
determined from Newton’s law of cooling as

O (1) = hA[T(1) — T.] (W) (4-6)

The ftotal amount of heat transfer between the body and the surrounding
medium over the time interval = 0 to 7 is simply the change in the energy
content of the body:

Q = mc,[T(t) — T} (k) (4-7)

The amount of heat transfer reaches its upper limit when the body reaches the
surrounding temperature 7,. Therefore, the maximum heat transfer between
the body and its surroundings is (Fig. 4-4)

Q

- max

=mc, (T, = T) (kI) (4-8)

We could also obtain this equation by substituting the 7(#) relation from
Eq. 44 mto the Q(¢) relation in Eq. 4-6 and integrating it from t = 0 to t — .

Calculation
of heat
transfer
r=10 j’:; F— o
T, fi T, fe
, &, " T o, '
e

0 =0nu= mey, (T,: -T,)
FIGURE 44

Heat transfer to or from a body
reaches its maximum value
when the body reaches

the environment temperature.
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and a Biot number Bi as

L_V
(._A..

B__f!L(.
YTk

[t can also be expressed as (Fig. 4-5)

h AT Convection at the surface of the body

Bl= L AT™

or

Conduction within the body

L.k Conduction resistance within the body

Bi =

h=15W/m2.°C

Spherical
copper
ball

k=401 W/m-°C

Bi= e 15002 _ 00075 <01
101

I/h  Convection resistance at the surface of the body

Convection

kY '

‘ Conduction ‘ Lo

SOLID
BODY

o %
o 4 o N

'

Bi = heat convection
heat conduction
FIGURE 4-5
The Biot number can be viewed as the
ratio of the convection at the surface to
conduction within the body.

> Lumped system analysis is

applicable if Bi<O0.1.

FIGURE 4-6

Small bodies with high thermal
conductivities and low convection
coefficients are most likely

to satisfy the criterion for

lumped system analysis.



4-110  Consider two 2-cm-thick large steel plates (k = Hot gases
43 W/m - °C and @ = 1.17 X 107> m?s) that were put on top of T :“QOOC
each other while wet and left outside during a cold winter night =T |
at —15°C. The next day, a worker needs one of the plates, but

the plates are stuck together because the freezing of the water l l l i l

between the two plates has bonded them together. In an effort
to melt the ice between the plates and separate them, the

worker takes a large hair dryer and blows hot air at 50°C all
over the exposed surface of the plate on the top. The convection

heat transfer coefficient at the top surface is estimated to be 40 Steel plates

W/m? - °C. Determine how long the worker must keep blowing T. = -15°C
: ] Y=L159C

hot air before the two plates separate.

Analysis The characteristic length of the plates and the Biot number are

v

L.=—=L=002m
A,
hL. (40 W/m”.°C)(0.
pic e _ (40 W/m _C)(O 02 m) 0.019<01
k (43 W/m.°C)

Since B1 < 0.1, the lumped system analysis is applicable. Therefore,

P S 40 W/m”.°C

pe, Vo pe Lo (3.675x10° Jm® .°C)(0.02 m)

I'(n-T, _ b . 0-50 _ (000054451
T, -T, —15-50

= 0.000544 s

——>1r=482s = 8.0 min

)/ 43 W/m.°C |
where  pc p = . o =3.675x10° J/m?® °C

a 1.17x107> m?/s




Transient Heat Conduction in Large Plane
Walls, Long Cylinders, and Spheres

In many transient heat transfer problems the Biot number is larger than
0.1, and lumped system can not be assumed.

In these cases the temperature within the body changes appreciably
from point to point as well as with time.

It is constructive to first consider the variation of temperature with
time and position in one-dimensional problems of rudimentary
configurations such as a large plane wall, a long cylinder,

and a sphere.

|
|
IT, [nitially T, T.| [Initially | 7,
: h =1 f; 1 2 W
I Initially
| I -3 Tr
|

L x
| 0 7

FIGURE 4-11 |
Schematic of the simple
geometries in which heat |

1
transfer 1s one-dimensional. '_ ___________________ a




A large Plane Wall

A plane wall of thickness
2L.

Initially at a uniform
temperature of T,

At time t=0, the wall is
immersed in a fluid at
temperature T..

Constant heat transfer
coefficient h.

The height and the width
of the wall are large
relative to its thickness
—~one-dimensional
approximation is valid.

Constant thermophysical
properties.

No heat generation.

There is thermal
symmetry about the
midplane passing through
x=0.

h

Initially
T=T,

h

0 o
Initially T.
T=T. =
| ! h
|
FIGURE 4-12

Transient temperature profiles in a
plane wall exposed to convection
from its surfaces for T; > T.,.
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The Heat Conduction Equation

T.. Initially T.
One-dimensional transient heat ; T=T, .
conduction equation problem (0<x<L): ’
Differential equation:  0°T 1 0T - | -
= L
x> a ot '
Boundary conditions: i
oT(0,t)
ox |
<
ol (L,t
—k (LY _ h| T(Lt)-T, |
L OX The dimensionless time

Initial condition: Fourier number (Fo), 7 = at/L?
Biot number Bi = hL/k

T (X’ O) = Ti The rate at which heat is conducted

af kL (1/L) AT _ across L of a body of volume L*

2 pc, L'/t AT ~ The rate at which heat is stored
in a body of volume L’

12



Summary of the Solutions for One-
Dimensional Transient Conduction

TABLE 4-1

Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r, and a sphere of radius r, subjected to convention from

all surfaces.”

Geometry Solution A,'s are the roots of

= 4 sin A, _a2: .
Plane wall 0= 22;\ SN2 e """ cos (A /L) A,tan A, = Bi

n=1 n “Ln
"""""" -2 hGw

J— o2 n 1

Cylinder 0= D A JE(A)+J2(N,) €7 Jy(Arir) A ﬁ = Bi

n=1 0Lty
S ;: _i_i(gn_ﬁ: — A €OS A, -3 SIn(X/L) T
Sphere T & 2h,—sin(2A,) A X/ L S

*Here # = (T — TM(T, — T is the dimensionless temperature, Bi = AL/ or fir, /k is the Biot number, Fo = 7 = ar/ L*
or o7/ 12 is the Fourier number, and J; and J; are the Bessel functions of the first kind whose values are given in

Table 4-3. === 00 e e e e e m m e e e e e e - - - - -
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Approximate Analytical and Graphical Solutions

For 7>0.2, keeping the first term and neglecting all the remaining terms in
the series results in an error under 2%.Thus for >0.2 the one-term
approximation can be used.

T(’l. [ — T, 2 )
Plane wall: O = A Ae M7 cos (AX/L), 7>0.2
o _ I(r,1)— T, 2
Cylinder: Oy = T = Ae M7 Jy(Ayrlr,), T>0.2

. I(r. 1) — T, 2 sin(A,r/r,)

kf 22t . = =, __;—,-]T . I 0 T 2
S]{)l}(f(. H_\l‘ph TI . Tx 4|( Alj‘j’j*ﬂ > O
Center of plane wall (x = 0): B0 wanl = % = Alfe_"‘T'*
i - . | T,— T, 2
Center of cylinder (r = 0): Bo. cyi = T{}j = Ae M7
] . | T, — T, 2
Center of sphere (r = 0): 0. sph = T{}j = Aje M7

14



TABLE 4-2

Coefficients used in the one-term approximate solution of transient one-

dimensional heat conduction in plane walls, cylinders, and spheres (Bl = ALk
for a plane wall of thickness 21, and Bi = hr,/k for a cylinder or sphere of
radius r, )
Plane Wall Cylinder Sphere
Bi .JL]_ ,41 .Jll ,41 .1111 ,41
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.08 0.2791 1.0120 0.3960 1.0197 0.4860 1.0239
0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298
0.2 0.4228 1.0311 0.6170 1.0483 0.7593 1.0592
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.07659 1.1785 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570 2.1286 1.5526 2.76564 1.8920
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990
e 1.5708 1.2732 2.4048 1.6021 3.1416 2.0000

TABLE 4-3

The zeroth- and first-order Besse|
functions of the first kind

1 Joln) Ji(n)
0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9900 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.93285 0.2423
0.6 09120 0.28a7
0.7 0.8812 0.2290
0.8 0.8463 0.2688
0.9 0.8075 0.4059
1.0 0.7652 0.4400
1.1 0.719a 0.4709
1.2 06711 0.4983
1.3 0.6201 0.5220
1.4 0.56669 0.5419
1.5 05118 0.5579
l6 0.4554 0.5699
1.7 0.2980 0.5778
1.8 02400 0.5815
1.9 0.2818 05812
2.0 0.2239 0.5767
2.1 0.1666 0.5683
2.2 0.1104 0.5560
2.3 0.0555 0.5399
2.4 0.0025 0.5202
2.6 —0.0968 —0.4708
2.8 —0.1850 —0.4097
2.0 —0.2601 —0.2391
3.2 —0.2202 —0.26132
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Heisler Charts

The solution of the ftransient temperature for a large plane wall,

long cylinder, and sphere are also presented in graphical form for
7> 0.2, known as the transient temperature charts (also known as
the Heisler Charts).

There are three charts associated with each geometry:

- the femperature T, at the center of the geometry at a given
Time t.

- the temperature at other locations at the same time in terms
of T,.

- the total amount of heat transfer up to the time t.

16
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Heisler Charts - Plane Wall
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Heat Transfer

*  The maximum amount of heat that a body can gain (or lose) is

Onax = mc,(T. = T;) = pVe (T, — T;)

- The amount of heat transfer Q at a finite time t is can be
expressed as

* [Tty — TV 1|
0= |peToun —Tiav Q _ LPollen =TV _ 1) — gy
vV Qmux pCW(Tw o TI)V Vv
Pi I ( 2 ) g, A
ane wall: . =1 =0y yan ——
Qm;ux wall el A I
. 0 ) Ji(Ay)
Cvlinder: : =1 =20
' (Qm;n cyl e )‘I
. N O - . Sin A} — A, COS A,
Sphere. 0 . =1 — 30, on %
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can only be used
when:

the body is

Qmax .
=0 The Heisler Charts
' . ‘ initially at a

(a) Maximum heat transfer (t — )

| 0
t=0
—_—
h
s .

Bi=... 0
ot Bi2r = .
k3 =DbI1I*T=--- max
(Grober chart)

(b) Actual heat transfer for time ¢

FIGURE 4-19

The fraction of total heat transfer
Q/0,,..x Up to a specified time 7 is
determined using the Grober charts.

uniform
temperature,

the temperature
of the medium
surrounding the
body is constant
and uniform.

the convection
heat transfer
coefficient is
constant and
uniform, and
there is no heat

generation in the
body.

(a) Finite convection coefficient

h — o

(b) Infinite convection coeflicient
FIGURE 4-18
The specified surface
temperature corresponds to the case
of convection to an environment at
T., with a convection coefficient 2
that is infinite.



4-110 Consider two 2-cm-thick large steel plates (kK =

43 W/m - °C and a = 1.17 X 107> m?%s) that were put on top of Hot gases
each other while wet and left outside during a cold winter night T =50°C

at —15°C. The next day, a worker needs one of the plates, but

the plates are stuck together because the freezing of the water l l l i l

between the two plates has bonded them together. In an effort
to melt the ice between the plates and separate them, the
worker takes a large hair dryer and blows hot air at 50°C all
over the exposed surface of the plate on the top. The convection
heat transfer coefficient at the top surface is estimated to be 40
W/m? - °C. Determine how long the worker must keep blowing
hot air before the two plates separate. T;=-15°C

Steel plates

hL, (40 W/m”.°C)(0.02 m)

Bi = =0.019
k (43 W/m.°C)
;:0319:52'6
7 . al
T=—=15>02
7. T -5 2
0" 0790 60 7
T,-T. —15-50 |
Then.
o’ 15)(0.02 m)”
T (15)(0.02 m) 513

a  (1.17x107° m>/s) 21



4-53 A person puts a few apples into the freezer at —15°C to
cool them quickly for guests who are about to arrive. Initially,
the apples are at a uniform temperature of 20°C, and the heat
transfer coefficient on the surfaces is 8 W/m? - °C. Treating the
apples as 9-cm-diameter spheres and taking their properties to be
p = 840 kg/m’, ¢, = 3.81 kl/kg - °C, k = 0.418 W/m - °C, and
a = 1.3 X 1077 m?s, determine the center and surface tempera-
tures of the apples in 1 h. Also, determine the amount of heat
transfer from each apple.

Analysis The Biot number 1s

. Air
h 8 W/m?.°C)(0.045
Bi = it :( m ?( m) =0.861 2, 1, =-15°C
k (0.418 W/m.*C) :
The constants 4, and 4, corresponding to this
Biot number are, from Table 4-2,
A, =1.476 and 4, =1.2390

The Fourier number is T%pg(l]ic

__ Eﬁ _ (13x 107" m?/s)(1 112‘;-: 3600s/h) _ 0231 0

v (0.045m)
Then the temperature at the center of the apples becomes
Ty — 15
Oo.sph = ———= = Aje ehT —C19 _ —(1.239)e™ 47 OBD _g 749 T —11.2°C
’ T, -T, 20 (—15)

22



The temperature at the surface of the apples 1s

T(r..0)-T 2 sin( A, /1

A, 17 - 1.476 o

a

T(r,.f)—(-15)
20— (~15)

The maximum possible heat transfer 1s

=0.505—>T(r,.1) = 2.7°C

m=pV = piﬂrj = (840 kg/m”) ix(o.oaﬁ 111)3] =0.3206kg
2 2
Opax =, (T, =T,.) = (0.3206 kg)(3.81 kI/kg.°C)[20— (-15)PC = 42.75 k]

Then the actual amount of heat transfer becomes
@ _1-30, sin(A4,; ) — 4, cos(4,;) —1-3(0.749) sin(1.476rad)—(1.476) cos(1.476 rad)
O | 2 (1.476)°
0=04020_ . =(0.402)(42.75k])=17.2kJ

=0.402

23



Transient Heat Conduction in Semi-Infinite
Solids .

A semi-infinite solid is an idealized
body that has a single plane surface
and extends to infinity in all

. . % Plane
directions. Siitface
Assumptions: T

- constant thermophysical h 0

properties

- no internal heat generation
- uniform thermal conditions on its
exposed surface =

- initially a uniform temperature FIGURE 4_24 o
of T, throughout. Schematic of a semi-infinite body.

Heat transfer in this case occurs
only in the direction normal to the
surface (the x direction)

one-dimensional problem.
24
| >




o . FT 19T
Differential equation: — =——
) ox a Jt

Boundary conditions:
Initial condition: I(x,0)=T,

Case 1: Specified Surface Temperature, T, = constant (Fig. 4-27).

Tx, 1) — T, " X d o kKT, —T)
= er1c an { e —
Ts - T; " 2\1;; ‘;5 ) -\/f el

Case 2: Specified Surface Heat Flux, q; = constant.

Tonty— T qs| [4at x? . X
X. —4; = 4 ex — | — Xeric
k \ T P 4ot © 2 '\f@

Case 3: Convection on the Surface, é's(t) = h|T.. — T(0, 1)].

W at h'\/;

T(x,ty — T, X hx 4 " X n
—_— —exp|—+ — Jerfc
2Vat k& 2NVat K

= erfc
T, — T ©

100, =17, and T(x — o,1) =T,

0.6

\¢

erfc(n) =

0.4

0.2

0.0

0.5 1.0

n=

X

AJ4 at

FIGURE 4-27

Dimensionless temperature
distribution for transient conduction

in a semi-infinite solid whose

surface is maintained at a constant

temperature 7.



TABLE 4-4

The complementary error function

! erfc (n) m erfc (n) U] erfc () n erfc () M erfc (n) ul erfc (n)
0.00 1.00000 | 0.38 0.5910 | 0.76 0.2825 | 1.14 0.1069 1.562 0.03159 | 1.90 0.00721
0.02 0.9774 040 05716 | 0.78 0.2700 | 1.16 0.10090 | 1.54 0.02941 | 1.92 0.00662
0.04 0.9549 0.42 05525 | 0.80 0.2579 | 1.18 0.09516 | 1.656 0.02737 | 1.94 0.00608
0.06 0.9324 0.44 05338 | 0.82 0.2462 | 1.20 0.08969 | 1.58 0.02545 | 1.96 0.00557
0.08 0.9099 0.46 05153 | 0.84 0.2349 | 1.22 0.08447 | 1.60 0.02365 | 1.98 0.00511
0.10 0.8875 0.48 04973 | 0.86 0.2239 | 1.24 0.07950 | 1.62 0.02196 | 2.00 0.00468
0.12 0.8652 0.50 0.4795 | 0.88 0.2133 | 1.26 0.07476 | 1.64 0.02038 | 2.10 0.00298
0.14 0.8431 0.52 04621 | 0.90 0.2031 | 1.28 0.07027 | 1.66 0.01890 | 2.20 0.00186
0.16 0.8210 0.54 04451 | 0.92 0.1932 | 1.30 0.06599 | 1.68 0.01751 | 2.30 0.00114
0.18 0.7991 0.56 04284 | 0.94 0.1837 | 1.32 0.06194 | 1.70 0.01612 | 2.40 0.00069
0.20 0.7773 0.58 04121 | 0.96 0.1746 | 1.34 0.05809 | 1.72 0.01500 | 2.50 0.00041
0.22 0.7557 0.60 0.3961 | 0.98 0.1658 | 1.36 0.05444 | 1.74 0.01387 | 2.60 0.00024
0.24 0.7343 0.62 0.3806 | 1.00 0.1573 | 1.38 0.05098 | 1.76 0.01281 | 2.70 0.00013
0.26 0.7131 0.64 03654 | 1.02 0.1492 | 1.40 0.04772 | 1.78 0.01183 | 2.80 0.00008
0.28 0.6921 0.66 03506 | 1.04 0.1413 | 1.42 0.04462 | 1.80 0.01091 | 2.90 0.00004
0.30 0.6714 0.68 03362 | 1.06 0.1339 | 1.44 0.04170 | 1.82 0.01006 | 3.00 0.00002
0.32 0.6509 0.70 03222 | 1.08 0.1267 | 1.46 0.03895 | 1.84 0.00926 | 3.20 0.00001
0.34 0.6306 0.72 03086 | 1.10 0.1198 | 1.48 0.03635 | 1.86 0.00853 | 3.40 0.00000
0.36 0.6107 0.74 02953 | 1.12 0.1132 | 1.50 0.03390 | 1.88 0.00784 | 3.60 0.00000
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FIGURE 4-29
Variation of temperature with position and time in a semi-infinite solid initially at temperature 7; subjected to
convection to an environment at 7., with a convection heat transfer coefficient of / (plotted using EES).
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100

T,=100°C

0.01 h \L
|

0.1h

0 0.2 0.4 0.6 0.
Distance from surface x, m
T,=0°C

(a) Specified surface temperature, 7,=constant.

100

80

T.,=100°C
h=220 W/m?2 - °C

0.6 0.8
Distance from surface x, m

Ti=02€

(¢) Convection at the surface

4,=7000 W/m?>

N

Time, t=10h

£ 0.4 0.6 0.8 1
Distance from surface x, m

T;=0°C

(b) Specified surface heat flux, ¢,=constant.

e,=1.7x107 J/m?

Distance from surface x, m

0.4 0.6 0.8

=02C

(d) Energy pulse at the surface, e, =constant

FIGURE 4-28

Variations of temperature with position and time in a large cast iron block (o = 2.31 X 1075 m?%s,
= 80.2 W/m °C) initially at 0 °C under different thermal conditions on the surface.
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Contact of Two Semi-Infinite Solids

, , ka(Ty — Ty kp(Ty —Tgy)  Ta;— 1T, [(kpc,)p
gsA = 4sp — — — = — '

- =\
V magt V magt T,—Tg; \ (kpcp)a

r _ Voo Tai + V(kpc, uT,

\/f (kpcp)ﬂ + \/I (kP{'}:)B

Therefore, the interface
temperature of two bodies brought
intfo contact is dominated by the
body with the larger koc,.

This also explains why a metal at
room temperature feels colder than
wood at the same temperature.

FIGURE 4-30

Contact of two semi-infinite solids of
different initial temperatures.




4-111 Consider a curing kiln whose walls are made of
30-cm-thick concrete whose properties are Kk = 0.9 W/m - °C
and @ = 0.23 X 107> m?%s. Initially, the kiln and its walls are in
equilibrium with the surroundings at 6°C. Then all the doors
are closed and the kiln is heated by steam so that the tempera-
ture of the inner surface of the walls is raised to 42°C and is
maintained at that level for 2.5 h. The curing Kiln is then
opened and exposed to the atmospheric air after the stream
flow is turned off. If the outer surfaces of the walls of the
kiln were insulated, would it save any energy that day during
the period the kiln was used for curing for 2.5 h only, or would
it make no difference? Base your answer on calculations.

Analysis We determine the temperature at a depth of x =
0.3 m1n 2.5 h using the analytical solution,

T(x.t)-T, .
(x.0-T; =erfc L]
Substituting,
T(x.1)—0 _erfe 0.3m
42-6

21/(0.23x107° m>/5)(2.5h x 3600 s/h)

= erfc(1.043) = 0.1402
T(x.1)=11.0°C

6°C
42°C
_ | 30em
FIGURE P4-111
Kiln wall
> 30cm
42°C \ 6°C
e — -

which is greater than the initial temperature of 6°C. Therefore, heat will propagate through the 0.3 m thick
wall in 2.5 h. and thus it may be desirable to insulate the outer surface of the wall to save energy.
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Transient Heat Conduction in Multidimensional
Systems

Using a superposition approach called the
product solution, the one-dimensional heat
conduction solutions can also be used to
construct solutions for some two-
dimensional (and even three-dimensional)
transient heat conduction problems.

Provided that all surfaces of the solid are
subjected to convection to the same fluid at
temperature, the same heat transfer
coefficient h, and the body involves no heat
generation.

FIGURE 4-34

The temperature in a short

cylinder exposed to convection from
all surfaces varies in both the radial
and axial directions, and thus heat

T, T.
h h

Heat
49 T(r.;) P

transfer

(a) Long cylinder

r A

h

A T (1 x,1) W

e 2

Heat

transfer

is transferred in both directions. (&) Short cylinder (two-dimensional)

31



U Plane wall
h [ e

Plane wall Long
—a— cylinder
FIGURE 4-36 FIGURE 4-35
A long solid bar of rectangular A short cylinder of radius r, and

profile a X b is the intersection  height a is the intersection of a long

of two plane walls of  cylinder of radius r, and a plane wall
thicknesses a and b. of thickness a.
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Example — short cylinder

Height a and radius r..
Initially uniform temperature

T;. T
No heat generation h
AT timet=0:

- convection T 1T

- heat transfer coefficient h (f
The solution: .

::LT(x,t)—Tw]
Short | T-T

Plane wall
._.---_\_(‘\__—-f\_/'\-/x1

-

Long
cylinder

] ' (4-50)
infinite

I
cylinder |



The solution can be generalized as follows: the solution for a
multidimensional geometry is the product of the solutions of the
one-dimensional geometries whose intersection is the
multidimensional body.

For convenience, the one-dimensional solutions are denoted by

T(x,.1)— T, Plane wall
( T —T ) plane p/

Oan(x, 1) =

H{.},](f‘.. f} =

wall T
o0

I(r.t) — T h
T — Tm mfinite

[ cylinder %

T(x, 1) — Tm> . %
T=T. ) : / /
3
Plane wall
rectangular — Hw;l]l{-r- T)Hwn]]f_".". [) }'—a——{
- FIGURE 4-36

A long solid bar of rectangular
profile a X b is the intersection
of two plane walls of
thicknesses @ and b.



TABLE 4-5

Multidimensional selutions expressed as products of one-dimensic
uniform temperature T, and exposed to convection from all surfaces to a medium at T,

Birn =6nt

Infinite eylinder

X
s

B(ar, 1) = By (R 1) B o (X, 1)
Semi-infinite cylinder

nal salutions for bodies that are initially at a

Bixrn=0_,nn8, ,xn
Short cylinder

Bix ) =0, (6 1)
Semi-infinite medium

9[1’}"” = gsemi—inf x.1) E;semi—inf A8

Quarter-infinite medium

)

Bzt =
9s.en'li—inf (% lrJgserni—inf (y.4) 9semi—irlf (z.8)
Corner region of a large medium

2L
é_L.r

Blx ) =8, ylxt)
Infinite plate (or plane wall)

2L

f——

ud

N

=

Q(x, Yty = Qwall (x.6) Qserrli—inf (1)
Semi-infinite plate

Blxy.z, 1) =
Bt (% 8 B micing (8 Bramiing (2. 1)
Quarter-infinite plate

Blxy 1) =0, ix08, (w1
Infinite rectangular bar

Bixyzth=
Byt (£ By (3 1) gy 12: 1)
Semi-infinite rectangular bar

Bixyz. =
B (6, 08y (0, 8) B (2,0)
Rectangular parallelepiped
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Total Transient Heat Transfer

The transient heat transfer for a two dimensional geometry formed by
the intersection of two one-dimensional geometries 1 and 2 is:

L&j [&] (&j 1_(&]
Quox Jow 20 \ Qo Sy Qe Jo| \ Quuac )y

Transient heat transfer for a three-dimensional (intersection of three
one-dimensional bodies 1, 2, and 3) is:
1- ( Q j
L Qmax 1

(&] (gj (L]
Qmax total, 3D Qmax 1 Qmax 2

(&j 1-(&) 1-(&)
Qmax 3L Qmax 1 Qmax 2
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4-113 A hot dog can be considered to be a 12-cm-long
cylinder whose diameter is 2 cm and whose properties are
p = 980 kg/m?, ¢, = 3.9 kl/kg - °C, k = 0.76 W/m - °C, and
a =2 X 1077 m?%s. A hot dog initially at 5°C is dropped into boil-
ing water at 100°C. The heat transfer coefficient at the surface of ' o
the hot dog is estimated to be 600 W/m? - °C. If the hot dog is | [+ Water. 100°C
considered cooked when its center temperature reaches 80°C, \C ‘
determine how long it will take to cook it in the boiling water.

_hL (600 W/m*.°C)(0.06 m)

Bi =4737 — 54 =1.5380 and A4 =1.2726
s (0.76 W/m.”C)
J‘. . EIO .
pi= o (OO WM™2O)O00IM) _ ;055 ) _21249 and 4, =1.5514
k (0.76 W/m.*C)
A —jlzr —/lllr . Q
8(0.0. 1ok = 0013 000 =(4¢ ™" [ 4e™ | This hot dog can physically be
I formed by the intersection of
897100 _ 1 2726 exp{— (1.5380)2 210 ) )r“ an infinite plane wall of
5-100 (0.06)* thickness 2L = 12 cm, and a long
cylinder of radius ro=D/2 =1
) » 2x107)t ]| Y j
x1(1.5514) exp| - (2.1249)2 ~—— L |1 — 02105 cm.
0.0n* ||

which gives
1=244s5=4.1 min
. af _ (2x1077 m?/s)(244s)
T2 (0.01m)>

;VCJ

=049=02 37



Conclusions

»Lumped system analysis
> Transient heat conduction in
* large plane walls
* long cylinders
- spheres
> Transient heat conduction in semi-infinite solids

> Transient heat conduction in multidimensional systems
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HEAT AND MASS TRANSFER

Numerical Methods in Heat Transfer



Objectives

To understand the limitations of analytical solutions of conduction
problems, and the need for computation-intensive numerical
methods,

To express derivates as differences, and obtain finite difference
formulations,

To solve steady one- or two-dimensional conduction problems
numerically using the finite difference method, and

To solve transient one- or two-dimensional conduction problems
using the finite difference method.



Why Numerical Methods?

=> Several ways for obtaining the numerical formulation of a heat conduction
problem:

* the finite difference method,

* the finite element method,

* the boundary element method, and

* the energy balance (or control volume) method.

=>Each method has its own advantages and disadvantages!!l And each is used in
practice.

= Key Reasons:

1. Limitations — Analytical solution methods are limited to
highly simplified problems in simple geometries.

2. Better Modeling — An “approximate” solution is usually

more accurate than the “"exact” solution of a crude Simplificd \ Realistic
mathematical model.

3. Flexibility — Engineering problems often require
extensive parametric studies.

4. Complications — Analytical solutions for complex
geometries and problems are not available.
5. Human Nature

= Diminishing use of human brain power with expectation for
powerful results.

- Imc?r'essive presentation-style colorful output in graphical 3
and tabular form.



Finite Difference Formulation of Differential
Equations

The numerical methods for solving differential equations are
based on replacing the differential equations by algebraic
equations.

For finite difference method, this is done by replacing the

derivatives by differences. ooy
A function f that depends on x.
The first derivative of f(x) at a point [+ AD

is equivalent to the slope of a line
tangent to the curve at that point

J)

Tangent line

df (x) e A f (x+Ax)—f(x) (5-5)
dx AX—>0 AX  Ax—0 AX



If we don't take the indicated limit, we will have the following
approximate relation for the derivative:

df (x)  f(x+Ax)—f(x) (5-6)
dx AX

The equation above can also be obtained by writing the Taylor series
expansion of the function f about the point x,

df (x) 1 ,d*f(x)
f (x+Ax)= f (x)+Ax + = AX° +... (5-7
( ) ( ) dX 2 dXZ ( )
and neglecting all the terms except the first two.

The first term neglected is proportional to Ax?, and thus the error
involved in each step is also proportional to A X2,

However, the commutative error involved after M ste fs in the direction
of leng’rh L is proportional to Ax since MAx?=(L/ Ax)Ax*=LAx.

|12




One-Dimensional Steady Heat Conduction

« Steady one-dimensional heat
conduction in a plane wall of Plane wall
thickness L with heat generation.

« The wall is subdivided into M
sections of equal thickness Ax=L/M.

e M+1lpoints0,1,2,...,m-1,mm+1,..., M

called nodes or nodal points.
« The x-coordinate of any point m Is X, =mAXx.

« The temperature at that point is simply
T(X,)=T,.

=» Green: internal nodal points
=» Red: boundary nodal points



Using Eg. 5-6

~ Tm+1 _Tm (5 8)
- AX

dT

ar L . dT
dx B

AX &

1 1
m—— m+=
2 2

Noting that the second derivative is simply the derivative of the first
derivative:

ar
dZT N dX

_dar
dx
dx? AX - AX

Tm—l B 2Tm + Tm+1
AX* (5-9)

| Tm+1 _Tm _ Tm _Tm—l
"2 AX AX

1
m+=
2




The governing equation for steady one-dimensional heat transfer in a plane wall

with heat generation and constant thermal conductivity

/t121>\ e

) K ° (5-10)
[T T, 2T, 4T, (5-9)
‘\< dXZ m_!_____é)_(z_ ————— :
] (5-11)
T iTn; + T4 . En =0, m=123...M -1 |
X

-The equation is applicable to each of the M-1 interior nodes

- M-1 equations for the determination of temperatures.

Plane wall

Differential equation:
2 =

a :g + £=0

dx k

Valid at every point

.

Finite difference equation:

1rm—] _sz+TrrJ+l +%: )
S k
Valid at discrete points
I—If\_—ﬁ_-x\" i)
[-Ax

- The two additional equations needed to solve for the M+1 unknown nodal
temperatures are obtained by applying the energy balance on the two elements at

the boundaries.



Boundary Conditions

A boundary node does not have a neighboring node on at least one side.

We need to obtain the finite difference equations of boundary nodes
separately in most cases (specified temperature boundary conditions is an
exception).
Energy balance on the volume elements of boundary nodes is applied.
Boundary conditions frequently encountered are:

1. specified temperature,

2. specified heat flux,

3. convection, and

4. radiation boundary conditions.



Boundary Conditions for Steady One-Dimensional
Heat Conduction in a Plane Wall

« Node number
— at the left surface (x=0): is 0,
— at the right surface at (x=L): i1s M
« The width of the volume element: Ax/2.

1. Specified temperature boundary
conditions

« T(0)=T,=Specified value

« T(L)=T,,=Specified value

* No need to write an energy balance unless
the rate of heat transfer into or out of the
medium is to be determined.

Plane wall

T,=35°C
TM =82°C

10



An energy balance on the volume x
L — Volume element
element at that boundary: |~ ofnodeo

—_—— | - — -

P 3 [T '
. kA 1 0
I Qleft sssss face]] Ax :

Z Q T Egen,element =0 (5'20) - _; ‘L - _2 _... —

All sides ° !

: QIeft Surface,«kA il '+:e (AAX/Z)::O (5-21)

The finite difference form of various boundary conditions can be obtained by
replacing Q. surace Y @ SUitable expression.

11



2. Specified Heat Flux Boundary Condition

= = == =

CT-T
| AH- kA2
CIo Ax

+&,(AAX/2)=0 (5-22)

3. Convection Boundary Condition

> +6,(AAX/2)=0 (5-24)

e A(T,, —TO“)L Al To +6, (AAX/2)=0 (5-25)

———————————————————————

'hA(I' —~To)+e0A(Ta, - T, )+ kATlA_T
______________________ X

&, (AAX/2)=0 (5:26)



The Mirror Image Concept

The finite difference formulation of a node on an el
insulated boundary can be treated as “zero” heat men
flux is Eq. 5-23. 6/1 :
Another and more practical way is to treat the node
on an insulated boundary as an interior node. M\
By replacing the insulation on the boundary by a -
mirror and considering the reflection of the interior
medium as its extension 7 N
Using Eq. 5.11: " L/
Tm—l B 2Tm +Tm+1 € _yy
2 T -
AX K

T R2T 4T &
—=t—— =t T =0 (5-30)
AX k

13



Finite Differences Solution

Usually a system of N algebraic equations in N unknown nodal temperatures that
need to be solved simultaneously.

There are numerous systematic approaches available which are broadly classified as
— direct methods
 Solve in a systematic manner following a series of well-defined steps
— Iterative methods
« Start with an initial guess for the solution,
« and iterate until solution converges

The direct methods usually require a large amount of computer memory and
computation time.

The computer memory requirements for iterative methods are minimal.

However, the convergence of iterative methods to the desired solution, however,
may pose a problem.

14



Problem 1: 5-24 Consider a large uranium plate of thickness 5 cm and
thermal conductivity & = 28 W/m - °C in which heat is gener-
ated uniformly at a constant rate of ¢ = 6 X 10° W/m?. One
side of the plate is insulated while the other side is subjected
to convection to an environment at 30°C with a heat transfer
coefficient of 1 = 60 W/m? - °C. Considering six equally
spaced nodes with a nodal spacing of 1 cm, (a) obtain the finite
difference formulation of this problem and () determine the
nodal temperatures under steady conditions by solving those
equations.

Analysis The number of nodes 1s specified to be M = 6. Then the nodal spacing Ax becomes

L 0.05m

Ax = =
M —1 6-1

This problem mmvolves 6 unknown nodal temperatures, and thus we need to have 6 equations to determine
them uniquely. Node 0 is on insulated boundary, and thus we can treat it as an interior note by using the
mirror image concept. Nodes 1. 2, 3, and 4 are interior nodes, and thus for them we can use the general
finite difference relation expressed as

Ly _2;!:’1 Ly +&m — g , for m=0,1,2. 3, and 4
Ax~ k

Finally, the finite difference equation for node 5 on the right surface subjected to convection 1s obtained by
applying an energy balance on the half volume element about node 5 and taking the direction of all heat
transfers to be towards the node under consideration:

15



Node 0 (Left surface - msulated) : S +—=0 o~
Ax~ k
T,-2T, +T,
Node 1 (intertor) : ’ L +;£ =0 e
T f} T ( Insulated
Node 2 (interior) : 177270 oy y ﬁ,f h, T
ﬂx i k » & & & »
0
L I, =215 +17,
Node 3 (interior) : 374, %20 L2 3 40
Ax? k
T, -2T,+T
Node 4 (1nterior) : S O — T~
Ax? k
. : I,-Is . .
Node 5 (right surface - convection) : i(T,, —75)+k T 70 L e(Ax/2)=0

Ax
where Ax=0.01m,é=6x10"° W/m’, k=28 W/m-°C, h=60W/m--°C, and 7., =30°C. This system of
6 equations with six unknown temperatures constitute the finite difference formulation of the problem.

(h) The 6 nodal temperatures under steady conditions are determined by solving the 6 equations above
simultaneously with an equation solver to be

Tp =556.8°C, T:=555.7°C, T1T,=552.5°C, T3=547.1°C, T,=539.6°C, and T5=530.0°C

16



Two-Dimensional Steady Heat Conduction

The x-y plane of the region is divided into a
rectangular mesh of nodal points spaced x and .

Numbering scheme: double subscript
notation (m, n) where m=0, 1, 2, ..., M is the node

count in the x-directionand n=0, 1, 2, ..., N is the
node count in the y-direction.

The coordinates of the node (m, n) are simply x=mx
and y=ny, and the temperature at the node (m, n) is
denoted by T, ..

A total of (M+1)(N+1) nodes.

n+ 1
N
n-1

O = 2

Ay

/ | Node

(m,

n)

Ay

Ax Ax
|

0

1

o !

m—-1 m+1

17




« The finite difference formulation given by Eqg. 5-9 can easily be extended to
two- or three-dimensional heat transfer problems by replacing each second
derivative by a difference equation in that direction.

« For steady two-dimensional heat conduction with heat generation and
constant thermal conductivity

Tm+1,n o 2Tm,n +Tm—1,n n Tm,n+1 o 2Tm,n +Tm,n—1
AX® Ay*

mi, n+ |

+ Cun _ 0 (5-33)
=

i+ ’

Mlm—1.n mn \m+1.n
n— »

form=1 23 ... M-landn=1 2 3,.... N-1. - 1 —

¥ Ax|Ax
‘ 1

X m—1 m m+1

« For Ax=4y=I, Eq. 5-33 reduces to
ToantT +T

m+1,n m,n+1

6 I
+ T a — 4T, + k =0 (5-34)

18



Boundary Nodes

The development of finite difference v Boundary
/olu me element r~..uh_|cclm:|
formulation of boundary nodes in two- (or of node 2 \ T ' ““"‘"“”Q’”
three-) dimensional problems is similar to '\.\ o ~..,|
c c c * 7 3
the development in the one-dimensional ' " ;
case discussed earlier. ” gy
Ay IQleﬂ |——— ———| Qnght

For heat transfer under steady conditions,

I I I I Q OLLom
the basic equation to keep in mind when bot
Iti 4
writing an energy balance on a volume n ¢ |
element is

Z Q +eV element =0 (5'36)

All sides

19



Transient Heat Conduction

The finite difference solution of transient
problems requires discretization in time in
addition to discretization in space.

the unknown nodal temperatures are
calculated repeatedly for each At until the

solution at the desired time is obtained.

In transient problems, the superscript i is
used as the index or counter of time steps.
1=0 corresponding to the specified initial
condition.

i+ 1

i

0 =

i+1 i+1 i+1
Tm -1 Tm m+1
& »
jr |'I II I
. } Tn.' 1| "m m+1
r s
At
) Ax | Ax
Ax |

0

m— 1

m m+ 1

20
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The energy balance on a volume element during a time interval At can be
expressed as

Heat transferred into Heat generated The change in the
the volume element within the energy content of
from all of its surfaces volume element | — | the volume element
during 4t during 4t during 4t
or : :
At x Z Q + At % Egen,element = AEelement (5'37)
All sides
Noting that AEenen= MCuAT=pV g 1emeniCp AT, and dividing the earlier
relation by At gives
: ) AE
Z Q +E _ element __ ,OV C AT (5_38)
gen,element At element ™ p At
All sides

or, for any node m in the medium and its volume element,

. . Ti+1 _Ti
Q + E n,elemen IOV men s s
Alées gen,element leme t p At

(5-39)

21



Explicit and Implicit Method

« Explicit method — the known temperatures at the previous time step I Is
used for the terms on the left side of Eq. 5-39.

oo S T i+l T [
s AR _ m m
Z Q + E o pVeIementh

- gen element
All sides At

(5-40)

 Implicit method — the new time step i+1is used for the terms on the left side
of Eq. 5-39.

umy
. .,
- .
[
C

Lj1: |+1 _
Z Q +E- o IOVeIementh

i1 ]
TrTI\+ TrTI\
gen element

5-41
All sides At ( )

Remarks:

« The explicit method is easy to implement but imposes a limit on the allowable
time step to avoid instabilities in the solution.

« The implicit method requires the nodal temperatures to be solved
simultaneously for each time step but imposes no limit on the magnitude of
the time step. 22



Transient Heat Conduction in a Plane Wall

« From Eg. 5-39 the interior node can be expressed on the basis of

T =T, T =T, T, =T,
KA—T=—T + KA-T=—0 + ¢ AAX = pAAXC, m (5-42)
AX AX At
« Canceling the surface area A and multiplying by Ax/k
€, AX® Ax
Ty — 2T, +T + (T, -T,)  (5-43)
kK oAt
A Plane wall :
"\H “m ,..-—"v;calumf:
| st

ialmot Tl gy g T~ T

Ax Ax

Ax Ax

i e e e |

& ——p—=

———— L 2 . -

= Ei X
) by m=1|m |m+1 M-1 |M 23
Ax




Defining a dimensionless mesh Fourier number as

aAt

AX
Eqg. 5-43 reduces to
. 2 Ti+1 _Ti )
T ,—2T 4T 4o ix (W -Tn) (5-4)
7

The explicit finite difference formulation

| o dAE (T -T! i
T 2T T e ) e

T

This equation can be solved explicitly for the new temperature (and thus the
name explicit method)

| o & AX°
T (T 4T (=20 T wrm 647)

24



The implicit finite difference formulation

| 2 i+1 I
T 1+1 . 2T i1+1 +T 1+1 4 em AX _ (Tm _Tm ) (5'48)
m-1 m m+1 k

T

which can be rearranged as

| | - éi+lAX2
T —(1+ ZT)T:l + T o ” +T'=0 (5-49)

m+1 m

The application of either the explicit or the implicit formulation to each of
the M-1 interior nodes gives M-1 equations.

The remaining two equations are obtained by applying the same method to
the two boundary nodes unless, of course, the boundary temperatures are
specified as constants (invariant with time).

25



Stability Criterion for Explicit Method

The explicit method is easy to use, but it suffers from an undesirable feature: it
Is not unconditionally stable.

The value of At must be maintained below a certain upper limit.

It can be shown mathematically or by a physical argument based on the
second law of thermodynamics that the stability criterion is satisfied if the
coefficients of all in

the expressions (called the primary Explicit formulation:
coefficients) are greater than or i S la
. ] 1
equal to zero for all nodes m. T
[

All the terms involving for a -

particular node must be grouped - i
together before this criterion is i —: aml L

applied. L

Tit1l —I i
T = (}M:-TM =

- . . 1
Stability criterion: = =

a.=0 m=—012. . .m. ..M



Different equations for different nodes may result in different restrictions on
the size of the time step At, and the criterion that is most restrictive should be
used in the solution of the problem.

In the case of transient one-dimensional heat conduction in a plane wall with
specified surface temperatures, the explicit finite difference equations for all
the nodes are obtained from Eq. 5-47. The coefficient of in the expression is
1-27.

The stability criterion for all nodes in this case Is 1-27=0 or

T=——<X— interior nodes, one-dimensional heat (5-52)
transfer in rectangular coordinates

The implicit method is unconditionally stable, and thus we can use any time
step we please with that method

27



Problem 2:

5-76 Consider transient heat conduction in a plane wall with
variable heat generation and constant thermal conductivity. The
nodal network of the medium consists of nodes 0, 1. 2, 3, and
4 with a uniform nodal spacing of Ax. The wall is initially at
a specified temperature. Using the energy balance approach,
obtain the explicit finite difference formulation of the boundary
nodes for the case of uniform heat flux ¢, at the left boundary
(node 0) and convection at the right boundary (node 4) with a
convection coefficient of /7 and an ambient temperature of 7.
Do not simplify.

Analysis Using the energy balance approach and taking the
direction of all heat transfers to be towards the node under
consideration, the explicit finite difference formulations
become

Left boundary node:
Ax

Tll. _ T{; . y / TF-H. _Ti"
+g.A+el (AAx/2)= pd—c 0
ﬂ_‘{ jO CI( ) }o 2 P ﬂf

kA

Right boundary node:

. L | Ay T T
FA=S—2 4+ hA(T. -Ti)+é. (AAx/2)=pd—c, == =
Ax ( 4) 4( )= P 5 Cr Ar

_— e(x, 1)
C;l —|
0__ Ax
——
& & &
700 1 2 3
M
e(x, 1)
qo
T Ax
f_}‘_\
g & & &
0 1 2 3
— |

h, T,

h, T,

28



Two-Dimensional Transient Heat Conduction

Heat may be generated in the medium ata rate (X, y,t)
which may vary with time and position.
The thermal conductivity k of the medium is assumed to be constant.

The transient finite difference formulation for a general interior node can be
expressed on the basis of Eq. 5-39 as

Tm—l n _Tm n Tm n+1 _Tm n Tm+1 n _Tm n
KAy ’A = + KAX — A = + KAy ,A '
” g M (556)
Tona =T Ton = T

FKAX ML M s AYAY = pAXAYC
Ay m,n y p y p At

29



« Taking a square mesh (Ax=Ay=I) and dividing each term by k gives after
simplifying

e, 0 T,o-T|

T m,n m,n (5_57)

m-1,n

+T

m+1,n

+T1

m,n+1

+Tm,n_1 — 4Tm’n +
.

« The explicit finite difference formulation

_ _ _ _ _ e'i |2 Ti+l_Ti
T +T' +T' +T' AT 2= (5-39)

m-1,n m+1,n m,n+1 m,n—1 ,
T

« The implicit finite difference formulation
2 |2

Tov=r(TL +T0 4T 4T )+ (1-40)T! +7 e (5-60)

m-1,n m+1,n m,n+1 m,n—1
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The stability criterion that requires the coefficient of in the expression to be
greater than or equal to zero for all nodes is equally valid for two or three-
dimensional cases.

In the case of transient two-dimensional heat transfer in rectangular
coordinates, the coefficient of T,"in the T '** expression is 1-4 .

Thus the stability criterion for all interior nodes in this case is 1-47>0, or

oAl

T = < — interior nodes, two-dimensional heat (5-61)
| 2 4 transfer in rectangular coordinates

The application of Eq. 5-60 to each of the (M-1)X(N-1) interior nodes gives
(M-1)X(N-1) equations.

The remaining equations are obtained by applying the method to the boundary
nodes (unless the boundary temperatures are specified as being constant).

31



Conclusions

» Importance of numerical methods

Finite difference formulation of differential equations
One-dimensional steady heat conduction
Two-dimensional steady heat conduction

- Transient heat conduction
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PHYSICAL MECHANISM OF CONVECTION
Hotpatc

—

o Heat transfer
L e through the
Coamssa et

—

(a) Forced convection

Warmer air
rising :
Cold plate

AR g\

Somdi s g U s JlIFIGURE 6-2
Heat transfer through a fluid

sandwiched between two parallel

(b) Free convection
plates.

. No convection
Q3 currents

Heat transfer from a hot surface to the
surrounding fluid by convection and



The rate of convection heat transfer is observed to be proportional to
the temperature difference and is conveniently expressed by Newton's

law of cooling as

The convection heat transfer strongly
Goone = T, — T.) MRl depends on the fluid properties dynamic
viscosity u, thermal conductivity Kk,
density p, and specific heat Cp, as well as

O...=hA(T,—T.) (W) RUCRIRC A

elative
velocities
of fluid layers

ol

eonv = Qeond = _kﬂuin:l v ;
il ; }l: |

: the temperature gradient
at the surface

(8T/8Y)y—o

—Kia( 0T/ 3¥)y = cla

T —T.

(W/m? - °C)

h =

A fluid flowing over a stationary
surface comes to a complete stop a

the surface because of the no-slip
condition.




i | | : ' ! 28
! | ‘ z -
111 ] ‘ ! 1 1§
1 1 4 : .
; E f » )‘ ' J ; A !
) ; : ; &l ; . s -
' 1 J Lk
1FPr+
‘-

- .

FIGURE 6-3

The development of a velocity profile
due to the no-slip condition as a fluid

flows over a blunt nose.

“Hunter Rouse: Laminar and Turbulent Flow Film.”
Copyright IIHR-Hydroscience & Engmeenng
The University of lowa. Used by




Nusselt Number (Nu)

The Nusselt number (Nu):
ﬁér
“ Fluid '

. g
k : the thermal conductivity of the fluid | et i
L. : the characteristic length. .
1
Heat flux (the rate of heat transfer per AT =T, T
unit time per unit surface): FIGURE 6-5

Heat transfer through a fluid layer
of thickness L and temperature
difference AT

"i-:::-mr = hAT and

 conv o -‘!LiT . @ — Nu

 KAT/L  k

fcond

A Nusselt number of Nu = 1 for a fluid layer represents heat
transfer across the layer by pure conduction.



Classification of Fluid Flows

\/iscous versus inviscid regions of flow
Internal versus external flow
Compressible versus incompressible flow
Laminhar versus furbulent: flow

Natural (or unforced) versus forced flow
Steady versus unsteady flow

One-, two-, and three-dimensional flows



T

Inviscid flow

region

l

region

T

Inviscid flow

region

!

FIGURE 6-7

The flow of an originally uniform
fluid stream over a flat plate, and
the regions of viscous flow (next to

the plate on both sides) and inviscid
flow (away from the plate).

Fundamentals of Boundary Layers,
National Committee from Fluid Mechanics Films,
© Education Development Center:

FIGURE 6-8

External flow over a tennis ball, and

the turbulent wake region behind.

Courtesy NASA and Cislunar Aerospace, Inc.



FIGURE 6-9

[Laminar, transitional, and turbulent

FIGURE 6-10

In this schlieren image of a girl, the
rise of lighter, warmer air adjacent to
her body indicates that humans and
warm-blooded animals are surrounded
by thermal plumes of rising warm air.

G. S. Settles, Gas Dynamics Lab,
Penn State University. Used by permission.




FIGURE 6-11
The development of the velocity

Developing velocity
profile, V(r, z)

5

Fully developed
velocity profile, V(r)
/

profile in a circular pipe. V = V(r, z) = 5

and thus the flow is two-dimensional T L‘E\

in the entrance region, and becomes il o 2 B = > 2
one-dimensional downstream when i I = = 7 > >
the velocity profile fully develops and 7‘: - >

remains unchanged in the flow
direction, V = V(r).

< tedion ¢ = 0 QPO VvVe c Pidle DO ded LY O

Transition | Turbulent boundary
—_— layer region layer

Pl Laminar boundary

— vV

AR
)
R

Yvy

=
_t"\/_ﬁ;-f/)‘//\} \4,/\/‘

Turbulent
layer

_— Overlap layer

—— Buffer layer

/
Boundary layer thickness, o

—_— > — — — X \/ :,i
—() >
X

=
i, SE—

FIGURE 6-12

Viscous sublayer

he development of the boundary layer for flow over a flat plate, and the different flow regimes.



Surface Shear Stress

Friction force per unit area is called shear
stress, and is denoted by z

Tihe shear stress for most fluids is proportional to’ xS
the velocity: grad/ent:

T'he shear stress at the wall surface for these
fluids is expressed as

Liquids
Tihe fluids that that obey the linear relationship
above are called'Newtonian fluids.

Tihe viscosity' of a fluid IS aimeasure of: its
resistarce to. derormnation.

Tihe viscosities offliguids gecrease with
temperature, whereas the VIScosities of gases
/rAcrease;with temperature.

Surface shear stress and friction force:

Temperature

FIGURE 6-14
The viscosity of liquids decreases and
the viscosity of gases increases with

temperature.
11

PV

7, = Ci— (N/m?)




THERMAL BOUNDARY LAYER

Thermal Boundary Layer: the flow region over the surface in which
the temperature variation in the direction normal to the surface is
significant.

The thickness of the thermal
boundary layer &, at any location
along the surface is defined as the
distance from the surface at which
the temperature difference T - T,
equals 0.99 (T-T,).

btk e
The thickness of the thermadl T +0.99(T, — T.)
boundary layer increases in the flow ” | |
direction, since the effects of heat PNIE B el
transfer are felt at greater
distances from the surface further
downstream.

hermal boundary layer on a flat plate
(the fluid is hotter than the
plate surface).

12



Prandtl Number (Pr)

The Prandtl numbers of fluids range from less than 0.01 for liquid
metals fo more than 100,000 for heavy oils (Table 6-2). The Prandtl
humber is in the order of 10 for water.

b Molecular diffusivity of momentum ¢ G,
== . =—=
Molecular diffusivity of heat v k

TABLE 6-2

Typical ranges of Prandtl numbers
for common fluids

Fluid Pr

Ligquid metals 0.004-0.030
Gases 0.7-1.0

Water 1.7-13.7

Light organic fluids 5-50

Oils 50-100,000
Glycerin 2000-100,000

13



Laminar and Turbulent Flows

— the
flow: is characterized
by smooith
streamlines'and
highly-ordered
motion.

Turbulent: flow'— the
flow is

characterized by.
velocity

fluctuations and

highly-disordered
motion.

The from

o turbulent:
flow does hot occur
suddenly.

Dye trace

ﬁ
Vavg
rLaminar

f Dye injection flow

(a) Laminar flow

Dye trace

i)

Dyc, injection

(b) Turbulent flow
FIGURE 6-17
he behavior of colored fluid injected FIGURE 6-16

into the flow in laminar and turbulent §] .aminar and turbulent flow regimes
flows in a pipe. of candle smoke.




The velocity profile in turbulent flow is much fuller than that in laminar
flow, with a sharp drop near the surface.

The turbulent boundary layer can be considered to consist of four

regions:
= Buffer layer
= Overlap layer

The intenseimixing in turbulent flow enhances heat and momeniium
transfer, which increases the friction force on the surface and the
convection heat: fransfer rate.

Laminar boundary Transition Turbulent boundary
region
—— -

: urbulent I

, — it
Boundary layer thickness, 6




Reynolds Number

The fransition from laminar o turbulent flow depends on the
surface geometry, surface rqgghness, flow: velocity, surface
temperature, and type of fluid:

The flow regime depends mainly on the ratio of the inertia forces
0 viscous forces'in the fluid.

This ratio, is called the Reynolds number, which is expressed for
external flow as

__Inertia forces _

Re =

Viscous
At large Reynolds numbers (Turbulent; flow) the inertia forces are
large relative fo tihe viscous forces.

At small'or: moderate Reynoldsinumbers (laminar flow), the viscous
forces are large enough o suppressithese fluctuations and to
keep The fluid=inline.

Critical Reynolds number — the Reynolds number at which the
flow becomes turbulent:.

16



Some important results from convection equations

The average local skin friction coefficient [GMEEEEEEEINIYE Tale

=

) -
. 1'_\ L L
fox o) -

C Nu, (Pr=1)

17



CONCLUSIONS

Physical Mechanism of Convection
Nusselt Number

Classification of Fluid Flows
Velocity Boundary Layer

Surface Shear Stress

Thermal Boundary Layer

Prandtl Number

Laminar and Turbulent Flows
Reynolds Number

Solutions of Convection Equations
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HEAT AND MASS TRANSFER

External Forced Convection



To distinguish between internal and external flow,

To develop an intuitive understanding of friction drag and
pressure drag, and evaluate the average drag and convection
coefficients in external flow,

To evaluate the drag and heat transfer associated with flow
over a flat plate for both laminar and turbulent flow,

To calculate the drag force exerted on cylinders during cross
flow, and the average heat transfer coefficient, and

To determine the pressure drop and the average heat transfer
coefficient associated with flow across a tube bank for both in-
line and staggered configurations.



Fluid flow over solid bodies
cause physical phenomena such
as

automobiles
power lines

airplane wings
= cooling of metal or plastic
sheets.

— the
velocity of the fluid relative to
an immersed solid body
sufficiently far from the body.

The fluid velocity ranges from
zero at the surface (the no-slip
condition) to the free-stream
value away from the surface.

ETETEI|
l‘“l SECELIN

1

FIGURE 7-1

Flow over bodies is commonly
encountered in practice.




The force a flowing fluid exerts on a
body in the flow direction is called
drag.

Drag is compose of:

= pressure drag,

s friction drag (skin friction drag).
The drag force F depends on the

= density p of the fluid,

= the upstream velocity V, and

= the size, shape, and orientation of
the body.

The dimensionless drag coefficient C,
is defined as

| — a |
(-"D - (-'.’_'.1'_. friction + L‘D, pressure

For‘ fla"' pla"'e: 'CD = Cfﬂ', friction — (f

FIGURE 7-2

Schematic for measuring the drag
force acting on a car in a wind tunnel.

Wall shear
FIGURE 7-3

Drag force acting on a flat

plate normal to the flow depends on
the pressure only and is independent o

the wall shear, which acts normal to




At , most
drag is due to

The friction drag is also
proportional to the surface area.

The pressure drag is
proportional to the frontal area
and to the difference between
the pressures acting on the
front and back of the immersed
body.

The is usually
for and
negligible  for

When a fluid separates from a
body, it forms a separated
region between the body and the
fluid stream.

The larger the separated region,
the larger the pressure drag.

FIGURE 7-5

Separation during flow over a tennis

ball and the wake region.
Courtesy of NASA and Cislunar Aerospace, Inc.



Local and average Nusselt
numbers:

Nu, = f,(x*. Re,. Pr) and Nu = f5(Re;, Pr)

Average Nusselt number:  INIUENGN NI Yo
Film temperature:
Average friction
coefficient:

Average heat transfer
coefficient:

The heat transfer rate:




PARALLEL FLOW OVER FLAT PLATES

The Re number at a distance x from the
leading edge of a flat plate is
expressed as

== ’{J) Turbulenl/D)
&Laminarék)/\jg)ﬁ/

For flow over a flat plate, transition '
from laminar to tfurbulent usually L

occurs at FIGURE 7-6
v Laminar and turbulent regions
of the boundary layer during
flow over a flat plate.

The value of the critical Reynolds number for a flat plate may vary
from 10° to 3x10°, depending on the surface roughness and the
turbulence level of the free stream

:



Friction Coefficient

Laminar:

0.38x . 0.059 . 5 _ 1T
Turbulent: o, , = Rol5 and Cp,=—_——= 5X 10° = Re, = 107

Laminar:

Turbulent:

(_-L}L'; .I,. fu rb ul ent l‘.f."‘ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

FIGURE 7-9
0.074 1742 s . The variation of the local friction
= . X 10° = Rep = 10 -
Relfs Re ; L and heat transfer coefficients for
L ' flow over a flat plate.

Rough surface, turbulent: | 1.89 — 1.62 log ~




Heat Transfer Coefficient

The local Nusselt number at a location x for laminar
flow over a flat plate:

_ — 0.332 Re! || 5 pyplf3 Pr = 0.60

Laminar:

The corresponding relation for turbulent flow:

hox 0.6 = Pr =60
Turbulent: Nu, = —— = 0.0296 Re%* pPrl/3 .
: 5% 10° < Re, = 10

The average Nusselt number over the entire
plate:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

FIGURE 7-9

The variation of the local friction
and heat transfer coefficients for
flow over a flat plate.

Laminar: Nu = :L = 0.664 Re{- Pr! e, < 5% 107
0.6 < Pr < 60

Turbulent: Nu = L _ = (0.037 Re}*® Prl .
k ¢ 10° = Re; = 107

The average heat transfer coefficient over the entire plate:

y

|"£.

h‘.r. trubulent d'I )
X y 9

[Tl = 8

1 [ |
L (~ ..J[l h‘ taminar 6X T




The average Nusselt number over the entire plate:

0.6 = Pr = 60

I’«Ju==££'—11m‘ﬂ'r H. _ . .
k # 107 = Re; = 10

Liquid metals (e.g., mercury) have high
thermal conductivities and are commonly § i
used in applications that require high heat
transfer rates.

h

Nu, = 0.565(Re, Pr)"? Pr < 0.05

x, laminar

Churchill and Ozoe proposed the following
relation which is applicable for all Pr
numbers:

Turbulent

FIGURE 7-10

raphical representation of the
average heat transfer coefficient for a
flat plate with combined laminar and
turbulent flow.

0.3387 Pr'/3 Re!”?

10



Flat Plate with Unheated Starting Length

The local Nusselt numbers for both laminar and turbulent flows are:

Lo NU, ifor - =) 0.332 Re?” PrV/?
arminar. T T e T TR I
T = (ExBE [ = (Ex)RE
NU, (5or £=0) 0.0296 Re’® Pr!?3

Turbiulent: v = W = W

Thermal boundary layer

211 — (& 1x)34] Velocity boundary layer

Laminar: h = [ — /L =L

511 — (&£/x)710]

lurbulent: = an O OO)s,O,sOsssrrrss

FIGURE 7-11

Flow over a flat plate with an unheated
starting length.




Uniform Heat Flux

When a flat plate is subjected to uniform heat flux instead of
uniform temperature, the local Nu number is

Laminar: Nu, = 0.453 Re?” Pr!”?

Turbulent: Nu, = 0.0308 Re® pr!/

When heat flux [/ is prescribed, the rate of heat transfer to or from
the plate and the surface temperature at a distance x are determined

from

and

A. : heat transfer surface area. .



7-16 During a cold winter day, wind at 55 km/h i1s blowing
parallel to a 4-m-high and 10-m-long wall of a house. If the air
outside 1s at 5°C and the surface temperature of the wall is

12°C, determine the rate of heat loss from that wall by convec- S8

tion. What would your answer be if the wind velocity was dou- 55km/h -

bled?

Properties The properties of air at 1 atm and the
film temperature of (7, + T,.)/2 = (12+5)/2 = Air
8.5°C are (Table A-15) V=55 kan/h

k=0.02428 W/m-°C I.= SOC
>

v=1413x10" m?/s >

_—

-

Pr =0.7340 :
Analysis Air flows parallel to the 10 m side:

The Reynolds number in this case is

55 3
Re, :E: [(55%x1000/3600)m/s](10m) _1081x107

v 1.413x107 m*/s
which is greater than the critical Reynolds number. Thus we have combined laminar and turbulent flow.
Using the proper relation for Nusselt number. heat transfer coefficient and then heat transfer rate are
determined to be

Nu = %‘L = (0.037Re, " —871) Pr'’? =[0.037(1.081x 107 )% —871](0.7340)*"* =1.336x10*

k 0.02428 W/m.°C
X Nu-= T~ (1336%10%) = 32.43 W/m?.°C
L 10m

A, =wL=(4m)(10m)=40m*
O =hA, (T, ~T,) = (32.43 Wm? °C)(40m>)(12— 5)°C = 9080 W = 9.08 KW




7-16 During a cold winter day, wind at 55 km/h i1s blowing
parallel to a 4-m-high and 10-m-long wall of a house. If the air
outside 1s at 5°C and the surface temperature of the wall is
12°C, determine the rate of heat loss from that wall by convec- o ;
tion. What would your answer be if the wind velocity was dou- 55km/h -

bled?

If the wind velocity is doubled.
_VL _ [(110><1000!3600)111;’5][10111) 2 162¢107
v 1.413x107 m*/s

which is greater than the critical Reynolds number. Thus we have combined laminar and turbulent flow.
Using the proper relation for Nusselt number. the average heat transfer coefficient and the heat transfer rate

Re; =

are determined to be

N :%L =(0.037Re,"*~871) Pr'’? =[0.037(2.162x107)*% —871](0.7340)""* = 2.384 x10*

h= X gy 2 LOAZBWANTC ) 3410%) = 57.88 W/n?.2C
L 10m

)= hA (T, —T.) =(57.88 W/m>.°C)(40m?>)(12—-5)°C =16.210 W =16.21 KW




FLOW ACROSS CYLINDERS AND SPHERES

Flow across cylinders and spheres is
frequently encountered in many heat
transfer systems

= shell-and-tube heat exchanger,
= pin fin heat sinks for electronic
cooling.

The characteristic length for a
circular cylinder or sphere is taken to
be the external diameter D.

The critical Re number for flow
across a circular cylinder or sphere is
about

Re.= 2x10°

Cross-flow over a cylinder exhibits
complex flow patterns depending on
the Re number.

At very low velocities (Re<l), the fluid
completely wraps around the cylinder.

AT higher velocities the boundary layer
detaches from fthe surface, forming a
separation region behind the cylinder.

Flow: in the wake region is characterized
by periodic vortex formation and low
pressures.

The nature of the flow across a cylinder
or sphere strongly affects the fotal Cp.

At low Re numbers (Re<10), friction drag
dominates.

AT high Re numbers (Re>5000), pressure
drag dominate.

At intermediate Re numbers — both
pressure and friction drags dominate.

FIGURE 7-16

Laminar boundary layer separation

with a turbulent wake; flow over a
circular cylinder at Re = 2000. 15

Courtesy ONERA, photograph by Werlé.



Average Cp for circular cylinder and sphere:

<1 — creeping flow
~10 — separation starts
~#90 — vortex shedding starts.

103<-2<102
= in the boundary layer flow is laminar

= in the separated region flow is highly
furbulent

10%< <106 — turbulent flow

(b)
FIGURE 7-18

Flow visualization of flow over

(a) a smooth sphere at Re = 15,000,
and (b) a sphere at Re = 30,000 with
a trip wire. The delay of boundary
layer separation is clearly seen by
comparing the two photographs.

Courtesy ONERA, photograph by Werlé.

FIGURE 7-17

Average drag coefficient for cross-
flow over a smooth circular cylinder

and a smooth sphere.

From H. Schlichting, Boundary Layer Theory 7e.
104 Copyright © 1979 The McGraw-Hill Companies,

Inc. Used by permission.



Relative Friction
Surface  roughness increases the drag [REEEUES coefficient
coefficient in turbulent flow, especially for oL

\ : 0.0* :
streamlined bodies. 1 % 10-5 0.0032

For blunt bodies (e.g., a circular cylinder or |EEESETES 0.0049
sphere), an increase in the surface roughness |kl

may actually decrease the drag coefficient. e e o e
calculated from Eq. 7-18.

This is done by fripping the boundary layer info
turbulence at a lower Re number, causing the FIGURE 7-8
fluid to close in behind the body, narrowing the EREEEECUEEIRIEEIRIEE

wake and reducing pressure drag considerably. may cause the friction coethilent

% = relative roughness
— TN D

\ \ \ \
\‘ \

e 3 \ \ \ R e by —

" S‘r G()lf/“ '\ ‘ . s I et o
SIS ball | ,1 - P
= \ \ .
2 03 S | S o~ s
el (] 1 \ /' / "
I | L. Y-k--- /
© XhTTT /
0.2 — |
£ - 125 102 | / \ / E _ b
D - = () (smooth)

£ =3 / D

0.1 p =2 >_/

2L <3
p ]l FIGURE 7-19
O -
4 %10° 105 — 6 4 %105 The effect of surface rgughness on th
v VD drag coefficient of a sphere. il

v From Blevins (1984).



Heat Transfer Coefficient

Flows across cylinders and spheres involve flow
separation, which is difficult to handle analytically.

The local Nusselt number around the periphery
of a cylinder subjected to cross flow varies =
considerably.

Small g— decreases with increasing as a result
of the thickening of the laminar boundary layer.

80°<qg <90° — reaches a minimum

= low Re numbers — due to separation in laminar
flow

= high Re numbers — transition o furbulent flow.
g >90° laminar flow — increases with increasing
due to infense mixing in the separation zone.
90°<q <140° turbulent flow — decreases due to
the thickening of the boundary layer.

40° 80°  120° 160°
g 2140° turbulent flow — reaches a second 8 from stagnation point

minimum due to flow separation point in turbulent FIGURE 7—22

flow. Variation of the local

heat transfer coefficient along th
circumference of a circular cylinder in
cross flow of air (from Giedt, 1949).
18



The average Nu for cross-flow over a cylinder (by Churchill and
Bernstein):

[1 4+ (0.4/Pr)¥3]14 282,000,

0.62 Re'? prt/? { n ( Re

The fluid properties are
evaluated at the free
stream temperature T,
except for

||”
2+ 10are + o0 ey e ()

n =1/3,C and m: the experimentally determined constants (From Table 7.1)
19



TABLE 7-1
Empirical correlations for the average Nusselt number for forced convection The Cth'Chl” Gnd BernSTeln

j-;‘:rzllt;:ir'igljéjand noncircular cylinders in cross flow (from Zukauskas, 1972 and equa.l_ion IS more GCCU["GT@, C(nd Thus

Cross-section ShOUId be pr‘efer‘r‘ed |n CCllCUICl'I‘iOhS
whenever possible.

of the cylinder Fluid Range of Re Musselt number
Circle 0.4-4 Mu = 0.989Reg"330 prlis

. 4-40 Nu = 0.911Re385 prl3
l.as.gr 40-4000 Nu = 0.683Re0466 prlia
qut 4000-40,000 Nu = 0.193Re2618 pylia

40,000-400,000 | Nu = 0.027Re"805 prli

R

Square Gas 5000-100,000 Nu = 0.102Re"57% prii
Square | Gas 5000-100,000 Mu = 0.246Re"558 prl3
(tilted b
457)
Hexagon Gas 5000-100,000 Mu = 0.153Re"538 prl3
O [
Hexagon ‘I Gas 5000-19,500 Nu = 0.160Re"538 prlis
(tilted b 19,500-100,000 | Mu = 0.0385Re%782 prl/2
457)
Vertical T Gas 4000-15,000 Mu = 0.228Re" 731 prlis
plate T
Ellipse Gas 2500-15,000 Nu = 0.248Re"512 priis
Sl




T7—19 An average person generates heat at a rate of 84 W
while resting. Assuming one-quarter of this heat is lost from
the head and disregarding radiation. determine the average
surface temperature ot the head when it is not covered and
is subjected to winds at 10°C and 25 km/h. The head can be
approximated as a 30-cm-diameter sphere.

Properties We assume the surface temperature to be 15°C for viscosity. The properties of air at 1 atm
pressure and the free stream temperature of 10°C are (Table A-15)

k=0.02439 W/m.°C

v =1426x10" m?/s Air Head
1, =1.778x1075 kg/m.s V=25 km/h P=21W
_s 7,=10°C
Hs. g1soc =1.802x107" kg/m.s
Pr =0.7336 -
Analysis The Reynolds number 1s —>
Re VD _ [(25x 1000;3600)_111:’2]@.3 M) | 4614100

v 1.426x107° m~/s

The proper relation for Nusselt number corresponding to this Reynolds number 1s
1/4
Nu="P _2[0.4Re% + 0,06 Re?" }Pr"-‘*[‘”—”]
¢ HMs
—5\1/4
=2+ [0.4(1 461x10°)%° +0.06(1.461x10°)*"3 ](0.7336)“-“‘ M =283.2
1.802x107
The heat transfer coefficient 1s
~ 7 s}
=Xy 2 00289 WIMEC oo 5y 5302 Wim?.oC
D 0.3m

Then the surface temperature of the head is determined to be

A, =aD* = 7(0.3m)* = 0.2827 m*

O=hA, (T, -T,)——>T, =T, +2 100+ (B44) W =13.2°C

hA, (23.02 W/m?.°C)(0.2827 m")



FLOW ACROSS TUBE BANKS

Cross-flow over tube banks is commonly encountered in
practice in heat transfer equipment, e.g., heat
exchangers.

In such equipment, one fluid moves through the tubes
while the other moves over the tubes in a perpendicular
direction.

Flow through the tubes can be analyzed by considering
flow through a single tube, and multiplying the results
by the number of tubes.

For flow over the tubes the tubes affect the flow
pattern and turbulence level downstream, and thus heat
transfer to or from them are altered.

direction

FIGURE 7-25

Flow patterns for staggered and
in-line tube banks (photos by
R. D. Willis).




Typical arrangement
= in-line
= staggered

The outer tube diameter @ is the characteristic
length.

T}t\e arrangement of the tubes are characterized by
The

m transverse pitch Sr,
= Jongitudinal pitch S, , and the
= diagonal pitch Sy between tube centers.

In-line M




The diagonal pitch: KNSRV

Re number based on max. velocity: 3

Max. velocity (in-line):

Max. velocity (staggere S,

Staggered and Sp < (Sp + D)/2: V... = 36 —D) vV
Nusselt number (Table 7- — 0] .-
_h

Nup = —— = C Re} Pr(Pr fPl‘j.}':"ﬁ

k

Average temperature of inle
exit (for property evaluation):

Nusselt number (< 16 rows):

Log mean temp. dif.
Exit temperature: IR IS
fe=1,— ;= Tj)exp ( +— )

me,,

Heat transfer rate:

O = hA AT, = mc(T, — T))
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TABLE 7-2

Nusselt number correlations for cross flow over tube banks for N = 16 and
0.7 < Pr < 500 (from Zukauskas, 1987)*

Arrangement Range of Rep Correlation

0-100 Nup = 0.9 Reg4PrO-3°(Pr/Pr,)0-25
100-1000 Nup = 0.52 Rep>Pr®*(Pr/Pr,)%-2°
1000-2 x 10° Nup = 0.27 Re363Pr0-36(Pr/Pr,)0-25
2 x 10°-2 x 10° Nup = 0.033 Reg®Pr°4(Pr/Pr)%#
0-500 Nup = 1.04 Red*Pro-35(Pr/Pr,)0-25
500-1000 Nup = 0.71 Reg>Pro*(Pr/Pr,)%-2°
1000-2 x 10°| Nup= 0.35(5;/5,)%2 Re§OPr0-35(Pr/Pr,)0-2°
2 % 105-2 x 10%| Nup = 0.031(57/5,)%2 Re32Pr35(Pr/Pr,)0-25

Staggered

*All properties except Pr, are to be evaluated at the arithmetic mean of the inlet and outlet temperatures
of the fluid (Pr, is to be evaluated at T,).

TABLE 7-3

Correction factor Fto be used in Nup , = FNup for N, < 16 and Rep > 1000
(from Zukauskas, 1987)

N, 1 2 3 4 5 7 10 13
In-line 0.70 | 0.80
Staggered | 0.64 | 0.76
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g 06 e e
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0.1
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(a) In-line arrangement
8() \‘ 1T T T T 117117 T T T T 1177
60 - VAE
AOHNCTTN S 10 7]
N N R0 Rep .= 102 _/] 1
")() \ (2 Amax / _
= \ —_— 3_310* —
N 1.4 10°
1.5 ' N Ty | / |
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o 20 \.,“‘\ ~Jor= 1.2 ! i
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.2 | —) e A —
L 02 35 e =
01 2 4 6 8]()1 2 4 68”)2 2 4 6 8]03 2 4 6 8|()4 2 4 6 8]05 2 4 6 8]06 2
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(b) Staggered arrangement

Pressure drop:

W

pump

‘l;; — V(NTSTL)
i = pV= pV(NgSyL

f is the friction
factor and c is the
correction factor.

The correction factor
7 given is used to
account for the
effects of deviation
from square
arrangement (in-line)
and from equilateral
arrangement
(staggered).




Concluding Points

= Drag and Heat Transfer in External Flow
= Parallel Flow over Flat Plates

= Flow across Cylinders and Spheres

= Flow across Tube Banks
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HEAT AND MASS TRANSFER

Internal Forced Convection



Introduction

Average velocity and temperature
The entrance region

General Thermal Analysis

Laminar Flow in Tubes

Turbulent Flow in Tubes
Conclusions



— circular cross section.

— noncircular cross
section.

— small-diameiier pipes.

The fluid velocity changes
from zero at the surface (no-
slip) T a maximum at the pipe
center.

11 IS convenient: forwork with
an average velocity, which
remains; constant In
incompressible flow

when the cross-sectional area
IS constant.

FIGURE 8-1

Circular pipes can withstand large
pressure differences between the
inside and the outside without
undergoing any significant distortion
but noncircular pipes cannot.




Average velocity from the
conservationiof mass principle

FIGURE 8-2

Average velocity V,,, is defined as the

average speed through a cross section.
or fully developed laminar pipe flow

(a) Actual V.. 18 half of maximum velocity.

Average temperature from
(b) 1dealized the conservation of energy.
FIGURE 8-3 R
Actual and idealized temperature L c,T(r)dm L I (rpulr)Zamrdr L
proﬁles for floyv in a tube (the ‘rate at 7., = e, = Vi mROC, = Vo L T(r)u(r) rdr
which energy is transported with the
fluid 1s the same for both cases).




For flow infa circular tube, the Reynolds
number is defined as

Circular tube:

B p‘-’?m-' gD . Vav o D

Re _ AaD4) _

aD

D,

o V

FFor flow! throughl nencircular tubes: 1S

replaced by the hydraulic diameter ». REEEEd

4a?
D=9 =

a

Rectangular duct:

laminar flow: * Re<2300
fully: turbulent: Re>10,000. D, = z(icfb) = aszbb

FIGURE 84

he hydraulic diameter D, = 4A_/p
is defined such that it reduces to
ordinary diameter for circular tubes.




Consider a fluid entering a circular pipe at a uniform velocity.
Because of the no-slipi condition a velocity gradient: develops along
The pipe.
The flow inia pipe'is divided into two regions:

= the ~and

= the and the irrotational (core) flow region.

The thickness of This boundary layer increasesiin tihe flow
direction uniil it reaches fine pipe center.

rrotationa Developing velocity Fully developed
flow profile velocity profile

V.

ave

<+ Hydrodynamic entrance region™ > ‘7—’

Hydrodynamically fully developed region 6




— the region from fthe pipe inlet
to the point at which the boundary layer merges at the
centerline.

Hydrodynamically: fully: developed region — the region beyond
the entrance region in which the velocity: profile isifully developed
and'remains;unchanged.

The velocity profile in the fully’developed regioniis

[rrotational (core) Velocity boundary Developing velocity Fully developed
flow region layer profile velocity profile

V.

avg

—

X
Hydrodynamic entrance region— > <7—>

Hydrodynamically fully developed re -




Thermal Entrance Region

The Thermal Entrance Region: the region of flow over which the
thermal boundary layer develops and reaches the tube center.
The Thermal Entry Length (Lt) : the length of the thermal entrance

region. FIGURE 8—7

Thermal

The development of the
boundary laver

thermal boundary layer in a tube.
Temperature profile  (The fluid in the tube is being cooled.)

r
X
Thermal Thermally

entrance region fully developed region

Fully Developed Flow: the region in which the flow is both
hydrodynamically and thermally developed and thus both the velocity
and dimensionless temperature profiles remain unchanged.

Both the friction and convection coefficients remain constant in the
fully developed region of a tube.



In laminar flow, the hydrodynamic and
thermal entry lengths are given
approximately

L‘Fi,lamina: = 0.05Re D

L'.l',.lamina.t =0.05Re PrD = Pr Lfr, laminar

The hydrodynamic and thermal entry
lengths are taken to be:

L, = [, == 10D

Cturbulent

1, turbulent

|
|
| I
\Entrance] _ Fully
: region : developed

[ | region
[

Fully developed
flow

Thermal boundary layer
Velocity boundary layer
FIGURE 8-8
Variation of the friction
factor and the convection
heat transfer coefficient in the flow
direction for flow in a tube (Pr > 1).




GENERAL THERMAL ANALYSIS

The conservation of energy equation for the steady flow of a fluid in
a tube is:

) = i (p{ .T{-? o T; )

The surface heat flux is

Energy balance:

Q =rmc,T,~T)

g = h (I, —T,)

FIGURE 8-10

he heat transfer to a fluid flowing in
a tube 1s equal to the increase in
the energy of the fluid.

The bulk mean temperature of a fluid with constant density and
specific heat flowing in a circular pipe of radius R:

h, : the local heat transfer coefficient
T, : the surface temperature
T, : the fluid temperature

Iy =( Tm_, ;T Tm_, )2

T, average or mean temperature 10



Constant Surface Heat Flux

The rate of heat transfer:

Enlr'fmce | Fully deyeloped
region | region

The surface temperature in the case of
constant surface heat flux:

. _. ._ q

qs = hi,—T,) — T1I,=T,+ T:
In the fully developed r'.egi.on, the FIGURE 8-11
surface temperature T, will increase Variation of the tube surface
linearly in the flow direction since h is and the mean fluid temperatures
constant and thus T, - T, = constant. along;theitube:forthescaserol

constant surface heat flux.




Constant Surface Temperature (T, = constant)

From Newton's law of cooling, the rate of heat transfer to or from
a fluid flowing in a tube: 80 = h(T,~T,)dA

m

O = hAAT,,. = hA(T, — T,)...

h : the average convection heat transfer coefficient

A, : the heat transfer surface area (it is equal o DL
for a circular pipe of length L)

T, : Some appropriate average temperature difference

between the fluid and the surface. FIGURE 8-12

Ty, = (T; +T.)/2 (the bulk mean fluid temperature) Energy interactions for a differential

The energy balance on a differential control volume:

Q= mC,T,—T) W) Bl O = hAAT,

The mean fluid temperature at the tube exit: (el MEEY IR BYSICT LW/ TN

The logarithmic mean temperature difference:

o T,—T, AT, - AT
" In[(T, — TOAT,— T)]  In(AT,/AT) 12



7; = constant

(i

m

approaches T, asymptotically)

Ny

. = constant

FIGURE 8-14

The variation of the mean fluid
temperature along the tube for the
case of constant temperature.

FIGURE 8-15

An NTU greater than 5 indicates tha
the fluid flowing in a tube will reach
the surface temperature at the exi




Laminar Flow in Tubes

W = VAP, = Upgh, = mgh,

pump, L

(P — P)R* (P, — P)D* AP D’
: 32ul 32uL

(P] _Pz)ﬁm_ AP"FDJ-

128 1284 L.

FIGURE 8-19

The relation for pressure loss (and

: head loss) is one of the most general

Woump = 16 hp relations in fluid mechanics, and it is

valid for laminar or turbulent flows,
circular or noncircular tubes, and V2

. . . _ oL PVavg
pipes with smooth or rough surfaces. Pressure loss: AFp=f 5~

. AR, LV
W = 1 hp Head loss: hy = p—g‘rL = ETg&
FIGURE 8-20
The pumping power requirement for
—*Vavg /A a laminar flow piping system can be
reduced by a factor of 16 by doubling
the tube diameter.




. . . ._ T, = constant
Circular tube, laminar (g, = constant): |

Circular tube, laminar (T, = constant):

Fully developed
laminar flow

FIGURE 8-22

In laminar flow in a tube with
constant surface temperature,
both the friction factor and

0.065 (D/L) Re Pr the heat transfer coefficient
1 + 0.04[(D/L) Re Pr]?? emain constant in the fully

Re Pr D 1/3 0.14
eBEED)” (1)
L Mg

0.03 (D, /L) Re Pr

Nu=7544— W0
. | + 0.016[(D, /L) Re Pr]?

15



TABLE 8-1

Nusselt number and friction factor for fully developed laminar flow in tubes of Lamlnar' FIOW
various cross sections (D, = 4A./p, Re = V,,,D,/v, and Nu = hD, /k) 3 . I
alb Nusselt Number Friction Factor ln NO"C"“CU ar‘

Tube Geometry or 6° T, = Const. | g, = Const. f TUbes

Circle — 3.66 4.36 64.00/Re

Rectangle

T
=

56.92/Re
62.20/Re
68.36/Re
72.92/Re
78.80/Re
82.32/Re
96.00/Re

\% 8 mm-mwm.a‘%

Ellipse
64.00/Re
67.28/Re
72.96/Re
76.60/Re
78.16/Re

o0 BN

‘-l_a—b

Isosceles Triangle
50.80/Re
52.28/Re
53.32/Re
52.60/Re
50.96/Re




Turbulent Flow in Tubes

First Petukhov equation

Smooth tubes: [ = (0.790 In Re — 1.64)~? 3000 < Re < 5 X 10°

Chilton-Colburn analogyiNITESRINERR A 0 S o

('0.7 <Pr= 160"‘)

Colburn equation NEEKZEE RSt Re > 10,000 || f= 0.184 Re™02

DRRITCR LA T Tyl Nu = 0.023 Re"® Pr”

n = 0.4 for heating and 0.3 for cooling

Sieder and Tate

— 0007 ROSpLB[ H ) | 0.7 < Pr = 17,600
Nu = 0.027 Re"*P1 | ( Re = 10.000

4 ( //8) Re Pr 0.5 = Pr= 2000
Second Petukhov equation Ly o R N gty
(f/8)(Re — 1000) Pr ("0,5 = Pr = 2000 )

Gnielinski Nigy 3 X 10° <Re <5 X 105

1+ 12.7( f18)%5 (P23 — 1)

Bulk mean fluid temperature JISESEY el I8TY)

17



Liquid metals

The relations given so far do not apply to liquid metals because of
their very low Prandtl numbers. For liquid metals (0.004 < Pr < 0.01), the
following relations are recommended by Sleicher and Rouse (1975) for

104 < Re < 10¢:

Liquid metals, T, = constant: Nu = 4.8 + 0.0156 Re"®° Prd%

Liquid metals, ¢, = constant: Nu = 6.3 + 0.0167 Re"® PV

Rough surfaces

Colebrook equation

Haaland equation

FIGURE 8-25

The friction factor is
minimum for a smooth pipe
and increases with roughness.

Relative Friction

Roughness, Factor,
elD f

0.0* 0.0119
0.00001 0.0119
0.0001 0.0134
0.0005 0.0172
0.001 0.0199
0.005 0.0305
0.01 0.0380
0.05 0.0716

*Smooth surface. All values are for Re = 108,
and are calculated from Eq. 8-74.




Heat Transfer Enhancement

Tubes with rough surfaces have much
higher heat fransfer coefficients than
tubes with smooth surfaces.

Tube surfaces are often roughened,
corrugated, or finned in order to enhance
the convection heat transfer coefficient
and thus the convection heat transfer rate.
Heat transfer in turbulent flow in a tube
has been increased by as much as 400% by
roughening the surface.

Roughening the surface also increases
the friction factor and thus the power
requirement for the pump or the fan.

The convection heat transfer coefficient
can also be increased by inducing pulsating
flow by pulse generators, by inducing swirl
by inserting a twisted tape into the tube,
or by inducing secondary flows by coiling
the tube.

Fin

(a) Finned surface

Roughness

FIGURE 8-28

Tube surfaces are often roughened,
corrugated, or finned in order to

: cCtl C ansfer

(b) Roughened surface

19



8-39 Determine the convection heat transfer coefficient for
the flow of (a) air and (b) water at a velocity of 2 m/s in an
8-cm-diameter and 7-m-long tube when the tube is subjected to
uniform heat flux from all surfaces. Use fluid properties at 25°C.

Properties The properties of air at 25°C are (Table A-15)
k=0.02551W/m.°C

v =1.562x10" m->/s
Pr =0.7296

The properties of water at 25°C are (Table A-9)
£ =997 keg/m’
k=0.607 W/m.°C

v=ulp=0.891x10""/997=8.937x10"" m~/s
Pr=6.14



Analysis The Reynolds number is

VD  (2m/s)(0.08m)

v 1.562x107 m>/s

which is greater than 10,000. Therefore, the flow is turbulent and the entry lengths in this case are roughly
L, =L, =10D=10(0.08 m)=0.8m

Re= =10.243

which is much shorter than the total length of the tube. Therefore. we can assume fully developed turbulent
flow in the entire duct, and determine the Nusselt number from

Nu = ‘E’?D =0.023Re"® Pr® =0.023(10.243) % (0.7296)°* =32.76

Heat transfer coefficient is

-q ]
Ny = 2025 WIMEC o) oo 40.45 Wim?2.C
D 0.08m

Repeating calculations for water:
VD (2m/s)(0.08m)
v 8937x1077 m?%/s

hD
N =22 —0.023Re®® Pr* = 0.023(179.035)°%(6.14)%* = 757.4

-

Re= =179.035

e 2 O80T WIMC (s 4y 5747 Wim2.oC
D 0.08m

Discussion The heat transfer coefficient for water 1s 550 times that of air.




8-88 Cold air at 5°C enters a 12-cm-diameter 20-m-long
isothermal pipe at a velocity of 2.5 m/s and leaves at 19°C.
Estimate the surface temperature of the pipe.

Properties The properties of air at 1 atm and the bulk mean temperature of (5+19)/2=12°C are (Table A-
15)

. 3
p=1238kg/m y/- T,
k =0.02454 W/m.°C

v=1444%10" m?/s
c, =1007 Jikg.°C
Pr=0.7331

Analysis The rate of heat transfer to the air is

{{).12111)2

m=pA V. =(1.238kg/m’ (2.5m/s) = 0.0350 m/s

c avg

O = 1irc , AT = (0.0350 kg/s)(1007 J/kg.°C)(19 —5)°C = 493.1W




Reynolds number is
pe Vel 25m/5)(0.12m)
v 1.444x107° m?/s

which is greater than 10,000. Therefore, the flow is turbulent and the entry lengths in this case are roughly
L,~=L, ~10D=10(0.12m)=1.2m

=20.775

which is much shorter than the total length of the duct. Therefore, we can assume fully developed turbulent
flow in the entire duct, and determine the Nusselt number from

Nu = ’%D =0.023Re"® Pr* =0.023(20,775)%%(0.733)%* =57.79

Heat transfer coefficient is
k ~0.02454 W/m.°C

h=— Nu= (57.79) =11.82 W/m*.°C
D 0.12m

The logarithmic mean temperature difference 1s determined from
O =hA AT, ——>493.1W = (11.82 W/m?.°C)[7(0.12m)(20 m)]AT,, —— AT, =5.533°C

Then the pipe temperature is determined from the definition of the logarithmic mean temperature difference

T,-T, -5
o »>5.533°C = 1 >T, =3.8°C

hl[ T, —TEJ m[ T, —19]
.Ts —1I . Iy =5 .




Average velocity and temperature
The entrance region

General Thermal Analysis

Laminar Flow in Tubes

Turbulent Flow in Tubes
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HEAT AND MASS TRANSFER

Natural Convection



OBJECTIVES

When you finish studying this chapter, you should be able
To:

m Understand the physical mechanism of natural convection,
m Derive the governing equations of natural convection, and

obtain the dimensionless Grashof number by
nondimensionalizing them,

Evaluate the Nusselt number for natural convection
associated with vertical, horizontal, and inclined plates as
well as cylinders and spheres,

Examine natural convection from finned surfaces, and
determine the optimum fin spacing,

Analyze natural convection inside enclosures such as double-
pane windows, and

Consider combined natural and forced convection, and assess

the relative importance of each mode.
p



PHYSICAL MECHANISM OF NATURAL CONVECTION

Natural Convection Heat Transfer: heat transfer as a result of this
natural convection current.

Heat
transfer

COLD
SODA

|
I

FIGURE 9-1 e

The cooling of a boiled egg in a cooler FIGURE 9-2
environment by natural convection. he warming up of a cold drink

The magnitude of the buoyancy force in a warmer environment by

natural convection.

is equal to the weight of the fluid ,
displaced by the body. Faet = W= Fruayancy

= Phody & Vbody — Piluid £ Vbody

FI:-u::u}-*:Lnn:'}-' — Pfluid Ei’fhod}-'

— _ i S
= (Pbody — Piuid) & Vbody



The volume expansion coefficient (p):

~ Vsubmcrgcd

5 buoyancy

FIGURE 9-3

[t is the buoyancy force that
keeps the ships afloat in water

=

for floating objects).

(W =F buoy

ancy

The buoyancy force is proportional to the density difference, which is
proportional o the temperature difference at constant pressure.

The larger the buoyancy force and the stronger the natural convection
currents, and thus the higher the heat transfer rate.

Whenever two bodies in contact (solid-solid, solid-fluid, or fluid-fluid)
move relative to each other, a friction force develops at the contact

surface in the direction opposite to that of the motion. .



The Grashof Number (6r)

An arbitrary reference velocity: SIEES RNV

The Grashof number (Gr)):
showing the effect of NC

Hot
surface

Friction
force

g = gravitational acceleration, m/s

5 = coefficient of volume expansion, 1/K (8 = /T for ideal gases)
T, = temperature of the surface, °C
T.. = temperature of the fluid sufficiently far from the surface, °C

L. = characteristic length of the geometry, m

v = kinematic viscosity of the fluid, m*/s
Buoyancy

For vertical plates, the critical 6Gr is force

5 FIGURE 9-8
observed to be about 10°. he Grashof number Gr is a measure

of the relative magnitudes of the
buoyancy force and the opposing
viscous force acting on the fluid.

The flow regime on a vertical plate becomes
turbulent at 6r greater than 10°.

y

Natural convection effects are negligible if GIMIREHESE

Free convection dominates and the forced convection effects are
negligible if EINGESR

Both effects are significant and must be considered if [ENIRSIE >




NATURAL CONVECTION OVER SURFACES

M Ra; = Gr, Pr=——

Constant
coefficient
j Constant
Nu = CRa! exponent

/A

Nusselt Rayleigh
number number

FIGURE 9-9
Natural convection heat transfer
correlations are usually expressed in
, : _— terms of the Rayleigh number raised
Vertical Cyllnder's. Gry to a constant n» multiplied by another
constant C, both of which are

Horizontal Plates: | s etermined experimentally.




TABLE 9-1

Empirical correlations for the average Nusselt number for natural convection over surfaces

Characteristic

Geometry length L, Range of Ra Nu
Vertical plate ‘ 10%-10° Nu = 0.59Ra}" (9-19)
T, 10201013 Nu = 0.1Ra}? (9-20)
L , 0.387Ra}'® 2
L Entire range Nu = ¢0.825 + 1+ (0.492/ P06 (9-21)
L (complex but more accurate)
. Use vertical plate equations for the upper
Inclined plate surface of a cold plate and the lower
surface of a hot plate
L
H/L Replace g by g cos# for Ra < 10°
Horizontal plate 104-107 Nu = 0.54Ra}4 (9-22)
(Surface area A and perimeter p) 107-101 Nu = 0.15Ral? (9-23)

(a) Upper surface of a hot plate
(or lower surface of a cold plate)

Hot surface /Tj.
PRI PF TP T T LIS i rd Ed FLIEL
A.lp

(b) Lower surface of a hot plate
(or upper surface of a cold plate)

E IS LI I LIS E I

1 \ 10%-104! Nu = 0.27Ra}* (9-24)
T,

5
Hot surface




Vertical cylinder

]
L

[

vertical plate when

35L
}—

D=——:
Grf’d

A vertical cylinder can be treated as a

[1+ (0.469/Pr)¥1e142

Horizontal cylinder 0.387Rale 2
T, Rap = 1012 Nu= 0.6+ ' — 9-25
/ % = - { 1+ (D.SSQ;‘PHQ“JE‘JS’J} (8-29)
( f
|I D
\ '
— 0.589Raj}*
Sphere Rap= 101 | Nu=2+ b (9-26)




9-19 A 10-m-long section of a 6-cm-diameter horizontal
hot-water pipe passes through a large room whose temperature
is 27°C. If the temperature and the emissivity of the outer sur-
face of the pipe are 73°C and 0.8, respectively, determine the
rate of heat loss from the pipe by (a) natural convection and
(h) radiation.
IPmperﬁes The properties of air at 1 atm and the film temperature
of (T:+T..)/2 = (73+27)/2 = 50°C are (Table A-15)
ke =0.02735 W/m.°C Air
v =1.798x107> m?/s I,=27°C
Pr=0.7228

e
T, (50+273)K

Pipe
T,=73°C
£=0.8

= 0.003096 K ! L=10m

Analysis (a) The characteristic length in this case 1s the outer diameter of the pipe. L. = D =0.06 m. Then.

_gBpI, -T.)D’

~(9.811/s%)(0.003096 K *)(73 27 K)(0.06 m)° (

Ra Pr —— 0.7228) = 6.747x10°
y? (1.798x107° m?/s)
- U 5 2 r U6 5 2
387Ra" 0.387(6.747x10°)"
M;:JO.6+ 0.387Ra” ~ % o6+ (6.747x107) % ~13.05
l [1+(0559/Pry"¢] | (0559707228 7 |
735 W/m.°C o
j= X = Q2T WIMTC (5 65y _ 5,950 Wim? °C
D 0.06m

A, =7DL = 7(0.06 m)(10m) = 1.885m"
O=hA4, (T, -T,)=(5.950 W/m”.°C)(1.885m?>)(73-27)°C = 516 W
(b) The radiation heat loss from the pipe is
Orea = &4, O'{qu - Tsm'rq )
5.67x10°° W/m? K*

Y _(27+273K)*




NATURAL CONVECTION FROM FINNED SURFACES AND PCBs

Natural Convection Cooling of Finned Surfaces w €~
(T, = constant)

PCBs: Printed circuit boards

Quiescent

The Rayleigh number:

hS ¥is 2 N arious dimensions of a finned surface
1. = constant: Nu = — riented vertically.
. —
developed
flow

Isothermal
plate at T

T, = constant:

Boundary
layer °

Ambient ‘F— S —-{

fluid

.-J ;o

FIGURE 9-16

Natural convection flow through &

— | ?-F —I— ?-'_rzu ]._,-'r: channel between two isothermal

vertical plates.

I

AVE



Natural Convection Cooling of Vertical PCBs

The modified Rayleigh number for uniform heat flux
on both plates:

h S 48 2.51

'] r — — - . + —
Nug k Ra¥S/L iﬁR:LfL‘:r'..-"L_+"'J'_

The optimum fin spacing for the case of
uniform heat flux on both pla’reS'

¢, = constant:

The total rate of heat transfer from
the plates:

FIGURE 9-19

Arrays of vertical printed circuit
boards (PCBs) cooled by naluml

0= q,A, = q,(2nLH)

n = H:l“;—FH'- WIS

— T1.)

11




NATURAL CONVECTION INSIDE ENCLOSURES

eB(T, — T,)L:

The Rayleigh number: Ry

1..-': Light fTuid _~Hot
L.: the characteristic length (the distance between
the hot and cold surfaces) | :
T1 : The Temper'a'l'ur‘e Of The hO‘l' Sur'face I{Iezl\"y' fluid \Cold
T,: the temperature of the cold surface (a) Hot plate at the top

- Heavy fluid
N/ |V/’\\ﬂ,/”*\l'/:\‘
bt W W W

Lighl fTuid

Nu=3
Hot k Cold Hot k. =3k Cold

(b) Hot plate at the bottom

O=10W
FIGURE 9-22

Convective currents in a horizontal
enclosure with (a) hot plate at the to
and (b) hot plate at the bottom.

(No
motion)

Pure Natural
conduction convection

FIGURE 9-23
A Nusselt number of 3 for an
enclosure indicates that heat transfer For the special case of Nu= 1, the effective thermal

thm“gh,the_?“l‘:]osul_’e bY ’ﬁ"’”t')' al conductivity of the enclosure becomes equal to the
(.1()Illni((,‘fl.()rll 1S three times that by pure COI‘\dUCTiViTy of the fluid. 12




Horizontal Rectangular Enclosures

Nu = 0.195Ra/" 10* < Ra; < 4 X 10°
Nu = 0.068Ra}” 4 % 10° < Ra; < 107

Nu = 0.069Ra}"” P07 3 X 10° <Ra, <7 X 10°

TABLE 9-2

Critical angles for inclined
rectangular enclosures

Aspect ratio, Critical angle,
H/L By

25°
53°
60°
67°
70°

b

Fluid

H

A horizontal rectangular enclosure
with isothermal surfaces.

FIGURE 9-25
An inclined rectangular enclosure
with 1sothermal surfaces.




Vertical Rec’rangular' Enclosur'es

| < HIL <
any PIdellHHIHhLF
Ra; Pr/(0.2 + Pr) > 10°
2<< H/L <10

any Prandtl number

FIGURE 9-26

A vertical lutanou]ar enclosure with

Nu = 0.46Ra}"”

_r

~ m1 Ii=1,) (W/m)

Inner cylinder
atT;
FIGURE 9-27
Two concentric horizontal isothermal
cylinders.

o Pr
= 0386 ——
S (l"l".ﬁ] + Pr

114
) (F. Rap)™

e Igl . Ra; < 100

[In(D,/D;)}*

The geomeTric factor for concentric cylinder's Fcyl: = I3D-35 1 D35y




Concentric Spheres

The recommended relation for effective

thermal conductivity:

N\ 144 0.70 = Pr = 4200 . HGURE i

A Pr 14 wo concentric isothermal spheres.
=074 m 1FJ_|]RI£F

L

‘|‘l'.'_-"' _lf___-'-_'uld—qll'r'jliT_L_T_l -'

|JI.J

conv

TA(T} —T%)

N ﬁ — ECeffective ! rA ; ( T_|1 - T'L. ) ( W )
|'.:r':| .-.:r-::— S LIVE 2

e, and &, are the emissivities of the plates, and effective is the
effective emissivity defined as:

]
Eeffective — 1 /o foo — 15
I L ] + ] i ': ]




9-70 Two concentric spheres of diameters 15 cm and 25 cm
are separated by air at 1 atm pressure. The surface temperatures

of the two spheres enclosing the air are 7, = 350 K and 7, =
275 K, respectively. Determine the rate of heat transfer from
the inner sphere to the outer sphere by natural convection.

Properties The properties of air at 1 at and the average temperature
of (T1+1>)/2 = (350+275)/2 =312.5 K = 39.5°C are (Table A-15)

k=0.02658 W/m.°C _
] D>,=25cm D, =15 cm
_ ~ =5 a2 _ =13

Pr = 0.7256 &
] 1

f=—= =0.003200K
T, 3125K

. 3125

Analysis The characteristic length in this case
1s determined from
D,-D;, 25-15

L. = = =5cm.
) 2 2

Then.

_gfT T, LY (9.81m/s?)(0.003200 K ")(350-275K)(0.05 m)’

Ra < Pr= (0.7256) =7.415x10°

e (1.697x107> m*>/s)*

16




The effective thermal conductivity 1s

I 05
Fopn = 2 = 0.05m _ _0.005900

i, ;-_H a_?jﬁ : 15m)(0.25m 15m)7° +025m)7° [
(D, D)D" +D,7"7) [0.15m)(0.25m)]*[(0.15m) 7 + (0.25m) 7"

F o opr U4
ke =0.74] F_ . Ra)'*
e =0T Gegirer) PR

i v 1/4
0.7256 - s /4 .
=0.74(0.02658 W/m.°C) | [(0.00590)(?.415 x 10 )] =0.1315W/m.”C
0.861+0.7256 )

Then the rate of heat transfer between the spheres becomes

- (D.D |
Q=freff:r| L : (:ﬂ.—Tﬂ):(0.1315w..-'m.ﬂc:){

c 7

R
!

(0.15m)(0.25m)
(0.05m)

}(350 ~275)K =23.3W




COMBINED NATURAL AND FORCED CONVECTION

€ In assisting flow, natural convection assists forced convection and enhances
heat transfer. Example: upward forced flow over a hot surface.

“  In opposing flow, natural convection resists forced convection and decreases
heat transfer. Example: upward forced flow over a cold surface.

® In transverse flow, the buoyant motion is perpendicular to the forced
motion. Transverse flow enhances fluid mixing and thus enhances heat
transfer. Example: horizontal forced flow over a hot or cold cylinder or
sphere. —

W Cold plate
A

-

— Buoyant
) Buoyant

flow

I"-I I'I'-."III'|'||.'-i|'|-:l.1 — {Nl'l.ﬁ.-rl.'-:d i IMl"I;::.'_lr.|.||".||}ll;l.:

flow

Forced

flow

where Nug,...q and Nu, o are

determined from the =8}:
correlations for pure forced $444 -
and pure natural il Forced )
respectively. o Tow

(a) Assisting flow (b) Opposing flow (¢) Transverse flow
FIGURE 9-33
Natural convection can enhance or inhibit heat transfer, depending on the relative
directions of buoyancy-induced motion and the forced convection motion.




Concluding Points:

m  Physical Mechanism of Natural Convection?
m  The Grashof Number (Gr )?
m  The Rayleigh Number (Rq,)?

m  Natural Convection over Surfaces (Vertical Plates and
Cylinders; Inclined Plates; Horizontal Plates, Cylinders and
Spheres)?

m  Natural Convection from Finned Surfaces and PCBs?

®  Natural Convection inside Enclosures (Horizontal, Inclined and
Vertical Rectangular; Concentric Cylinders and Spheres)?

m Effective Thermal Conductivity?
m Combined Natural and Forced Convection?
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HEAT AND MASS TRANSFER

Boiﬁ'ry and Condensation



Ob jectives

Differentiate between evaporation and boiling, and
gain familiarity with different types of boiling,

Develop a good understanding of the boiling curve, and
the different boiling regimes corresponding to
different regions of the boiling curve,

- Calculate the heat flux and its critical value
associated with nucleate boiling, and examine the
methods of boiling heat transfer enhancement,

Derive a relation for the heat transfer coefficient in
laminar film condensation over a vertical plate,

 Calculate the heat flux associated with condensation
on inclined and horizontal plates, vertical and
horizontal cylinders or spheres, and tube bundles,

Examine dropwise condensation and understand the
uncertainties associated with them. 2



Evaporation
Air

Boiling Heat Transfer

- Evaporation occurs at the liquid-vapor
interface when the vapor pressure is
less than the saturation pressure of
the liquid at a given temperature.

*  Boiling occurs at the solid-liquid
interface when a liquid is brought into
contact with a surface maintained at a
temperature sufficiently above the
saturation temperature of the liquid.

Water '
Boiling 100°C

P =1 atm T T T 1
A lLea\tinTg X
¥ § FIGURE 10-1
" Waer  Bubbles qic || FIGURE 10-2 A liquid-to-vapor phase change
s N / [t Boiling occurs when a liquid is process is called evaporation if it
Ly s Ly broughtinto contact with asurface  griginates at a liquid—vapor interface
cating clement | at a temperature above the saturation

and boiling if it occurs at a

temperature of the liquid. i N .
solid—liquid interface.



Classification of boiling

Boiling is called pool boiling
in the absence of bulk fluid
flow.

Any motion of the fluid is
due to natural convection
currents and the motion of
the bubbles under the
influence of buoyancy.

Boiling is called flow boiling
in the presence of bulk fluid
flow.

In flow boiling, the fluid is
forced to move in a heated
pipe or over a surface by
external means such as a

pump.

QL S 8 & & B Ay :: ‘i
i 3 il
Heating Heating

(a) Pool boiling (b) Flow boiling
FIGURE 10-3

Classification of boiling on the basis
of the presence of bulk fluid motion.
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Subcooled Boilinq P=1 atm P=1 atm

When the
temperature of
the main body of
the liquid is below

the saturation Subcooled 80°C Saturated 100°C
temperature. Wiiter Sealan

. 107°C > 107°C
Saturated Boiling & '/ ‘J) { [ >,
When the N VG >
temperature of PTTT 01 IBubbtef 711171

e liquid is equa : :

to ’rhqe sa’ruraqrion rieAlng R
temperature.

(a) Subcooled boiling (b) Saturated boiling
FIGURE 104
Classification of boiling
on the basis of the presence of
bulk liquid temperature.
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Pool Boiling

f}hnil]n_-._: — h{ Tﬁ — THM'} — J.!'I-ri

100°C
u f103°CJJ
I} Bl 10

Heating

)

b B0 T

Heating

Boiling takes different forms,
depending on the AT, ...= .-

(a) Natural convection (b) Nucleate boiling

FIGURE 10-5

boiling
Tsat

~~Vapor pockets ~Vapor film =
100°C 100°C
180°C 400°C
P RIET I

Heating Heating

(c¢) Transition boiling (d) Film boiling

Different boiling regimes

in pool boiling.



Pool Boiling

Matural convection Mucleate Tranzition Film
boiling boiling boiling boiling
| ! | |
I'i I Maximum I
I': ot I I:E'J'I.'I.jll."ﬂl_:l I ~ Vapor film
| | heat flux, g__ | LS
f | GLTE C | 400°C
10% = | | |
HERRERE | T
I Heating I I .
100°C | | | Heating
o | | |
iy 103°C || | I I
= _
=100 | | | |
En Heating I I I
'::.'-'E (a) Natural convection | | | e L e |
bailing : ! ! 100°C |
| | Bubbles | 180°C || [r! . . L
10* I I rice to the I I.\‘ Leidenfrost point. g_.
| free surface | I HI A I
| | Heating |
I I I
I I I
JDE'I L1 I I | |
l ~ 3 [ () ~30) o0 ~120 | (K0
s — — o
jTE‘J‘iE‘E‘EE TS TS-:II' {:‘




Natural Convection (to Point A on the
Boiling Curve)

» Bubbles do not form on the heating surface
until the liquid is heated a few degrees above
the saturation temperature (about 2 to 6°C
for water)

the liquid is slightly superheated in
this case (metastable state).

» The fluid motion in this mode of boiling is
governed by natural convection currents.

* Heat transfer from the heating surface to
the fluid is by natural convection.




Nucleate Boiling

*  The bubbles form
at an increasing
rate at an
increasing number
of nucleation sites
as we move along

th Natural convection Nucleate Transition Film
The bOIIlng. curve | boiling | bl:uilin:: h::ul]']rt]g boiling
toward point C. — T '
. IBubbles| | Maximum |
° Reglon A-B ICDllﬂpSEI I . LCfl:itlc:ﬂlrjl I
. Finthe | _ = =gl Al TS, s 1
ISOIClted bUbbleS'. 0 - i [jqui)[J:' :\ i E
+ Region B-C— . 2 | |
numerous S ol A ! |
continuous : A S |
columns of vapor  ~ N/ .
0 . . L I | bhles | ol . L.
in .l.he I'qL“d. 1ot al _ I’n']::m the : : Leidenfrost point. g_,
I | free surface | |
L | |
| | | |
103 | 11 | ] ] ]
l -5 1o ~30 oo 120 1000
AT = T _.°C



Nucleate Boiling

* Inregion A-B the stirring and agitation caused by the
entrainment of the liquid to the heater surface is
primarily responsible for the increased heat transfer
coefficient.

* Inregion A-B the large heat fluxes obtainable in this
region are caused by the combined effect of liquid
entrainment and evaporation.

After point B the heat flux increases at a lower rate
with increasing 4T, ..., and reaches a maximum at
point C.

* The heat flux at this point is called the critical (or
maximum) heat flux, and is of prime engineering
Importance.

10



Transition Boiling

+ When AT, .. is
increased past point
C, the heat flux
decreases.

- This is because a
large fraction of the

heater surface is e ing . botling, beiling boiling
covered by a vapor R .
. . IBu sl | e lmum |
film, which acts as colpee T
. . I in the | | % G |
an insulation. 10° ! quLml ':lf So E
s | | | \l
»+ Inthe transition . IR AN v\
boiling regime, both = 5| . %\ N
nucleate and film : 9 AN )
o . = I I I N I
boiling partially L L/ A
Al I Hse to the =~ < Leidenfrost point. g,
Occur" I iﬁee :;1L|:‘Fm:ei i
L | |
]DE. ] 11 ] ] ] |
| -5 10 ~30 100 ~120 1000

AT Tr-T _.°C

excess s sat’



Film Boiling

Beyond Point D the heater
surface is completely
covered by a continuous
stable vapor film.

Point D, where the heat
flux reaches a minimum is
called the Leidenfrost
point.

The presence of a vapor
film between the heater
surface and the liquid is
responsible for the low
heat transfer rates in the
film boiling region.

The heat transfer rate
increases with increasing
excess temperature due
to radiation to the liquid.

E]m”ing. Winr

107

10?

Matural convection MNucleate Transition Film
boiling boiling boiling baoiling
5 - . . gt
[ I [ [ P2 -
IBubb]esI I J"':'[”_J.m'-”l“ I A 7
|C01]ﬂP53| I .I'L"J'lUL‘ﬂJ..,I I / I
| in the | Cl/-hcai flux, g ,

B [ [ /
; liquid | I I /7 E
L/ | /
| | | Iy /
L I v /
| | | |

‘ VA 4 4
-/ | N
| | | | 4
| b I e L 7

L I I Bubbles | \ | . P

Al I rise to the I \ EHI- '[.erulilmt point. §_;
I I 1u'l'nccl ~ .I.— 7
| | | |
| | | |
| L1 | | | |
-5 10 ~30 10 ~120 10
lj]r sssss = TS - TS:II- OC



Burnout Phenomenon

A typical boiling process
does not follow the boiling
curve beyond point C.

When the power applied to
the heated surface
exceeded the value at
point C even slightly, the
surface temperature
increased suddenly to point

E

When the power is reduced
gradually starting from
point £ the cooling curve
follows Fig. 10-8 with a
sudden drop in excess
temperature when point D
is reached.

sudden jump
N temperature

Ve Bj.-']."-.'l:'i.ﬂ:?d
v part of the

e

10 100 | (0
AT =7 —-T_.°C

e CEEE & =zt
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Heat Transfer Correlations in Pool Boiling

Boiling regimes differ considerably in their character.
Different heat transfer relations need to be used for different
boiling regimes.

In the natural convection boiling regime heat transfer rates can
be accurately determined using natural convection relations.

No general theoretical relations for heat transfer in the nucleate
boiling regime is available.

Experimental based correlations are used.

The rate of heat transfer strongly depends on the nature of
hucleation and the type and the condition of the heated surface.

14



- For nucleate boiling a widely used correlation
proposed in 1952 by Rohsenow:

1/2 3
| glpr—py)| [T — T
Anucleate — M ’“.ff.r - n TABLE 10-1
4 | C sf J'!I'r.f_c._r Pl.-' | Surface tension of liquid-vapor
interface for water

N T, °C o, N/m*
(aucleare = Nucleate boiling heat flux, W/m~ 0 0.0757
p,; = viscosity of the liquid, kg/m - s 20 0.0727
hy, = enthalpy of vaporization, J/kg 40 0.0696
¢ = gravitational acceleration, m/s? gg g'gggg
p; = density of the liquid, kg/m? 100 0.0589
p, = density of the vapor, kg/m’ 120 0.0550
o = surface tension of liquid—vapor interface, N/m %gg g:gigg
¢, = specific heat of the liquid, J/kg - °C 180 0.0422
T, = surface temperature of the heater, °C 200 0,0377
T,, = saturation temperature of the fluid, °C gig g:ggg}l
Cyr = experimental constant that depends on surface—fluid combination 260 0.0237
Pr; = Prandtl number of the liquid 280 0.0190
n = experimental constant that depends on the fluid ggg g:gégg
340 0.0056
360 0.0019

374 0.0

“Multiply by 0.06852 to convert to |bf/ft or by
2.2046 to convert to Ibm/s2.



Critical Heat Flux (CHF)

The maximum (or critical) heat flux in nucleate pool
boiling was determined theoretically I:Bl S. S. Kutateladze
ilngggssiabin 1948 and N. Zuber in the United States in

to be:

qmax — Cc:rhfg [Ggp\/z (/OI 2y )]%

C., is a constant whose value depends on the heater
geometry, but generally is about 0.15.

The CHF is independent of the fluid-heating surface
combination, as well as the viscosity, thermal
conductivity, and the specific heat of the liquid.

The CHF increases with pressure up to about one-third
of the critical pressure, and then starts to decrease and
becomes zero at the critical pressure.

The CHF is proportional to h,, and large maximum heat
fluxes can be obtained using fluids with a large enthalpy
of vaporization, such as wafer.



TABLE 10-3

Values of the coefficient C,;and n for various fluid—surface combinations

Fluid—Heating Surface Combination Cer n

Water—copper (polished) 0.0130 1.0
Water—copper (scored) 0.0068 1.0
Water—stainless steel (mechanically polished) 0.0130 1.0
Water—stainless steel (ground and polished) 0.0060 1.0
Water—stainless steel (teflon pitted) 0.0058 1.0
Water—stainless steel (chemically etched) 0.0130 1.0
Water-brass 0.0060 1.0
Water-nickel 0.0060 1.0
Water—platinum 0.0130 1.0
n-Pentane—copper (polished) 0.0154 1.7
n-Pentane—-chromium 0.0150 1.7
Benzene—-chromium 0.1010 1.7
Ethyl alcohol-chromium 0.0027 1.7
Carbon tetrachloride—copper 0.0130 1.7
Isopropanol-copper 0.0025 1.7

TABLE 10-4

Values of the coefficient C,, for use in Eq. 10-3 for maximum heat flux

(dimensionless parameter L* = L[g(p; — p,)/o]'?)

Heater Geometry C.,

Dimension
of Heater, L Range of L*

Large horizontal flat heater 0.149 Width or diameter [* =27
Small horizontal flat heater! 18.9K; Width or diameter 9 < [* < 20

Large horizontal cylinder 0.12

Small horizontal cylinder 0.12L*-09:25
Large sphere 0.11
Small sphere 0.227L*705

[*>1.2
0.1b<*<1.2
[* > 4.26
0.15<[*<4.26

LKy = ollglp; — p) Aneater]
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Minimum Heat Flux

.. . 7 A
- Minimum heat flux, which ? o
occurs il }-he Le|de?frOST Critical heat bo;linl;lg
point, Is of practica S "
interest since it r'epr'esen‘rs flux relation relations
the lower limit for the heat .
. . o Nucleate
flux in the film boiling bssiiiog
[N . . relations
»  Zuber derived the following
expression for the minimum
heat flux for a large
horizontal plate Natural N
convection | 1{1111.1um
14 relations | heat t lux
1 ag(p; — p,) | relation
Goin = 0.09p, hy, | — |
L (p+ opu) l it

- the relation above can be in
error by 50% or more. FquRE 10-1 1_
Different relations are

used to determine the heat
flux in different boiling regimes.



Film Boiling

The heat flux for film boiling on a horizontal cylinder or sphere of diameter

D is given by

Tsat )

it = Cfilm [

C.. — 0.62 for horizontal cylinders
film 10,67 for spheres

At high surface temperatures
(typically above 300°C), heat
transfer across the vapor film
by radiation becomes significant
and needs to be considered.

{.J:I['i.li.l — E-‘f'r { ;';-‘_"_1 o ;r'i. }

, , 3.

{,f[llllul - 'fjrl'Jlm + I{frj'ud

)

gk, o, (o —,ov)[hfg +0.4C, (T, _Tsat)] € (T, -
/uvD(Ts o S

P=1 atm

100°C

* 4OO°Cf
Vapor [ s
"lﬁlmbonﬁ;T T T T T T 1 ‘)J\(.lmd

Heating

FIGURE 10-12
At high heater surface temperatures,
radiation heat transfer becomes
significant during film boiling.




Enhancement of Heat Transfer in Pool Boiling

The rate of heat transfer

in the nuclea‘r? bé)ilingd

regime strongly depends Liduid

on The number of active o
nucleation sites on the bt

surface, and the rate of

bubble formation at each

site. ’@3
Therefore, modification

that enhances nucleation Nucleation sites for vapor
on the heating surface will

also enhance heat transfer FIGURE 10-13

in nucleate boiling. s ‘
Irregularities on the The cavities on a rough surface act as

hea’r;‘ng sur‘fadc%,. i?cluding nucleation sites and enhance
roughness and dirt, serve of -

as additional nucledtion boiling heat transfer.
sites during boiling.

The effect of surface

roughness is observed to

decay with time.
20



- Surfaces that provide enhanced heat transfer in nucleate boiling
permanently are being manufactured and are available in the

market.

* Heat transfer can be enhanced by a factor of up to 10 during
nucleate boiling, and the critical heat flux by a factor of 3.

FIGURE 10-14
The enhancement of boiling heat

transfer in Freon-12 by a mechanically
roughened surface, thermoexcel-E.

q” (kcal/m?-h)

C

o
=

Vapor

Liquid Bore
-
Tunnel / LV/"
W T
Ve /
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Flow Boiling

In flow boiling, the fluid is
forced to move by an external
source such as a pump as it
undergoes a phase-change
process.

The boiling in this case
exhibits the combined effects
of convection and pool boiling.

Flow boiling is classified as
either external and internal
flow boiling.

External flow — the higher the

velocity, the higher the
nucleate boiling heat flux and
the critical heat flux.

g

High
velocity

Low
velocity

Nucleate pool
boiling regime

CXCESS
FIGURE 10-18
The effect of forced convection on
external flow boiling for different
flow velocities.



Flow Boiling — Internal Flow

Axial positi;n in the tube

The two-phase flow in a
tube exhibits different flow
boiling regimes, depending
on the relative amounts of
the liquid and the vapor
phases.

Typical flow regimes:

— Liquid single-phase flow,
— Bubbly flow,

— Slug flow,

— Annular flow,

— Mist flow,

, — Vapor single-phase flow.

Low Hig

Coefficient of heat transfer

Quality

" Liquid

Vapor Core e

Bubbles

Liquid

—-  —-

" droplets

in liquid

core

Forced convection
Mist flow

Transition flow

Annular flow

Slug flow

Bubbly flow

Forced convection
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Flow Boiling — Internal Flow

Liquid single-phase flow
- In the inlet region the liquid is subcooled and heat transfer to
the liquid is by forced convection (assuming no subcooled
boiling).
Bubbly flow
- Individual bubbles
- Low mass qualities
Slug flow
- Bubbles coalesce into slugs of vapor.
- Moderate mass qualities
Annular flow

- Core of the flow consists of vapor only, and liquid adjacent to
the walls.

- Very high heat transfer coefficients
Mist flow

- a sharp decrease in the heat transfer coefficient
Vapor single-phase flow

- The liquid phase is completely evaporated and vapor is

superheated. y



10-13 Water is boiled at 90°C by a horizontal brass heating
element of diameter 7 mm. Determine the surface temperature
of the heater for the minimum heat flux case.

Properties The properties of water at the saturation
temperature of 90°C are (Tables 10-1 and A-9)

| Water, 90°C
p =9653kg/m®  h,, =2283x10° Jkg a2
p, =04235kg/m® 1, =0.315x107° kg/m-s '\

o=00608N/m ¢, =4206J/kg-°C Heating element

Pr; =1.96
Also. Cr =0.0060 and n = 1.0 for the boiling of water on a brass heating (Table 10-3).

Analysis The minimum heat flux is determined from
-1/4

og(o; — py)
(JO.? TPy ) ’

":j!'nﬂn = 00910‘ hfg|:

(0.0608)(9.81)(965.3 — 0.4235)
(965.3+0.4235)>

The surface temperature can be determined from Rohsenow equation to be

\‘3
Cp,f (Ts o Tsat) J

Cohy Py

= 0.09(0.4235)(2283x10%)

1/4
} =13.715W/m*

q nucleate

r 1/2
:‘Hfh@; g(ﬁof‘ _.-Ov)j|
o

'—'Imiu

r 1/2
. 5.3-0.4235 4206(T. —90
13,715 W/m? =(0.315x10—3)(2283><10~"]; 981[9‘3 0602 423 )} [ (Z, -90)

T, =92.3°C

0.0060(2283%107)1.96 ) 25



Condensation occurs when the
temperature of a vapor is reduced
below its saturation tfemperature.

Film condensation

The condensate wets the
surface and forms a liquid
film.

The surface is blanketed by

a liquid film which serves as a
resistance to heat transfer.

Dropwise condensation

The condensed vapor forms
droplets on the surface.

The droplets slide down when
they reach a certain size.

No liquid film to resist heat
transfer.

As a result, heat transfer
rates that are more than 10
times larger than with film
condensation can be
achieved.

Condensation

8()OC 8()°C /

e

Liquid film

(a) Film (b) Dropwise
condensation condensation
FIGURE 10-20

When a vapor 1s exposed to a
surface at a temperature below T,
condensation in the form of a liquid
film or individual droplets occurs

on the surface.

49}



Film Condensation on a Vertical Plate

Liquid film starts forming at the top
of the plate and flows downward
under the influence of gravity.

o Increases In the flow direction x

Heat in the amount hy, Is released
during condensation and is
transferred through the film to the
plate surface.

T, must be below the saturation
temperature for condensation.

The temperature of the condensate
Is T... at the interface and decreases

sat

gradually to T, at the wall.

Cold 0

plale./
N

.“‘

e +—

Vapor, V

Liquid—vapor
interface

Temperature

T(y) profile

Velocity

uy) profile

Liquid, /

FIGURE 10-21

Film condensation on a vertical plate.



B .D';.. i llfl B 4 A[. P 1’1' B 4 P ‘r‘fl.' {3 B 4
Hy DL, My PH

Dy, = 4A./p = 46 = hydraulic diameter of the condensate flow, m

Re

p = wetted perimeter of the condensate, m

A, = po = wetted perimeter X film thickness, m?, cross-sectional area of the
condensate flow at the lowest part of the flow

p; = density of the liquid, kg/m’
1 = viscosity of the liquid, kg/m - s
V, = average velocity of the condensate at the lowest part of the flow, m/s

m = p; V; A, = mass flow rate of the condensate at the lowest part, kg/s

i N
\V/L/J\
D
o
K p=nD p=2L
A = D6 A(,=2L5

4A 4A
D,=—==46 D,=—<=45
4 p

(a) Vertical plate (b) Vertical cylinder (c¢) Horizontal cylinder

FIGURE 10-22

The wetted perimeter p, the
condensate cross-sectional area A,
and the hydraulic diameter D), for
some common geometries.



modified latent heat of vaporization /ij;, defined as

- T, (10-9a)

sal

h, = hy, + 0.68¢, (T,

where ¢, 1s the specific heat of the liquid at the average film temperature.
We can have a similar argument for vapor that enters the condenser as
superheated vapor at a temperature 7, instead of as saturated vapor. In this
case the vapor must be cooled first to T, before it can condense, and this heat
must be transferred to the wall as well. The amount of heat released as a unit
mass of superheated vapor at a temperature T, 1s cooled to T, 1s simply
el T, — T, where ¢, is the specific heat of the vapor at the average tem-
perature of (T, + T,,)/2. The modified latent heat of vaporization in this case

becomes
h.';g = h._.*'_'-_: + []-(-"3(.;# (T\Ll[ o T\) + (.}'?1' {;rl - TH'.]I ) (10-9b)
With these considerations, the rate of heat transfer can be expressed as

Quundcn = !IA\( Tsnt - T

L3

) = nh (10-10)

where A; 1s the heat transfer area (the surface area on which condensation oc-
curs). Solving for m from the equation above and substituting it into Eq. 10-8
gives yet another relation for the Reynolds number,

_ 4Qmmlcn . 4A 5 T

sat

— T‘]
€= puy h N puy h

(10-11)

This relation is convenient to use to determine the Reynolds number when the
condensation heat transfer coefficient or the rate of heat transfer 1s known.

The temperature of the liquid film varies from T, on the liquid—vapor in-
terface to 7 at the wall surface. Therefore, the properties of the liquid should
be evaluated at the film temperature Ty = (Tg + T,)/2, which is approximately
the average temperature of the liquid. The Ay, however, should be evaluated at
T, since 1t 1s not affected by the subcooling of the liquid.
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Vertical Plate — Flow Regimes

* The dimensionless parameter
controlling the ftransition

between regimes is the
Reynolds number defined as:

B .D';I. 2 ]';r' B 4 A(. P Vﬂ' B 4 Pi VI.' ) B 4
L P L PHy

* Three prime flow regimes:
— Re<30 — Laminar (wave-free),
— 30<Re<1800 — Wavy-laminar,
— Re>1800 — Turbulent.

* The Reynolds number
increases in the flow
direction.

Re =0 T

Laminar
(wave-free)

Re =30

[Laminar
(wavy)

Re = 1800

Turbulent

Flow regimes during film
condensation on a vertical plate.



Heat Transfer Correlations for Film

Condensation — Vertical wall

Assumptions:

1. Both the plate and the vapor are
maintained at constant temperatures
of T, and T, respectively, and the
temperature across the liquid film
varies linearly.

2. Heat transfer across the liquid film is
by pure conduction.

3. The velocity of the vapor is low (or
zero) so that it exerts no drag on the
condensate (no viscous shear on the
liquid—vapor interface).

4. The flow of the condensate is laminar
(Re<30) and the properties of the
liquid are constant.

5. The acceleration of the condensate
layer is negligible.

Shear force
du

Hy dy (bdx) Buoyancy force

Weight T p,80 —y) (bdx)

p,8(6 —y) (bdx)

Y

0 :
N

B
dx
-0 7’| Idealized
“="- - velocity
aty=0 N
? profile
Yvv\,
N No vapor drag
Idealized

l T
“\_—'

8

temperature
profile

‘7

sat

Liquid, ! - Linear

FIGURE 10-24
The volume element of condensate

on a vertical plate considered
in Nusselt’s analysis.



The average heat transfer coefficient for laminar film condensation
over a vertical flat plate of height L is

-
-7
T
!

gpi(py — p)hi ks
M’I‘l (T‘-LL[ o T\)L |

Hyen = 0.943 (W/m?-°C), 0<Re<30 (10-22)

where

¢ = gravitational acceleration, m/s’
p;. p, = densities of the liquid and vapor, respectively, kg/m*
M; = viscosity of the liquid, kg/m - s
h, = hy, + 0.68c¢,, (T

. — I,) = modified latent heat of vaporization, J/kg
k; = thermal conductivity of the liquid, W/m - °C

L = height of the vertical plate, m

T, = surface temperature of the plate, °C

T, = saturation temperature of the condensing fluid, °C

At a given temperature, p, <€ p; and thus p; — p, = p; except near the critical
point of the substance. Using this approximation and substituting Eqs. 1014
and 10-18 at x = L into Eq. 10-8 by noting that 6, _; = ki/h, _; and h,., = %

h, -1 (Egs. 10-19 and 10-21) give

Re

dop,(p; — ::,)53 49 )7 k, \3 4o [ k3
_4epilpr— i _ q.( . ) g Lo 10.23)

A ~ - - ) - l
BM.-'; BM.T. / =L 31’? \3/ It—'cnf" 4)

Then the heat transtfer coefficient /., 1in terms of Re becomes

NEAN 0 <Re<3
hyen = 1.47k Re™ 1 (—) . Re =30 (10-24)

Py < Py
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The average heat transfer coefficient in wavy laminar
condensate flow for , < p and 30 < Re < 1800

_ Re k; ()"‘ 30 < Re < 1800
.08 Re!** — 52 \v7/ pv<< pi

h
Yvert, wavy

A simpler alternative to the relation above proposed by Kutateladze (1963) is

= (0.8 Re"!l h_

vert, wavy vert [smooth)

h (10-26)

which relates the heat transfer coefficient in wavy laminar flow to that in
wave-free laminar flow. McAdams (1954) went even further and suggested
accounting for the increase in heat transfer in the wavy region by simply
increasing the heat transfer coefficient determined from Eq. 10-22 for
the laminar case by 20 percent. It is also suggested using Eq. 10-22
for the wavy region also, with the understanding that this 1s a conservative
approach that provides a safety margin in thermal design. In this book we use
Eq. 10-25.

A relation for the Reynolds number in the wavy laminar region can be
determined by substituting the & relation in Eq. 10-25 into the Re relation in
Eq. 10-11 and simplifying. It yields

3?0 Lk!(Tsm — TE) g 1/3 |0.820
Re .. warv — [4.81 + ” — . ope<sp (10-27)
- i Vi
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Turbulent Flow on Vertical Plates

At a Reynolds number of about 1800, the condensate flow becomes turbulent.
Several empirical relations of varying degrees of complexity are proposed for
the heat transfer coefficient for turbulent flow. Again assuming p, << p; for
simplicity, Labuntsov (1957) proposed the following relation for the turbulent
flow of condensate on vertical plates:

Re k rf‘f 1/3 :} Cy
Pyert, wrbutent = - — _0s ! 075 _ (ﬁ) . Re P 1800 (10-28)
8750 + 58 Pr—% (Re"™ — 253) 1}/ * po<py

The physical properties of the condensate are again to be evaluated at the film
temperature Ty = (T, + T,)/2. The Re relation in this case is obtained by sub-
stituting the & relation above into the Re relation in Eq. 10-11, which gives

0.0690 Lk, Pt (T, — T,) [ g\ N [
Re'-'cn.uu'bulc.ut = e l ' - — 151 Pr + 253 (10-29)
K 1k Vi |
1.0
Eq. 10-24 Pr=10"]
\‘ // .
2 N Eq. 10-25 5
Ni‘; 5 \\/\ /4{,/ -~
%:/ ol P
Eq. 10-28
Wave-free d FIGURE 10-26
[ latiithar - Wavy laminar Turbulent Nondimensionalized heat transfer
ol | coefficients for the wave-free laminar,

10 30 100 1000 1800 10,000 wavy laminar, and turbulent flow
Re of condensate on vertical plates.



Inclined Plates

= h._ (cos )1 (laminar)

h

inclined — "rvert

Horizontal tubes and spheres

gpi(pr — po) hi; ﬁ(f_ 1/4
|L{’|'I{THH1 - Tx}",—_'}

JI!l;[hut'j;-'. = 0.729

Inclined Plates

‘I!r'-rx'-.:t'[ . l 'J'L) | DI

I
JI!r;rhl 7 L

Horizontal tube banks
gpi(p; — py) hit ki
M {‘Tﬁnt o ‘T\ ) ND |

"!r'-rhnt']'x.. N tubes — 0.729

®
T )
N\

FIGURE 10-28

Film condensation on a

vertical tier of horizontal tubes.

B
\]—L

hhnnx | tabe

k / Cé‘nd:ch‘s;it'c‘

plate

FIGURE 10-27

Film condensation on
an inclined plate.
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For low vapor velocities, Chato (1962) recommends this expression for
condensation

_ gpi(pr— po ki 114
hjn[cma] - Uﬁﬁﬁ[i:(?j _f T)If (hf&* + %(}:!(Tﬁm T T-,)>j| (10-34)
sat s

for

p.V,D
Rewp = (= < 35,000 (10-35)
v inlet

Film condensation
inside horizontal

Liquid

tubes —» Vap

e Tube

FIGURE 10-34

Condensate flow in a horizontal tube
with large vapor velocities.



Dropwise Condensation

*  One of the most effective
mechanisms of heat transfer,
and extremely large heat
transfer coefficients can be
achieved.

+  Small droplets grow as a result
of continued condensation,
coalesce into large droplets,
and slide down when they reach
a certain size.

S DL
.......
' < i

. 0L g .

- Large heat transfer _'.'22’,,:,;{'-. ol
coefficients enable designers ey

10-35
Dropwise condensation of steam on a

vertical surface.
(From Hampson and Ozisik.)
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to achieve a 3pe.cn‘|ed heat FIGURE
transfer rate with a smaller
surface area.



The challenge in dropwise condensation is not to achieve it, but
rather, to sustain it for prolonged periods of time.

Dropwise condensation has been studied experimentally for a
number of surface-fluid combinations.

Griffith (1983) recommends these simple correlations for
dropwise condensation of steam on copper surfaces:

] B | 51.104 + 2o }_I__I_'!'Hul 220 < -j';“l = 100°C (10-36)
‘dropwise = {255 310) ‘ I = 100°C (10-37)

where T, is in °C and the heat transfer coefficient Ay, i 15 in W/m? - °C.
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10-54 Saturated steam at 55°C is to be condensed at a rate of
[0 kg/h on the outside of a 3-cm-outer-diameter vertical tube
whose surface is maintained at 45°C by the cooling water. De-
termine the required tube length.

Properties The properties of water at the saturation temperature of 55°C are /g, = 2371x10° J/kg and p, =
0.1045 kg/m’. The properties of liquid water at the film temperature of T, =T, +T,)/2=(55+45)2=

50°C are (Table A-9).

o; =988.1kg/m’ @

11; =0.547 %10 kg/m s fﬁ?
v =/ p; =0.554x107°m>/s o
¢, =41811/kg-°C Condensate Lope =7

k; =0.644 W/m-°C
45°C

Analysis The modified latent heat of vaporization is
h}g = f’.rfg +0.68¢, (T, —T) v

= 2371x10° J/kg+0.68x4181J/kg - °C(55 - 45)°C = 2399x10° J/kg
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The Reynolds number is determined from its definition to be

i 4(10 /3600 ke/s
Re=—1 _ ( g/s) = 2155

P 7(0.03m)(0.547 x10~° kg/m-s)

which is between 30 and 1800. Therefore the condensate flow is wavy laminar, and the condensation heat
transfer coefficient is determined from

\1/3

r

or
L]

Re fflr

h=h -
1.08Re*?* 52

vertical. wavy —

[S]

Vi o

¥
b i A

’ 1/3
215.5% (0.644 W/m. °C 8 m/s? |
_ x( m-°C) [ 9.8 s ] — 5644 W/m? .°C

1.08(215.5)"* =52 | (0.554x107° m*/s)”

The rate of heat transfer during this condensation process is
0= ri;ﬁf}g =(10/3600kg/s)(2399 x 10° J/kg) = 6.664 W

Heat transfer can also be expressed as

O = hA (T,

sat _Tsj = ;?(EDL}(I; —1I;)

at

Then the required length of the tube becomes

O 6664 W

~ = =1.21m
h(D)T,, —T,) (5844 W/m? -°C)z(0.03m)(55—-45)°C
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Concluding Points

Boiling heat transfer

Pool boiling

- Boiling regimes and the boiling curve
Flow boiling

Condensation heat transfer

Film condensation

Film condensation inside horizontal tubes
Dropwise condensation
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HEAT AND MASS TRANSFER

Heat Excﬁmyery



Objectives

Recognize numerous types of heaf exchangers, and
classify them,

Develop an awareness of fouling on surfaces, and
determine the overall heat fransfer coefficient for a heat
exchanger,

Perform a general energy analysis on heat exchangers,

Obtain a relation for the logarithmic mean temperature
difference for use in the LMTD method, and modify it for
different types of heat exchangers using the correction
factor,

Develop relations for effectiveness, and analyze heat
exchangers when outlet temperatures are not known using
the effectiveness-NTU method,

Know the primary considerations in the selection of heat
exchangers.



TYPES OF HEAT EXCHANGERS

Heat exchanger: a device used to transfer heat between fluids that
are at different temperatures and separated by a solid wall.

FIGURE 11-2
A gas-to-liquid compact heat
exchanger for a residential air-

conditioning system.
(© Yunus Cengel)

Cold
out

Hot W Hot Hot W Hot
in | - _out in a | = _out

—_— | : - | - ; 1 ) i
| I T
Cross-flow Cross-flow —L=
T Cild (unmixed) Q Q Q (mixed) :
Cold
in out | Q Q i
(a) Parallel flow (b)) Counter flow _—__ Q\Q %\
H N
FIGURE 11-1 Tube Tlow
Difterent flow regimes and (unmixed) (unmixed)
ﬂSSOCIﬂted tempel‘aﬂll‘e pl'ClﬁleS in (a) Both fluids unmixed (B) One fluid mixed, one fluid unmixed
FIGURE 11-3

a double-pipe heat exchanger.

Different flow configurations in
cross-flow heat exchangers.



Tube Shell
outlet inlet Baffles

Shell-side fluid

Front-end
header

Rear-end
header

Tubes

Shell
Shell Tube

outlet inlet

FIGURE 114
The schematic of
a shell-and-tube
heat exchanger
(one-shell pass
and one-tube

pass). e — é)l”’l“'

i l\m

(a) One-shell pass and two-tube passes

Shell-side fluid

Nozzles attached
to end frames allow for
entrance and exit of fluids.

Plates supported by an
upper guide bar are held
in a frame which is
bolted together.

Portholes and gaskets
allow fluids to flow in——
altenate channels.

Q(

Tightening bolt.

Special gaskets cn end plates A and B plates . o 7 1 . <
prevent fluids from contacting. — Axnbie The lowerreconeuiar cuide vor M (£) Two-shell passes and four-tube passes
the frames. el altemately. assures ahsolute plate alignment

A gasket mounted cn each preventing lateral movement.

plate seals the channel
between it and the next

FIGURE 11-6
A plate-and-frame liquid-to-liquid

heat exchanger.
( Courtesy of Tranter PHE, Inc.)

FIGURE 11-5

ultipass flow arrangements in
shell-and-tube heat exchangers.




A Plate Heat Exchanger
Used in a Geothermal
District Heating System
in Izmir, Turkey



Scaling/fouling




THE OVERALL HEAT TRANSFER COEFFICIENT

For a double-pipe heat exchanger:

In(D,/D;)
wall — Ykl

R=R . =R+R.+R =L 4 B/D)
— Mol T M wall ° hA, 2wkl

Heat
transfer

Cold

AT _ UAAT = UA, AT = U, A, AT fluid

FIGURE 11-7

Thermal resistance networ
associated with heat transfer
in a double-pipe heat exchanger.




When the tube is finned on one side to enhance heat transfer, the total
heat transfer surface area on the finned side becomes

— Ay =An, + A R : surface area of-‘rhe fins .
A nfinmed - area of the unfinned portion of the

= A + M Agy tube surface

unfinned

TABLE 11-1

Representative values of the overall heat transfer coefficients in
heat exchangers

Type of heat exchanger

Water-to-water

Water-to-oil

Water-to-gasoline or kerosene
Feedwater heaters
Steam-to-light fuel ol
Steam-to-heavy fuel oil

Steam condenser

Freon condenser (water cooled)
Ammonia condenser (water cooled)
Alcohol condensers (water cooled)
Gas-to-gas

Water-to-air in finned tubes (water in tubes)

Steam-to-air in finned tubes (steam in tubes)

U, W/m? - °C*

850-1700
100-350
300-1000
1000-8500
200-400
50-200
1000-6000
300-1000
800-1400
250-700
10-40
30-601
400-8501
30-3001
400-4000*

*Multiply the listed values by 0.176 to convert them to Btu/h - ft2 - °F.

tBased on air-side surface area.

*Based on water- or steam-side surface area.



Fouling Factor
The layer of deposits represents additional resistance to heat transfer
and causes the rate of heat transfer in a heat exchanger to decrease.
It is represented by a , as a measure of the thermal
resistance introduced by fouling.

For an unfinned shell-and-tube heat exchanger:
TABLE 11-2

Representative fouling
factors (thermal resistance due
to fouling for a unit surface area)

Fluid R¢, m? - °C/W

Distilled water, sea-

water, river water,

boiler feedwater:
Below 50°C 0.0001

N In (D,/D;)
2mkL

Above 50°C 0.0002
Fuel oil 0.0009
Steam (oil-free) 0.0001
Refrigerants (liquid) 0.0002
Refrigerants (vapor) 0.0004
Alcohol vapors 0.0001
Air 0.0004

Y

" WA A
R
-+ e

g
- 1
( 1
&
¢

- -

FIGURE 11-9

Precipitation fouling of

ash particles on superheater tubes.
(From Steam: Its Generation, and Use, Babcock
and Wilcox Co., 1978. Reprinted by permission.)

(Source: Tubular Exchange Manufacturers
Association.)




ANALYSIS OF HEAT EXCHANGERS

Assumptions:

The kinetic and potential energy changes are negligible.

The specific heats of the fluids is constant

Axial heat conduction along the tube is considered negligible.

The heat loss from the outer surface to the surroundings is negligible.

The rate of heat transfer from the hot fluid is equal o the rate of heat
transfer to the cold one:

Q =mCp (T o — 1. i) L O = "'”f;r‘f;.ﬁ?{:TﬁL in — Ln,ou)

L ot

The subscripts ¢ and h stand for cold and hot fluids, respectively.
m., m;, = mass flow rates
C:UC!-'
T ous Ty 0w = outlet temperatures

Cpp = specific heats

I, i T, in = Inlet temperatures
The for the hot and cold fluid streams:

Cp, = 1yCpy and C.=




The rate of heat transfer in a condenser or a
boiler undergoes a phase-change process:

Hot fluid
: the rate of evaporation or condensation

of the fluid i
hg,+ the enthalpy of vaporization of the fluid

AT
at the specified temperature or pressure \\Kj
2
Cold fluid

Cl' o Clz

/-FHD[ fluid AT = AT, = AT, = constant

Inlet
| e

R Two fluid streams that have the same
capacity rates experience the same
temperature change in a well-insulated
heat exchanger.

k Boiling fluid

» Inlet Onutlet
Inlet

(a) Condenser (C, — ) (b) Boiler (C_ — =)

FIGURE 11-13

Variation of fluid temperatures in a U : the overall heat transfer coefficient
heat exchanger when one of the fluids A, ' the heat transfer area,

condenses or boils. : average temperature difference
“'between the two fluids 11




THE LO6 MEAN TEMPERATURE DIFFERENCE METHOD ([¥#)

8Q=U(T,-T,) dA,

T
AT i{ng AT,
.
|
|

dT, — dT, = d(T;, — T,) = —ﬁQ( - | AT =TT,

|
mh Cp.r'! IAT2=Th,o‘ut_

s out

C
2 A

s

Cold fluid
I

é - tr-"'rfji-; ﬂl"TJm 1
' parallel-flow double-pipe heat
exchan

.'iTJ -

Al =1 (AT,/AT,) : the log mean temperature difference




Hot
ﬂlm:l

.Ff in L
akT Cold fluid

T AT, =T, o~ T,
e in in~ “cin | ,i‘.T Th ; anm

AT, =T, .u— 1.
hoout = “c,out
‘j‘T TF;' ot Tc‘, in

(a) Parallel-flow heat exchangers
(b)) Counter-flow heat exchangers

FIGURE 11-15

The AT, and AT, expressions in
parallel-flow and counter-flow heat
exchangers.

arithmetic mean temperature

mis obtained by ’rracing the actual temperature profile of the fluids
along the heat exchanger and is an of the average

temperature difference between the hot and cold fluids.

J'iTl &Taj'jl

m




Counter-Flow Heat Exchangers  Multipass and Cross-Flow Heat
Exchangers
Use of a Correction Factor (F)

ﬂ“Tlrn — FﬁTJm, CF

ffPed - the log mean temperature difference for

|

|
Hot fluid :
|
|
i counter-flow heat exchangers with the same
i
|
:
|
|
|

inlet and outlet temperatures

Temperature ratios:
CDIdJ‘ T in

fluid (M Cp rube side

Hot
fluid

ER N (e

shell side

. Cross-flow or multipass
T Cold Tyin shell-and-tube heat exchanger

ml fluid

Heat transfer rate: F for' a hCGT exchanger'
0= UAFAT,, ¢ iS a measure of
AT, _ AT, deviation of the
Alv.cr = naT /ATy from the corresponding

FIGURE 11-16 AT, =T, ~T... values for the counter-
The variation of the fluid temperatures AT.<T. _T. flow case.
in a counter-flow double-pipe heat 2o fowtmem
exchanger. F=.. (Fig. 23-18)
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FIGURE 11-18
Correction factor F charts
for common shell-and-tube and

cross-flow heat exchangers.
(From Bowman, Mueller, and Nagle)

Correction factor F
Correction factor F

=
=3

The correction factor for a condenser or boiler is F= 1, regardless of
the configuration of the heat exchanger.




1144 A stream of hydrocarbon (¢, = 2.2 kl/kg - K) is
cooled at a rate of 720 kg/h from 150°C to 40°C in the tube
side of a double-pipe counter-flow heat exchanger. Water (¢, =
4.18 kl/kg - K) enters the heat exchanger at 10°C at a rate of
540 kg/h. The outside diameter of the inner tube is 2.5 cm, and
its length 1s 6.0 m. Calculate the overall heat transfer coefficient.

Analysis The rate of heat transfer is

O =[1i1c , (Tpue — Ty Nzzc = (720/3600 kg/s)(2.2 kI/kg.°C)(150°C - 40°C) = 48.4 kW

The outlet temperature of water 1s

Q = [mcp (Tam‘ _Tm )]w
48.4KW = (540/3600 kg/s)(4.18 KI/kg.°C)(T,, o0 —10°C)
T =Rg7.2°C

w.out
The logarithmic mean temperature difference is
AT, =T,,,-T,.,, =150°C-87.2°C=62.8°C

AT, =T e =T 1y = 40°C—10°C =30°C

AT -AT,  628-30
In(AT, /AT,) 1n(62.8/30)

and AT, =44 4°C

The overall heat transfer coefficient is determined from
O =UAAT,,
48.4KW =U(7x0.025x6.0)(44.4°C)
U =2.31kW/m? .K




THE EFFECTIVENESS-NTU METHOD

The heat transfer surface area of the heat exchanger can be determined
UUCIUN O - U4, AT,

With the LMTD method, the task is to select a heat exchanger that

will meet the prescribed heat transfer requirements. The procedure to

be followed by the selection process is:

1. Select the type of heat exchanger suitable for the application.

2. Determine any unknown inlet or outlet temperature and the heat
transfer rate using an energy balance.

3. Calculate the log mean temperature difference and the
correction factor F, if necessary.

4. Obtain (select or calculate) the value of the overall heat transfer
coefficient U.

5. Calculate the heat transfer surface area A, .

A second kind of problem encountered in heat exchanger analysis is the
determination of the heat transfer rate and the outlet temperatures
of the hot and cold fluids for prescribed fluid mass flow rates and
inlet temperatures when the type and size of the heat exchanger are
specified. 17



The efec'rlveness (e) -NTU method: R EeARaeir rates of

the cold and the hot fluids:

O _ Actual heat transfer rate
o Maximum possible heat transfer rate

L&
i

A Inax

The actual heat transfer rate in a heat

exc hanger': 20°C Cold
25 kg/s i water

4.18 kJ/kg.°C

Q - [:-':{ITL‘, out T" in:} - E?H{.Tﬁ,in _ TH. u:uut:}

The maximum temperature difference in a
heat exchanger is the difference between

: 2.3 ki/kg-°C
the inlet temperatures of the hot and cold
fluids C, =r.c,. = 104.5 KW/°C
Cy=1h1,C,y, = 92 kW/°C
C,in = 92 KW/C
: : : BF BT T S 10°C
The maximum possible heat transfer rate in a heat il ol o

Qmax = Cmin ATmax = 10,120 kW

FIGURE 11-23

The determination of the maximum
rate of heat transfer in a heat

exchanger:

= C min! T.’.‘,jn — T. in)

Cinin 18 the smaller of C, = m,Cpy, and C. = m.C,,




The determination of [ requires the availability of the inlet
temperature of the hot and cold fluids and their mass flow rates

The actual heat transfer rate: ) = 0 = Coin(Thin — Toin)

The effectiveness of a heat exchanger enables us to determine the heat
transfer rate without knowing the outlet temperatures of the fluids.

For a parallel-flow heat exchanger:

T.Fa, out T out

n - ; =
T.Fa;in _ T:" in

('ﬂl-"TL out Tr:. 'm.} T._ ont T:" in

't--'min{. TF!.'LH T T:" in) Th. in ir::,in © 19




The relation for the effectiveness of a parallel-flow heat exchanger:

UA,
l —exp|— C 1 +

“parallel flow — [+ & ﬁ
C) C.

UA,
1 —exp 7 —| I+

Eparallel flow —

The number of transfer
units (NTU):

_UA,  UA,

I
NTU C

min Ilr""TH":_}J}rL]J'n
The capacity ratio c:
- Cm'm
C

“max

TABLE 11-4

Effectiveness relations for heat exchangers: NTU = UA,/C,,;, and
C= Cmin"{cmax = {!hcp}min!{!hcp)max

Heat exchanger
type Effectiveness relation

1 Double pipe:
1 —exp[=NTU(1 + )]

l1+c¢
1 —exp [-NTU(1 — ¢)]

Parallel-flow e

Counter-flow e =

~1—cexp [-NTU(1 —¢)]
Shell-and-tube:
e = 2{

One-shell pass
2,4, ... tube
passes

; -1

— 1+ =NTUV'1 + c?

1+ ot VIg o teel 1rel
1 —exp[-NTUV 1+ c?]

Cross-flow
(single-pass)

Both fluids NTUO-22
unmixed =1 — exp -

[exp (—c NTU978) — 1]}
Crnax Mixed, 1

Cpin Unmixed > =Z(1 —exp {l-c[l — exp (=NTU)]})

Crnin Mixed, 1

Cpax Unmixed =1 — exp {_E[l —exp (—c NTU)]}

All heat

exchangers > =1 — exp(—NTU)

withc =0

From W. M. Kays and A. L. London. Compact Heat Exchangers, 3/. McGraw-Hill, 1984. Reprinted by
permission of William M. Kays.

e = function (UA,/C ;. Crin /Cra) = Tunction (NTU, ¢)
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o 7 = 0.1 o /f
: [ T 74
g =
Z .0 1T . £ 40 Shell fluid |
= Tube [ = Tube F] ]
m fluid_| = ] H // fluid_| = }
2{}/ u — I . 20 u o= | .
{ } Shell fluid ] / |
0 \ . \ . . \ . . 0 1 1 1 1 1 1 1 1
1 2 3 4 5 1 2 3 4 5

Number of transfer units NTU =AS-I.-’,"Cmm Number of transfer units NTU = ASU!Cm.m

(a) Parallel-flow () Counter-flow

100 ] 100 —S
® _EL-*"' o w;zﬂ%jﬁk}f
: - = 7 —
y /A 3 )/
W 6'0 / g 1" w 'E’D / [+
§ /A//f | % /A’//
% 20 _J|Shel]ﬂuid 1 2 40 Shell fluid — |
1
ﬁ f = | ] % (C i ]
w1 |€ — | ol I D |
/ “—Tube fluid | | ] i y =
' Tube fluid |
o I A 0
I 2 3 4 5 1 2 3 4 5

Number of transfer units NTU =A U/C_, Number of transfer units NTU = A U/C

{c) One-shell pass and 2, 4, 6, ... tube passes

FIGURE 11-26

Effectiveness for heat exchangers.
(From Kays and London)

(d) Twao-shell passes and 4, 8, 12, ... tube passes
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=
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=
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Number of transfer units NTU = A U/C_. Number of transfer units NTU = A U/C_.

min

(¢) Cross-flow with both fluids unmixed ( f) Cross-flow with one fluid mixed and the

other unmixed

FIGURE 11-26

Effectiveness for heat exchangers.
(From Kavs and London)




We make the following observations from the effectiveness relations

and charts already given:

I. The value of the effectiveness ranges from 0 to 1. It increases rapidly
with NTU for small values (up to about NTU = 1.5) but rather slowly
for larger values. Therefore, the use of a heat exchanger with a large
NTU (usually larger than 3) and thus a large size cannot be justified
economically, since a large increase in NTU in this case corresponds
to a small increase in effectiveness. Thus, a heat exchanger with a
very high effectiveness may be highly desirable from a heat transfer
point of view but rather undesirable from an economical point
of view.

[

. For a given NTU and capacity ratio c = C_,,/C,... the counter-flow
heat exchanger has the highest effectiveness, followed closely by the

cross-flow heat exchangers with both fluids unmixed. As you might

expect, the lowest effectiveness values are encountered in parallel-flow

heat exchangers (Fig. 23-27).
3. The effectiveness of a heat exchanger is independent of the capacity
ratio ¢ for NTU values of less than about 0.3.

e Counter-flow

Cross-flow with
both fluids unmixed

/4

Parallel-flow

(forc=1)

| | | |
0 1 2 3 4 5

NTU = UA,/C

FIGURE 11-27

For a specified NTU and capacity
atio ¢, the counter-flow heat
exchanger has the highest
effectiveness and the parallel-flow the

lowest.

min



4. The value of the capacity ratio ¢ ranges between 0 and 1. For a given
NTU, the effectiveness becomes a maximum tor ¢ = 0 and a minimum
torc = 1. The case ¢ = C,;,/C,,,x — 0 corresponds to C,, — %, which
is realized during a phase-change process in a condenser or boiler. All
effectiveness relations in this case reduce to

£ =&y = 1 —exp(—NTU)

regardless of the type of heat exchanger (Fig. 23-28). Note that the
temperature of the condensing or boiling fluid remains constant in

this case. The effectiveness is the lowest in the other limiting case of
¢ = Cui/ Cax = 1. which is realized when the heat capacity rates of

“mn’ max

&

g=1-¢NTU

(All heat exchangers

the two fluids are equal. 0.5 with ¢ =0)
TABLE 11-5
NTU relations for heat exchangers: NTU = UA,/C.,;, and ¢ = C.,iy/Crrax =
(M €, )imin/ (M Cp D
Heat exchanger type NTU relation
1 Double-pipe: o

Parallel-flow NTU = —Intl el +c)] 1 1 1

1+c
Counter-flow NTU = S E 1 In (:c_—ll) 0 1 2 3 4 >
) NTU = UA,/C i,

2 Shell and tube: e
2e—1—-c—V1+c?

One-shell pass NTU = —% In|<£ c- v <
2,4, ... tube passes V1+c? 20e—1—-c+V1+¢c?

FIGURE 11-28
The effectiveness relation reduces to
e =g, = 1 —exp(—NTU) for all

heat exchangers when the capacity

3 Cross-flow (single-pass):
C..a Mixed, NTU = —In [1 +
Crnin Unmixed

In (1 —ec)
c

Cinin Mixed, L
o™ unmixed NTU = Infcin (1 —-¢)+1]

max C

4 All heat exchangers NTU = —In(1 — ¢)
with c =0

From W. M. Kays and A. L. London. Compact Heat Exchangers, 3/e. McGraw-Hill, 1984. Reprinted by
permission of William M. Kays.




11-90 Cold water (¢, = 4.18 kl/kg - °C) enters a cross-flow

heat exchanger at 14°C at a rate of 0.35 kg/s where it is heated

by hot air (¢, = 1.0 kl/kg - °C) that enters the heat exchanger at

65°C at a rate of 0.8 kg/s and leaves at 25°C. Determine the

maximum outlet temperature of the cold water and the effec-

tiveness of this heat exchanger.

Properties The specific heats of water and air are given to be

4.18 and 1.0 kJ/kg.°C.

Analysis The heat capacity rates of the hot and cold fluids are
Cp, = tinye y, = (0.8keg/s)(1.0kI/kg.°C) = 0.8 kW/°C =l |

C. =1it.c . =(0.35kg/s)(4.18 kI/kg.°C) = 1.463 kW/°C Al gt

Therefore : /s %

%
Con =C, = 0.8KW/°C % g\\

which is the smaller of the two heat capacity rates. Then
the maximum heat transfer rate becomes

Ouax = Coin Ty — T 1) = (0.8 KW/°C)(65°C -14°C) = 40.80 kW

c,in
The maximum outlet temperature of the cold fluid 1s determined to be

Qmax = C (T .out,max Tc m)—}T .ouf.max Tc in T me = 14CC+M =41.9°C
: C 1.463kW/°C

c
The actual rate of heat transfer and the effectiveness of the heat exchanger are

0 =C;(T,,, ~ Ty our) = (0.8KW/°C)(65°C - 25°C) = 32 kW

po 9 _32KW 4404
O 08kW




SELECTION OF HEAT EXCHANGERS

The rate of heat fransfer in a heat exchanger: gy T

Heat Transfer Rate: A heat exchanger should be capable of transferring heat at
the specified rate in order to achieve the desired temperature change of the fluid
at the specified mass flow rate.

Cost: Budgetary limitations usually play an important role in the selection of
heat exchangers, except for some specialized cases where "money is no object.”

Operating cost = (Pumping power, kW) X (Hours of operation, h)

Pumping Power:

X (Price of electricity, $/kWh)
Minimizing the pressure drop and the mass flow rate of the fluids will minimize the
operating cost of the heat exchanger, but it will maximize the size of the heat
exchanger and thus the initial cost.

Normally, the smaller and the lighter the heat exchanger, the
better it is.

Type: The type of heat exchanger to be selected depends primarily on the type of
fluids involved, the size and weight limitations, and the presence of any phase
change processes.

Materials: The materials used in the construction of the heat exchanger may be an
important consideration in the selection of heat exchangers.

26



Types of Heat Exchangers

Parallel, Counter and Cross Flows

Fouling Factor

Analysis of Heat Exchangers

The Log Mean Temperature Difference (LMTD) Method
Counter-Flow, Multipass and Cross-Flow Heat Exchangers
Correction Factor

The Effectiveness—NTU Method

Selection of Heat Exchangers
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¢ Thermal Radiation
¢ Blackbody Radiation
¢ Radiation Intensity
¢ Radiative Properties




Radiation

Vacuum emitted
' Gas or

chamber vacuum

Hot
object
/ Radiation

FIGURE 12-1

A hot object in a vacuum chamber| FIGURE 12-2
loses heat by radiation only. Unlike conduction and convection, - FIGURE 12-6
heat transfer by radiation can occur Radiation in opaque solids is

A: fr'eq uency between two bodies, even when they considered a surface phenomenon

are separated by a medium colder tha since the radiation emitted only by the
v: waveleng'l'h molecules at the surface can escape

c: speed of propagation
o' speed of light

- = 2.9979x108 m/s
¢ = ED"F”' n: index of refraction

h=6625 X 107%] -5 Fumllure

microwave oven by absorbing the
electromagnetic radiation energy

FIGURE 124
Everythmg around us constantly

h: Planck's constant




electromagnetic
pertinent to heat transfer (emitted as a result of
energy transitions of molecules, atoms, and electrons

of a substance).

Light:

(between 0.40 and 0.76 pm).

Solar Radiation: the electromagnetic radiation emitted
by the sun (mainly in the wavelength band 0.3-3 um).

The radiation emitted by bodies at
room temperature falls into the

of the spectrum
(from 0.76 to 100 pm).

the low-wavelength
end of the thermal radiation
spectrum (0.01 and 0.40 pm).

Microwave ovens use electro-magnetic radiation in the [y Sy ———

TABLE 12-1

radiation,

The wavelength ranges of

different colors
Color

Violet
Blue
Green
Yellow

Orange
Red

Wavelength band

0.40-0.44 pm
0.44-0.49 pm
0.49-0.54 pm
0.54-0.60 pwm
0.60-0.67 um
0.63-0.76 wm

of the spectrum generated by

microwave tubes (magnetrons).

A, um__ Electrical
power waves

|

Radio and
TV waves

Microwaves

Thermal Infrared
radiation
Visible

Ultraviolet

X-rays

FIGURE 12-3



Reflected

A blackbody: perfect emitter and absorber of radiation.

The radiation energy emitted by a blackbody per
unit time and per unit surface area (blackbody
emissive power):

Stefan-Boltzmann constant:

E(T)=oT* (W/m*) B = 567 X 107 W/m? - K?

T : the absolute temperature of the surface in K. adsuriace thak seflectred while

absorbing the remaining parts of the
'I'he qmoum’ Of incident light appears red to the eye.

radiation energy emitted by a blackbody at an

absolute temperature per unit time, per unit

surface area, and per unit wavelength about the

wavelength.

C,

E,ANTY="FT"—""—""" """
ANlexp (G/AT ) — 1]

(W/m? - em)

Planck's law:

e e RN VSTV WA Boltzmann's constant:
C, = hcglk = 1.439 X 10* um - K k= 1.38065 %X 102 JJK
T : the absolute temperature of the surface and c = speed of light [{[HUN 3Lk

On an E,,—A chart, the area under
a curve for a given temperature
. h = Planck's constant represents the total radiation energy
E T) = E, (A, TVdA = oT* (W/m?) 6 6256x10-34 Js emitted by a blackbody at that

JO temperature.

" oo




Real surface:
& # constant
&, # constant

Emissivity of a Surface : the ratio of the radiation
emitted by the surface at a given temperature to the
radiation emitted by a blackbody at the same

temperature.

For a blackbody: € = 1

Diffuse surface:
&, = constant

Gray surface:
&, = constant

Diffuse, gray surface:
€= & = & = constant

FIGURE 12-25
he effect of diffuse and gray

Blackbody. e =1 . . P
approximations on the emissivity

o <Blackbody, E.;

#
Nonconductor

Gray surface, ""x‘
E' = -E.'Em

A

{

Gray surface, £ = const.

Real surface, g;

Real surface,

E. =£., E -
- AT Conductor

j‘{

(@ FIGURE 12-27 (b) 5 30° 4§° 6(|)° 7:IS° 90°

Comparison of the emissivity (a) and FIGURE 12-26

emissive power (b) of a real surface
with those of a gray surface and a
blackbody at the same temperature.

ypical variations of emissivity with
direction for electrical conductors
and nonconductors.




FIGURE 12-28
th and (b) temperature for various materials.

=
=

- .
Silicon carbide. : '\'./
1000 K / : I‘ 4

]
\
\
\
LY

= 4 Vegetation, water, skin

Tungsten \

| 1600 K \
—

=
=

Aluminum
*.J oxide, > ; R .
A\ ; | 400K Building materials, paints

N *
~ \?52;)181;3(55 steel, ROCkS, SOl] :
I "..\.\_; \\ heavily oxidized Glasses’ mlnel‘a]S C—1

~ ~ 1
\2800 K  Stainless steel,

. 800 K
Col bl Lo lightly oxidized |\ Carbon C—
0.2 04006 1 2 4 6 20 40 60 100

Wavelength, A, um Ceramics |

=
.

Spectral, normal emissivity. €,

=
[

|
Oxidized
! metals
Heavily oxidized [ ] MelalS, unpOliShed

stainless steel
-~ =1 Polished metals

n

£

] ] | |
Aluminum oxide 02 04 06 08 | O

FIGURE 12-29

Typical ranges of emissivity fo

| | | | | various materials.
500 1000 1500 2000 250} 3000 3500

Temperature. K

Lightly oxidized
stainless steel

Total normal emissivity,

Tungsten




radiation

Irradiation (6): radiation flux incident on a surface e

_ Absorbed radiation _ Gabs Rczcé:tcd
Incident radiation G

Absorptivity:

Reflected radiation Gl \

eflectivity: ) = : — = ——>
i : ! Incident radiation G

_ Transmitted radiation _ Gy Sl
Incident radiation G

Transmissivity.

Gabs + Gref + Gtr =G 1 2 + =1 Transmitted

TG

For opaque surfaces: FIGURE 12-32JFIGURE 12-31

he absorption, reflection, and

Different types of reflection from g . g
; . ransmission of incident radiation by a
¢ + p = ] a surface: (a) actual or irregular, B o000t material.
(h) diffuse, and (¢) specular
or mirrorlike.

Normal Normal Normal
Incident Reflected rays Incident

Incident




The radiation absorbed by the small body per unit
of its surface area:

2. Asbestos

Absorptivity, o

5. Porcelain
6. Concrete
7. Roof shingles

Gy, = aG = acT?

The radiation emitted by the small bOdy: 500400 600 1000 2000 40006000

Source temperature, K

FIGURE 12-33
Variation of absorptivity with
the temperature of the source of

Considering that the small body is in thermal rradiation for various common
equilibrium with the enclosure:

Kirchhoff's law: EVEERLCE

The ftotal hemispherical emissivity of a surface at
temperature T is equal to its tfotal hemispherical
absorptivity for radiation coming from a blackbody at the

same temperature.
FIGURE 12-34

he absorptivity of a material may be
quite different for radiation originating
from sources at different temperatures.

The spectral form of Kirchhoff's law: ENCBESRNYA.




Glass at thicknesses encountered in practice tfransmits over 90 percent of radiation in
the visible range and is practically opaque (nontransparent) to radiation in the longer-
wavelength infrared regions of the electromagnetic spectrum (roughly ).
Therefore, glass has a transparent window in the wavelength range

in which over 90 percent of solar radiation is emitted. On the other hand, the entire
radiation emitted by surfaces at room temperature falls in the infrared region.
Consequently, glass allows the solar radiation to enter but does not allow the infrared
radiation from the interior surfaces to escape. This causes a rise in the interior
temperature as a result of the energy buildup in the space. This heating effect, which is
due to the nongray characteristic of glass (or clear plastics), is known as the

radiation

N\ L

025 04 06, .15 3.1 47 63 79 Infrared

0.7 radiation

Wavelength 4, pm FIGURE 12-37
FIGURE 12-36 A greenhouse traps energy b
he spectral transmissivity of low-ironffallowing the solar radiation to come i
glass at room temperature for differentl but not allowing the infrared radiatio

i 10
thicknesses. to g0 out.




The total solar energy incident on the unit area of a S -
horizontal surface on the ground:

Gotar = Gp cos 0 + Gy (W/m?)

solar

The radiation emission from thef
atmosphere to the earth's surface:

(W/m?)
Solar radiation reaching the FIGURE 12-39
. earth’s atmosphere and the total solar [The total solar energy passing through
T k 5 The effZCTlve Sky Temper‘ClTU W <irradiance concentric spheres remains constant,
87 but the energy falling per unit area

decreases with increasing radius.

Tsy ranges from about 230 K for cold, clear-sky conditions to about
285 K for warm, cloudy-sky conditions. %\%\W/
The sky radiation absorbed by a surface: £ G2 SRRl

Eqy amsorbed = @Gyy = ao T = eoT§, (W/m?)

The net rate of radiation heat transfer
to a surface exposed to solar and
atmospheric radiation:

E

emitted

oG €Ggy,

s solar

L —

- - % — % .
) net, rad — = “~ahsorbed = Leamitted Eapsorbea

—FE., .+ E. —E_.
solar, absorbed sky, absorbed emitted FIGURE 12-43

Radiation interactions of a surface

exposed to solar and atmospheric 11

adiation.

= a, Gpoe T L‘trTJ* — eoTH
= a; Gy + e0(Thy — T} (W/m?)




T T 1 |

— —— 5780 K blackbody
Solar irradiation

\

\
\
\
Extraterrestrial

.02

(S
-
-
o

O
S
S

-Earth’s surface

H,0
Co,

1.5 20 25 3.0
Wavelength, um

FIGURE 12-40Q

Spectral distribution of solar radiatio
just outside the atmosphere, at the
surface of the earth on a typical day,
and comparison with blackbod

radiation at 5780 K.
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White

N\ /\ Red

Orange

Sun Yellow
Blue

~_\/ Violet

N

Air
molecules

Atmosphere

FIGURE 1241

Air molecules scatter blue light muc
more than they do red light. At sunset,

light travels through a thicker laye

of atmosphere, which removes muc
of the blue from the natural light,
allowing the red to dominate.




TABLE 12-3

Comparison of the solar absorptivity :
a, of some surfaces with their -—

emissivity e at room temperature ) = Winds
e

Surface s e

"
Aluminum it e Clouds

Polished

Anodized

Foil . : Lty ha e . & ¢ Ak
Copper By G ] | T <

Polished AR ¢ Y !

Tarnished . , ; Power lines Evaporation
Stainless steel Reservoir | (R

Polished . . = g L B
Dull . . ¥ {4 Solar
Plated metals .', _,'f | energy
Black nickel oxide . .
Black chrome . . ////
Concrete . .
White marble
Red brick

Asphalt _ : : FIGURE 1244
Black paint . :

White paint , , The cycle that water undergoes in a

Snow . . hydroelectric plant.
Human skin

(Caucasian)




clear night 1s observed to re-
- °C, determine the value of the

(18 W/m* -°C)(4°C —0°C) = 0.95(5.67x10™° W/m* -K"* )[(2?3 K)* —Tjh.‘*]
——T,, =254.8K

—62 The air temperature on a

-_—
[an
o R
=
= =
L4 Qe
S 5
B 2
22
S0
- L
S =z
T 3
£ U
o=
= e
-
w2
..la
-

T
S O
=
—

_H__E
=
P E
<+ g
—
w.l.
2 2
< oW
_ =
e B
g =
(e =T}
p— G —
= o

Therefore, the effective sky temperature must have been below 255 K.

maximum effective sky temperature that night.
12-62 Water is observed to have frozen one night
0°C. the value of the effective sky temperature 1s
determined from an energy balance on water to

while the air temperature is above freezing
Analysis Assuming the water temperature to be

temperature. The effective sky temperature is to

be determined.
Properties The emissivity of water 1s £ = 0.95

fer coefficient to be 18 W/m?
(Table A-18).

12




® & &6 6 6 6 O o o

The electromagnetic spectrum?

Thermal radiation?

A blackbody and the blackbody emissive power?
Stefan-Boltzman law?

Planck’s law?

Emissivity?

Absorptivity, reflectivity, and transmissivity?
Kirshhoififis law?

Efifective sky temperature?
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HEAT AND MASS TRANSFER

Radiation Heat Transfer



Objectives

’0

* Define view factor, and understand its importance in radiation
heat transfer calculations,

< Develop view factor relations, and calculate the unknown view
factors in an enclosure by using these relations,

» Calculate radiation heat transfer between black surfaces,

+ Determine radiation heat transfer between diffuse and gray
surfaces in an enclosure using the concept of radiosity,

» Obtain relations for net rate of radiation heat transfer
between the surfaces of a two-zone enclosure, including two
large parallel plates, two long concentric cylinders, and two
concentric spheres,

* Quantify the effect of radiation shields on the reduction of
radiation heat transfer between two surfaces, and become
aware of the importance of radiation effect in temperature
measurements.

@,

<&

L)

L)

<&

L)

L)

&

L)

L)

L)

L)



o0

0

0

.0

0

L0

The View Factor

Radiation heat transfer between
surfaces depends on the orientation of
the surfaces relative to each other as
well as their radiation properties and
temperatures.

View factor is defined to account for
the effects of orientation on radiation
heat transfer between two surfaces.

View factor is a purely geometric
quantity and is independent of the
surface properties and temperature.

Diffuse view factor — view factor
based on the assumption that the
surfaces are diffuse emitters and
diffuse reflectors.

Specular view factor — view factor
based on the assumption that the
surfaces are specular reflectors.

Here we consider radiation exchange
between diffuse surfaces only, an

thus the term view factor simply means
diffuse view factor.

Surface 2
Surface 1
, Surface 3
Point
source
FIGURE 13-1

Radiation heat exchange between
surfaces depends on the orientation
of the surfaces relative to each other,
and this dependence on orientation is
accounted for by the view factor.



\/
0‘0

The view factor from a surface i
to a surface | is denoted by F,_;; or
just F;;, and is defined as

F,5;= the fraction of the radiation
leaving surface | that strikes
surface j directly.

The view factor F;, represents the
fraction of radiation leaving
surface 1 that strikes surface 2
directly, and F,; represents the
fraction of radiation leaving
surface 2 that strikes surface 1
directly.

Note that the radiation that
strikes a surface does not need to
be absorbed by that surface.

Also, radiation that strikes a
surface after being reflected by
other surfaces is not considered in
the evaluation of view factors.

FIGURE 13-2

Geometry for the determination of the
view factor between two surfaces.



Outer
o * Whenj=i: D5 L

i . Fi5,1=0
Fi»=the fraction of radiation o\, cuitace
leaving surface i that strikes
itself directly.
F._=0: for plane or @
convex surfaces and Fy_,,=0

F.#0: for concave
surfaces

« The value of the view factor ®

FIGURE 13-4 ranges between zero and one. \</ Fy_3#0

In a geometry that consists of two _
concentric spheres, the view factor |:i 9j_0’ the two surfaces

Fy _,, = 1 since the entire radiation do not have a direCt VIEW | . cove surface
leavmg. thp surface of the smaller of each other, FIGURE 13-3
sphere is intercepted by the
larger sphere.

(b) Convex surface

F. 91.:]_, surface | The view factor from a surface to itself

complete|y surrounds is zero for plane or convex surfaces
and nonzero for concave surfaces.
surface.



View Factors Tables for Selected Geometries
(analytical form)

e e o e o o o o o O O O O O O O O O D S e e

TABLE 13-2

View factor expressions for some infinitely long (2-D) geometries

Geometry

Relation

Farallel plates with midlines
connected by perpendicular line

' |
I I
' |
I I
' |
w. =w =W
| TABLE 13-1 I | — ILI_-i ; W, = w/Land W, = w/L I
View factor expressions for some common geometries of finite size (3-D) | | [ ! LW+ Hr;-]2 +4]12 (W, - Hr}f +4]12 |
I L | X =
| | e W
I Geometry Relation I \ }—| i ' I
| | T . ! |
| _ _ f Wi |
Aligned parallel rectangles X=X/Land ¥Y=Y/L I I I
I _ _ _ I Inclined plates of equal width
| oy Foo——2 |+ XQ_]'E] +_I:2! 12 F XL+ PV ! X ___ | and with a common edge I
I N =i XY 1+X7 477 (1+ 7)1 I | I
I b .
'_:". | — N F, . =l—sin—
I ¥ 2 I +F(1+ X312 ta.n‘l_—l% ~Xtan ' X-Ftan' ¥ ; I I = I
X (1+X% J | |
| L : . : |
| 1
I I Perpendicular plates with a common edge |
I Coaxial parallel disks .
I :}- Ry=r/Land R, = r/L I | i |
@ éﬁ L+ R 1 1 NI AR |
| | [ S=l+_R21 | I W F"—’J"_2{]+w§_ ]+|._W.-_. L
| Pk ot | | | |
F._ .=-{5-|8%- . i
. [ |l | SR |
| 1! '
I I Three-sided enclosure I
|
' |
| I -
Perpendicular rectangles H=Z/X and W=Y¥/X I I h.'ll Wi F Wit W W I
I with a common edge I k i=i _?_
r :
I FI'—‘J: ?1— Wlﬂn'Ji + Htsm‘lL —(H? + WHY2 tan! —zﬁ I ) I
| W W H (H=+ W=) I | I
z L QWA B [ WL W2 B |7 I 1 —— I
| 0 S ewr m 0wl e e » .
| ¥ Y I | | Infinite plane and row of cylinders |
N - 271 {2102
HA 4 HE W | | s o2
| emarewy | ) I OO @f—D =15 I
| | D [#-p|" |
I + —lan ( D2 )
e e \ - 1
I I




View Factors Figures for Selected Geometries

(graphical form)
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FIGURE 13-8
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View factors for two concentric cylinders of finite length: (a) outer cylinder to inner cylinder; () outer cylinder to itself.
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View Factor Relations

Radiation analysis on an enclosure consisting of N surfaces
requires the evaluation of N? view factors. However, it is
neither practical nor necessary to evaluate all of the view
factors directly.

Once a sufficient number of view factors are available, the
rest of them can be determined by utilizing some fundamental
relations for view factors.

Fundamental relations for view factors:
- the reciprocity relation,

- the summation rule,

- the superposition rule,

- the symmeftry rule.



The Reciprocity Relation
AFi—>j — Aj Fj—)i
Fi=F,, when A = A,
FHi + FHJ. when A # Aj
The Summation Rule

ZN: |:i—>j =1
j=1

« The sum of the view factors from surface i of an
enclosure to all surfaces of the enclosure, including
to itself, must equal unity.

e For a three-surface enclosure,

F
!

=F_ 1 tF _,+tF_ ;=1

3

[ —;

J

« The total number of view factors that need to be
evaluated directly for an N-surface enclosure is

N> — [N+ INN = D] =INN - 1)

Surface i

FIGURE 13-9

Radiation leaving any surface i of
an enclosure must be intercepted
completely by the surfaces of the
enclosure. Therefore, the sum of
the view factors from surface i to
each one of the surfaces of the
enclosure must be unity.



The Superposition Rule

 the view factor from a surface i to a
surface | is equal to the sum of the view
factors from surface i to the parts of
surface |.

F

1(2,3

A]F]%EJ):A[FIAE_‘_ Al 5

)~ F,,+F.;

(Ay + A3)Fp 3y 1 = AsFy ) + AsFy

Ay Fy +AF5
F[lﬁ']_}] - Aﬁ"‘Ag

The Symmetry Rule
Fi—> i = Fi—)k

i

j—oi ' k—i

)

1 —3

FIGURE 13-11

The view factor from a surface to a
composite surface is equal to the sum
of the view factors from the surface to
the parts of the composite surface.

©)

F =F, _,,+F

1-(2,3)

Q@
Q)

Pryo=Fress
(Also, Fy , =F5_ )
FIGURE 13-13

Two surfaces that are symmetric about
a third surface will have the same view
factor from the third surface.



View Factors between Infinitely Long Surfaces:
The Crossed-Strings Method

The view factor between two-
dimensional surfaces can be

determined by the simple crossed-
strings method.

F 2 (Crossed strings) — 2 (Uncrossed strings) Lx\‘ R ¥
i—j 2 X (String on surface i) .
- (L) -(L+L)
12

2L,

FIGURE 13-16

Determination of the view factor

F, _, , by the application of
the crossed-strings method.



13-8 Determine the view factors F|; and F,; between the
rectangular surfaces shown in Fig. P13-8.

f—3m |
!
A, ]lm
f
A, I m
N -
Ay I m
N
Analysis From Fig. 13-6,
; .
;:%:Uﬁ
i' i LFy, =027
L=—-=033
w3
and
L
I;:%:&£
v 3
B >F3_>{1_"|‘:| 203‘2
L+L, 2 -
1722 _Z (67
w 3

W=3m

L,=1m 4 2)

Li=1m 4 (1)
L;=1m 45 ()

We note that 4; = 4;. Then the reciprocity and superposition rules gives

Fy g =F5 +Fy, —— 032=027+F;;, — F;, =0.05

Finally,



Radiation Heat Transfer: Black Surfaces

Consider two black surfaces of arbitrary shape maintained at uniform temperatures T, and
1.

The net rate of radiation heat transfer from surface 1 to surface 2 can be expressed as

Q, . { Radiation leaving J [ Radiation leaving J
— \ the entire surface 1 the entire surface 2

that strikes surface 2 that strikes surface 1

— ALEbl |:1—>2 — Az Eb2 |:2—>1 (VV)

Applying the reciprocity relation

1
(3 AlFl%Azi:FAZF291(T4 T4) (W) - Q A2
152 — W01 — 1 l 12
Al /
For enclosure consisting of N /®
blagk surfaces,

Qi :ZQi—n :ZAFi_)jg(Ti“ _Tj4) (W)

j=1 FIGURE 13-18
Two general black surfaces maintained
at uniform temperatures 7'; and 75.



Radiation Heat Transfer: Diffuse, Gray
Surfaces

« To make a simple radiation analysis possible, it is common to
assume the surfaces of an enclosure are:

— opague (nontransparent),

— diffuse (diffuse emitters and diffuse reflectors),
— gray (independent of wavelength),

— Isothermal, and

— both the incoming and outgoing radiation are uniform over
each surface.



Radiosity
Surfaces emit radiation as well as reflect it, and thus the radiation leaving a
surface consists of emitted and reflected parts. The calculation of radiation
heat transfer between surfaces involves the foral radiation energy streaming
away from a surface, with no regard for its origin. The total radiation energy
leaving a surface per unit time and per unit area is the radiosity and is
denoted by J (Fig. 13-20).

For a surface i that is gray and opaque (¢; = «; and «; + p, = 1), the
radiosity can be expressed as

J = (Radiation emitted) i (Radiation reﬂected)
by surface i by surface i
=gk, + piG;
=gFE, + (1l —&)G. (W/m?) (13-21)

where E,; = oT/* is the blackbody emissive power of surface i and G; is
irradiation (i.e., the radiation energy incident on surface 7 per unit time per
unit area).

For a surface that can be approximated as a blackbody (&; = 1), the radios-
ity relation reduces to

J.=E, =0T} (blackbody) (13-22)

That 1s, the radiosity of a blackbody is equal to its emissive power. This 18
expected, since a blackbody does not reflect any radiation, and thus radiation
coming from a blackbody is due to emission only.

Radiosity, J
Incident Reflected Emitted
radiation radiation radiation
pG ¢E,

Surface
FIGURE 13-20
Radiosity represents the sum of the
radiation energy emitted and
reflected by a surface.



Q- _ (Radiation leaving) . (Radiation incident)

entire surface i on entire surface i

= A, — G)) (W) (13-23)
T o + Net
Solving for G; from Eq. 13-21 and substituting into Eq. 13-23 yields . .
Radiation
. J; — &, Ag,
0, = A, (J,- - _1?‘) = E- T W) (1329) Heat
Transfer to
In an electrical analogy to Ohm’s law, this equation can be rearranged as
& k £ or from a
. E,—
0 =—"p— (W) (13-25) Surface
where
| —e  Rjisthesurface
Ri=-4. resistance to radiation. ~ (13-26)
Qi, When the convection effects on the front (heat transfer) side of such
E,; ¢—ww—e J; a surface is negligible and steady-state conditions are reached, the
1 -¢ surface must lose as much radiation energy as it gains, and thus
Surface |R; = e .
i bt Q =0
FIGURE 13-21 In such cases, the surface is said to reradiate all the radiation energy

Electrical analogy of surface it receives, and such a surface is called a reradiating surface.

resistance to radiation. J =E, = c)-'l'i4 (W/mz)



Net Radiation Heat Transfer between any two surfaces

Consider two diffuse, gray, and opaque surfaces of arbitrary shape maintained
at uniform temperatures, as shown in Fig. 13-22. Recognizing that the radios-
ity J represents the rate of radiation leaving a surface per unit surface area and

that the view factor F;_, ; represents the fraction of radiation leaving surface i

that strikes surface j, the nef rate of radiation heat transfer from surface 7 to

surface j can be expressed as

Radiation leaving Radiation leaving
Qi ;= the entire surface i | — | the entire surface j
that strikes surface j that strikes surface i
:A:'J."Fr'—}J_A ‘I‘F_,r—n (W)
Applying the reciprocity relation A,F; ;= AF;_,; yields
Qi—>j .' f—}_;(J _J) (W)

Again in analogy to Ohm’s law, this equation can be rearranged as

(W)

(13-28)

(13-29)

(13-30)

Surface j

Ebj

bi Surface i

FIGURE 13-22

Electrical analogy of
space resistance to radiation.



In an N-surface enclosure, the conservation of energy principle requires that
the net heat transfer from surface i be equal to the sum of the net heat transfers
from surface 7 to each of the N surfaces of the enclosure. That is.

X N o=
Qa' = Z Q."—}j = Z A:'F:'—U(Ji _JJ) - 2 R
i=1

=1 =1

(W) (13-32)

i —]

The network representation of net radiation heat transfer from surface i to the
remaining surfaces of an N-surface enclosure 1s given in Fig. 13-23. Note that
(), _,; (the net rate of heat transfer from a surface to itself) is zero regardless of
the shape of the surface. Combining Eqs. 13-25 and 13-32 gives

Ey;

f_‘,'
R,

!

N JJ: - Jj

-3 . (W) (13-33)

i=1

Surface i

FIGURE 13-23

Network representation of net
radiation heat transfer from surface i
to the remaining surfaces of an
N-surface enclosure.



Methods of Solving Radiation Problems

In the radiation analysis of an enclosure, either the temperature or the net
rate of heat transfer must be given for each of the surfaces to obtain a unique
solution for the unknown surface temperatures and heat transfer rates. There
are two methods commonly used to solve radiation problems. In the first
method, Eqs. 13-32 (for surfaces with specified heat transfer rates) and
13-33 (for surfaces with specified temperatures) are simplified and re-
arranged as

N
Surfaces with specified, :

o § . * ) = A. . . . . —_
net heat transfer rate Q O, 4;j§| F ;—UU i J,;) (13-34)
Surfaces with specified [— o
temperature T, oT?=J + f 2 F, o (J;,—J) (13-35)

b=l

Note that Qi = ( for insulated (or reradiating) surfaces, and o T;* = J, for black
surfaces since g; = 1 in that case. Also, the term corresponding to j = 7 drops
out from either relation since J; — J; = J; —J; = 0 in that case.

The equations above give N linear algebraic equations for the determination
of the N unknown radiosities for an N-surface enclosure. Once the radiosities
Ji.J,, . ... Jyare available, the unknown heat transfer rates can be determined
from Eq. 13-34 while the unknown surface temperatures can be determined
from Eq. 13-35. The temperatures of insulated or reradiating surfaces can be
determined from o T;* = J,. A positive value for Q; indicates net radiation heat
transfer from surface i to other surfaces in the enclosure while a negative value
indicates net radiation heat transfer 7o the surface.



Consider an enclosure consisting of two opaque surfaces at specified temper-
atures 7, and 75, as shown in Fig. 13-24, and try to determine the net rate of
radiation heat transfer between the two surfaces with the network method.
Surfaces I and 2 have emissivities £, and &, and surface areas A, and A, and
are maintained at uniform temperatures 7, and 75, respectively. There are only
two surfaces in the enclosure, and thus we can write

Radiation
Heat
Transfer in

Qn=0=-0, TWO'
That 1s, the net rate of radiation heat transfer from surface 1 to surface 2 must Sur'face
equal the net rate of radiation heat transfer from surface 1 and the net rate of EﬂC' osures
radiation heat transter fo surface 2.
. o Ef” - Ebz o o .
QIQ_R]+R|2+R2_QI_ Q2
0, = a(T! — T5)
12 1—8,Jr | +l—83
A g AF,, A,é&,
Ey &. J, &. 5 &. Ey,
—— MWWW——e——WWW————WWW—e
l=¢g 1 1-¢,
1= Algl] Rlz:Alsz 2= Az
FIGURE 13-24

Schematic of a two-surface
enclosure and the radiation
network associated with it.



TABLE 13-3

Small object in a large cavity

A
L=0
A, ) T4
Q,=A06(T~T3) (13-37)
F,=1
N\
A, T, ¢
Infinitely large parallel plates
ALT.g
A=A =A ; _Ac(T4-TH (13-38)
Fh=1 B 1
A, T,.e, B g &
Infinitely long concentric cylinders
ANy
(5
A
A, o _AO(T4-TH (13-39)
R T-ey 1
Fp,=1 g g 7))
Concentric spheres
A | r 2
LT AemioTh o (1340
‘ 27 1-e, 1 2
Fip=1 757 |r2'|




Radiation Heat Transfer in Three-Surface Enclosures

E,—=J, L—J Ji—=J
bl L, B 1

RI RIZ RI3
J|_J‘) Eb‘)_JQ Jg_Jz
24 2 4= -0
RIZ R?_ R23
J| _Jg J2 _J'g Efﬂ _J'g -
R 3 R, R; FIGURE 13-26

Schematic of a three-surface enclosure and the radiation network associated with it.

The set of equations above simplify further 1f one or more surfaces are
“special” in some way. For example, J, = E,, = o T} for a black or reradiating
surface. Also, Q; = 0 for a reradiating surface. Finally, when the net rate
of radiation heat transter ), is specitied at surface ¢ instead of the temperature,

the term (£,; — J;)/R; should be replaced by the specified Q..



13-38 Consider a 4-m X 4-m X 4-m

cubical furnace

whose floor and ceiling are black and whose side surfaces are
reradiating. The floor and the ceiling of the furnace are main-

tained at temperatures of 550 K and 1100 K, respectively. De-
termine the net rate of radiation heat transfer between the floor

and the ceiling of the furnace.

Analysis We consider the ceiling to be surface 1. the floor to be surface 2 and the side surfaces to be
surface 3. The furnace can be considered to be three-surface enclosure. We assume that steady-state
conditions exist. Sice the side surfaces are reradiating. there 1s no heat transfer through them. and the
entire heat lost by the ceiling must be gained by the floor. The view factor from the ceiling to the floor of
the furnace is £}, =0.2 . Then the rate of heat loss from the ceiling can be determined from

Ep —Ep

(1 1)
+
Rl 3 +R23

where

E, =oT,* =(5.67x107 W/m? K*)(1100K)* =83.015 W/m’

E,, =ol," =(5.67x107° W/m’ K*)(550K)* = 5188 W/m”
and
A =4, =(4m)? =16m?
Ry, = L 1 =0.3125m™
‘41F12 (16m‘)(02)
Ry=Rypy=— =1 _0078125m?
;‘i-lF]_g (16111_J(08)
Substituting,
. 3.015-5 /m? .
O = (83.015-5188) W/m = 747510° W=
1 1 ‘
+

a

103125m™  2(0.078125m™)

a=4m

I;=1100 K
81:1

Reradiating side
surfacess

&
|
— i
Lh
o
ra

747 kW



Radiation Shields and The radiation Effects

. Ao(T} — T : Ey — Ep
QIIZ,nU shield — ] [ QIZ. one shield — | — | — e | —e | —
S+ 81+ 1 + 31 32 l n £
g & Arey A F), Ajes Azes, Azl Aye
Ao(T} — TH

QIZ,nnc shield — 1 1 | |
e & €31 €32

Ao(T} = T3)

QIZ.NshicILIs = | | l | [ l
(—+——l)+(—+ —l)+---+(—+——l)
€ & €31 €32 En1 En2

Q12 N shietds = . =~ 1 1 Qwwsien If the emissivities of all

(N + 1)(5 to - 1) surfaces are equal
When all emissivitoes are equal, 1 Y Shicld @
shield reduces the rate of g L7 i
radiation heat transfer to one-half, “ )| 2 g
9 shields reduce it to one-tenth, —0, >0, 0,—

and 19 shields reduce it to one-
twentieth (or 5 percent) of what it
was when there were no shields.

FIGURE 13-30 I-¢ 1 L=ggi | L=gss 1 [-¢,
The radiation shield placed between g, Fia &34y | 8504 AF,, &),
two parallel plates and the radiation O =M —— O —OAMAW=O— MW —O—MW—O

53]

network associated with i, E,

b2



Conclusions
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