2. BÖLÜM: HAREKET (iLBEFLGE

Temel Karramlar

- Yörünge: Cismin hareketi sirasinda izlediĝi yol.
- Konum (\vec{x}) : Bir cismin sabit kabul edilen bir noktaya yönlü uzakliğidir. Konum vektörünün yönü sabit kabul edilen noktadan cisme doĝrudur.
 kks'de verilen noktalarin konum vektörlerini yazinizve (Her kare 1 birim) vektörleri ciziniz.

$$
A(3 ; 0) \Rightarrow \vec{x}_{A}=3 \hat{i}
$$

$: ?$
$: ? ~$
O.?
:?

- Hareket: Bir cismin sabit kabul edilen bir noktaya göre zamanla konumunu deḡistirmesidir. Üc türde hareket vardir:
1.) Doğrusal Hareket (DDH, DHH ve DYH)
2.) Egrisel Hareket (Egik ve yatay atis, dairesel
3.) Titresim HareKeti

$$
\nRightarrow 1 \text { sayfa \#F }
$$

Yerdegistirme $(\overrightarrow{\Delta x})$: Bir hareketlinin son konumu ile ilk konumu arasindaki vektörel farktir.

$$
\overrightarrow{\Delta x}=\vec{x}_{\text {son }}-\vec{X}_{i c k}
$$

(1) RN2: (Bir boyutta yerdegistirme uygulamasi) Sekilde bir boyutta KKS'deki bir arabanin a.) D'den $F^{\prime} y e$
b.) H^{\prime} den $E^{\prime} y e$
c.) A'dan c'ye
d) A'dan E'ye
e) E'den C'ye f. C^{\prime} den A^{\prime} ya gittigi durumlar icin ayri ayri yerdegistirme vektörlerini, bìyük lügünü ve yönünü bulunuz. (Her kare 0,5 birim.)

a.) $\overrightarrow{\Delta x}=\vec{x}_{s}-\vec{x}_{i}=3 \hat{i}-1 \hat{i}=2 \hat{i} \quad(\Delta x=3-1=+2$ br.) Δx vektôrüu $+x$ yönünde
b.) $\overrightarrow{\Delta x}=\vec{x}_{s}-\vec{x}_{i}=2 \hat{i}-5 \hat{i}=-3 \hat{i} \quad(\Delta x=2-5=-3$ br.) Δx yektoru -x yönūnde.
c.)?
$0 \cdot$
d.)?
'e.)?
f.)?
(1) RN. 3: (iki boyutta yerdegistirme uygulamasi) Bir (1) hareketli a) ($1 ; 2$) Konumundan $(0 ; 3$) konumuna ve b) $(-1 ; 1)$ konumundan $(2 ; 1)$ konumuna gittiğinde yerdegistirme vektörünü̈, büyüklügünü ve yönünū bulunuz. Vektörleri $k k s$ de giziniz.
a) $\overrightarrow{\Delta x}=\vec{x}_{s}-\vec{x}_{i}=3 \hat{j}-(\hat{i}+2 \hat{j})=3 \hat{j}-\hat{i}-2 \hat{j}=-\hat{i}+\hat{j}$
(c)

$$
\Delta x=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{2} b_{r}
$$

b)?

ÖRN. 4: Bir araba genis bir arazide bulunduğu konume dan 3 km . güney yönünde ardindan 5 km doĝu yönün de hareket ettikten sonra tekrar 2 km . güney yönünde ilerlemistir. Sonra batiya yönelerek 4 km daha gitmistir. Tüm bu hareketler sonucunda arabanin yerdegistirme kektörü, büyüklügünū ve güney y'dnü ile yaptíg aqyy bulunuz.
(a)

Yol (d): Bir hareketlinin hareketi sirasinda katettiği mesafedir.
ORN.5: KKS nin orjininden harekete baslayan bir araba önce $3 \mathrm{~m} .+x$ yönünde sonra 4 m . ty you nünde hareketeder. Arabanin aldığı yolu ve yer değistirmesini bulunuz.
(a)

$$
\begin{aligned}
& \overrightarrow{\Delta x}=\overrightarrow{x_{s}}-\overrightarrow{x_{i}}=3 \hat{i}+4 \hat{j}-(0 \hat{i}+\theta \hat{j}) \\
& \overrightarrow{\Delta x}=3 \hat{i}+4 \hat{j} \quad \Delta x=\sqrt{3^{2}+4^{2}}=5, \\
& y o l: d=3+4=7 \mathrm{~m} .
\end{aligned}
$$

Skaler Hiz (sïrot) (s) (Speed): Bir nareketlinin birim zamanda aldiğ yoldur.

$$
s=\frac{d}{t} \mathrm{~m} / \mathrm{s}
$$

(c) Vektörel Hiz (\vec{u}) (velocity): Bir hareketlinin birim zamandaki yerdegistirmesidir.

$$
\vec{v}=\frac{\overrightarrow{\Delta x}}{\Delta t} \quad \text { (ortalama hizdir) }
$$

Ani $H_{1 z}(\vec{v})$: Bir hareketlinin herhangi bir t zamanindaki hizidir.

$$
\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\overrightarrow{\Delta x}}{\Delta t}=\frac{d \vec{x}}{d t}
$$

(c) Jer dégistirmenin zamana göre türevi ani hızdir

$$
\neq 4 \text { sayfa } \#
$$

(1)RN.6: E.örnekte arabanin hareketi boyunca - geaen zaman 35 sn ise arabanin sürat $x e$, hiz vektörüni bulunuz.

$$
\begin{aligned}
& s=\frac{d}{t}=\frac{7}{35}=0,2 \mathrm{~m} / \mathrm{s} . \\
& \vec{v}=\frac{\overrightarrow{\Delta x}}{\Delta t}=\frac{3 \hat{i}+4 \hat{j}}{35} \mathrm{~m} / \mathrm{s} \quad v=\frac{5}{35}=\frac{1}{7} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

ivme (\vec{a}) : Bir hareketlinin birim hizindaki değisindir.

$$
\vec{a}=\frac{\overrightarrow{\Delta v}}{\Delta t}=\frac{\overrightarrow{y_{s}}-\vec{y}_{i}}{\Delta t}\left(\frac{m}{s^{2}}\right)(\text { ortalama ivmedt })
$$

Ani iVme (\vec{a}): Bir hareketlinin herhang; birtanin daki ivmesidir.

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{\Delta t}
$$

Hizin zamana göre türevi ans ivmey; verir.
ÖRN7: x ekseninde hareket eden bir hareketh

- hizinı 10sn. iGinde "düzginn olarak" $2 \mathrm{~m} / \mathrm{s}$ den $10 \mathrm{~m} / \mathrm{s}^{\prime}$ ye Gikariyor. Bu zaman zarfinda hareKetlinin ivmesi nedir?

$$
\begin{aligned}
& a=\frac{\Delta v}{\Delta t}=\frac{v_{s}-v_{i}}{\Delta t}=\frac{v-v_{0}}{t-t_{0}}=\frac{10-2}{10-0}=\frac{8}{10} \\
& a=0,8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\neq 5 . \text { sayfa } \#
$$

ÖRN.7.5: Bir paraacik iain konum vektörü zamaC. nin fonksiyonu olarak $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ olarak verilmektedir. Burada $x(t)=a t+b$ ve $y(t)=c t^{2}+d$ dirve $a=3 \mathrm{~m} / \mathrm{s}, b=4 \mathrm{~m}, c=\frac{2}{8} \mathrm{~m} / \mathrm{s}^{2}$ ve $d=1 \mathrm{~m}$. dir. Bu verilere gyre a) $t=2$.saniyede paraaciğ́n anlik hız vektörünü, bu vektör ün büyüklük ve yönüñ̄ bulunuz. b) $t=2$. saniyede paraaciğin ivmesini bulunuz.

DOGRRUSAL HAREKET TÜRLERI (Bir boyutta)
(1) Dシ̈zGシ̈N DOGRUSAL HAREKET (DDH):

Esit zaman araliklarinda esit yerdeğistirmelerin alındiğl, hızı sabit, ivmenin sifir olduğu bir hareketfir. (Bir boyutta pek cok durumda yerdegistirme Ve you degerleri birbirine esit olabilir.)

$$
\begin{aligned}
& \vec{u}=\frac{\vec{x}}{\Delta t}=\frac{\vec{x}_{s}-\vec{x}_{i}}{t_{s}-t_{i}} \quad v=\frac{\Delta x}{\Delta t}=\frac{x_{s}-x_{i}}{t_{s}-t_{i}} \\
& x_{s}=x \quad t_{s}=t \quad \Rightarrow v=\frac{x}{t} \quad x=v t \\
& x_{i}=0 \quad t_{i}=0 \quad
\end{aligned}
$$

1 ir
(1) RN. 8: Bir oyuncak arabanin konumunun $2 a m a n$ la değssimi tabloda verilmistic.a) tabloda arabanin 1., 2., 3., 4.sn. Sonurda hizini hesaplayip yaziniz.

t	x	$v=x / t(\mathrm{~m} / \mathrm{s})$
0	0	0
1.	2	2
2.	4	2
3.	6	2
4	8	2

b) Arabanin konum-zaman $(x-t)$ graf'gini ciziniz.
c.) Arabanin hiz-zaman (u-t) grafigini Giziniz.
d.) Grafiklerin özelliklerini belirti niz.

$\tan \theta=\frac{x}{t}=v$
Grafigin altinda kalan

$$
A L A N=V \cdot \Delta t=\Delta x
$$

Genel Olarak $+x$ ve $-x$ yönünde DDH Grafikleri

- (1)RN9: x-t grafiğ sekildeki gibi verilen bir hare Ketlinin a) 5 sn . Sonunda aldig, toplam yolu ve yer degistirmesini hesaplayiniz. b) Her aralikta hareketin yö nünü belirleyiniz. C) HarekeHinin vat ve a-t grafibleri ni ciziniz.

0

 \# Z Sayfa \#
(2) DÏZGİN HIZLANAN HAREKET (DHH)
ivmenin sabit oldū̄u, hızın esit zaman araliklarind esit arttiğı (düzgün arthăı), konumun zamanla parabolik olarak deĝistiğ bir harekettir.

$$
a=\frac{\Delta v}{\Delta t}=\frac{v_{s}-v_{i}}{t_{s}-t_{i}} \quad \begin{array}{ll}
v_{s}=v & t s=t \\
v_{i}=v_{0} & t_{i}=0
\end{array} \Rightarrow a=\frac{v-v_{0}}{t}
$$

(1) $\rightarrow V=v_{0} \mp a t$
(2) $x=v_{0} t \mp \frac{1}{2} a t^{2}$
(3) $v^{2}=v_{0}^{2} \mp 2 a x$

$$
\begin{gathered}
x_{s}=x ; x_{i}=0 \\
\Rightarrow \Delta x=x_{s}-x_{i}=x-0=x
\end{gathered}
$$

\Rightarrow Hareket $+x$ yönündeyse ivme + Hareket -x yönündeyse ivme -

ORN 10: Bir hareketli 10 sn 'de hizinı $10 \mathrm{~m} / \mathrm{s}$ den $20 \mathrm{~m} / \mathrm{s}$ ' ye düzgün olarak artirmaktadir. Hareket linin ivmesini ve 10 sn de aldigi yolu bulunuz.

$$
\begin{array}{ll}
a=\frac{\Delta v}{\Delta t} \text { veya } v=v_{0}+a t \\
& 20=10+a \cdot 10 \\
& 10 a=10 \Rightarrow a=1 \mathrm{~m} / \mathrm{s}^{2} \\
x=v_{0} t+\frac{1}{2} a t^{2}=10 \cdot 10+\frac{1}{2} \cdot 1 \cdot 10^{2}=100+50 \\
x=150 \mathrm{~m} . &
\end{array}
$$

ÖRN 11: $10 \mathrm{~m} / \mathrm{s}$ ik hizla harekete baslayan bir araba $2 \mathrm{~m} / \mathrm{s}^{2}$ lik ivmeyle hizini $30 \mathrm{~m} / \mathrm{s}^{\prime}$ ye Gikarmistin Araba bu hiz artisi sirasinda nekadar yol al mistr.

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a x \\
& 30^{2}=10^{2}+2 \cdot 2 \cdot x \\
& 900=100+4 x \\
& 800=4 x \Rightarrow x=200 \mathrm{~m} .
\end{aligned}
$$

ÖRN:12: DHH yapan bir hareketlinin 0.,1., 2.. 3. Ve 4. snniyedeki hizlari tabloda verilmistir. Her 2aman diliminde hareketlinin ivmesini ve konumu. nu hesaplayip tabloya yaziniz. Horeketlinin v-t, a_t ve x-t grafiklerini cizip, grafiklerin özelLiklerini belirtiniz.

$$
\begin{aligned}
& x_{1}=v_{0} t+\frac{1}{2} a t^{2}=0+\frac{1}{2} \cdot 2 \cdot 1^{2} \\
& x_{1}=1 m . \quad v_{0}=0 \Rightarrow v_{0} t=0 \\
& x_{2}=0+\frac{1}{2} \cdot 2 \cdot 2^{2}=4 \mathrm{~m}, \\
& x_{3}=0+\frac{1}{2} \cdot 2 \cdot 3^{2}=9 \mathrm{~m} \\
& x_{4}=0+\frac{1}{2} \cdot 2 \cdot 4^{2}=16 \mathrm{~m}
\end{aligned}
$$

$a=e \operatorname{sim}=\tan \theta=\frac{\Delta v}{\Delta t} \quad A L A N=a \cdot \Delta t=\Delta v$
Genel Olarak $+x$ ve $-x$ yönünde DHH Grafikleri

(3) DüzGÜN YAVASLAYAN HAREKET (DYH)

Hizin esit zaman araliklarinda esit miktarda azal diĝı (düzgün azaldiğı), îmmenin sabit olduğu ve ko numun 2 amanla parabolik olarak deĝistiĝ bir ha rekettir.

Hareket $+x$ yönündeyse ivme - olur.
Hareket - x yönündeyse ivme + olur.
(1) RN 13: Bir hareketli frene basarak 10 sóle hi$21 \mathrm{ni} 20 \mathrm{~m} / \mathrm{s}^{\prime}$ den $10 \mathrm{~m} / \mathrm{s}$ 'ye dïsirü̆yor dizgün olarak. Hareketlinin ivmesini ve to'sn'de aldigı yolu bulunuz.

$$
\begin{aligned}
& a=\frac{\Delta v}{\Delta t}=\frac{v-v_{0}}{\Delta t}=\frac{10-20}{10}=\frac{-10}{10}=-1 \mathrm{~m} / \mathrm{s}^{2} \\
& x=v_{0} t+\frac{1}{2} a t^{2}=10 \cdot 10+\frac{1}{2}(-1) \cdot 10^{2}=100-50 \\
& x=50 \mathrm{~m} .
\end{aligned}
$$

- ÖRN14: H121 $40 \mathrm{~m} / \mathrm{s}$ olan bir hareketli $-2 \mathrm{~m} / \mathrm{s}^{2}$ lik ivme ile hizini $20 \mathrm{~m} / \mathrm{sn}^{\prime}$ ye dïsírüyor. Hareketli nin bu hiz düsüsi sirasinda aldigi yolu bulunuz.

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a x \\
& 20^{2}=40^{2}+2 \cdot(-2) \cdot x \\
& 400=1600-4 x \\
& 4 x=1600-400 \\
& 4 x=1200 \\
& x=300 m .
\end{aligned}
$$

$$
\text { \# 10. sayfa } \#
$$

ÖRN 15: DYH yapan bir hareketlinin 0.,1., 2., 3. Ve 4. saniyedeki hizlari tabloda verilmistir. Her zaman diliminde hareketlinin ivmesini ve konumunu heSaplayip tabloya yaziniz. Hareketlinin $v-t$, at ve x-t grafiklerini gizip grafik özelliklerini belir_ tiniz.

$$
\begin{aligned}
& x_{1}=v_{0} t+\frac{1}{2} a t^{2} \\
& x_{1}=8.1+\frac{1}{2} \cdot(-2) \cdot 1^{2} \\
& x_{1}=8-1=7 \mathrm{~m} . \\
& x_{2}=8.2-\frac{1}{2} \cdot 2 \cdot 2^{2}=12 \mathrm{~m} \\
& x_{3}=8.3-\frac{1}{2} \cdot 2.3^{2}=15 \mathrm{~m} \\
& x_{4}=8.4-\frac{1}{2} \cdot 2.4^{2}=16 \mathrm{~m}
\end{aligned}
$$

$$
E \operatorname{gim}=\tan \theta=\frac{\Delta v}{\Delta t}=a
$$

$$
A L A N=a \cdot \Delta t=\Delta v
$$

Genel Olarak $+x$ ve- x yönünde DYH grafikleri

* 11. sayfa \#

ÖRN 16: Bir hareketlinin u-t grafiĝ̀ sekildeki gibidir. a) Her aralikta hareketin tïrü ve yönünü bulunuz. b) Horeketlinin a-t grafigini cizinit c) Hareketlinis X-t grafigini ciziniz.d) 60 soniye sonunda Hareketli nin aldị̂ to plam yolu ve yerdegirtirmesini bulunuz.

(4) SERBEST DÜSME HAREKETI

Hava direncinin olmadiği bir ortanda m kütleli cisim h yüksekliğinden birakıldiğnda cismin yaptiğı hareketfir. cisme etki eden ivme yercekimi ivmesi olup $g=9.8 \mathrm{~m} / \mathrm{s}^{2} \cong 10 \mathrm{~m} / \mathrm{s}^{2}$ dir. Cisim $-y$ yönunde hareket eder.

$$
\begin{aligned}
& v=g t \\
& h=\frac{1}{2} g t^{2} \\
& v^{2}=2 g h
\end{aligned}
$$

(c)

- y yönünde ilk hizsiz DHH dir.

(5) YUKARDAN ASAGIYA DÜSEY ATIS (YADA) HAREKEII Serbest düsme hareketinde ilk hiz varsa YADA horeket dir.

$$
\begin{aligned}
& v=v_{0}+g t \\
& h=v_{0} t+\frac{1}{2} g t^{2} \\
& v^{2}=v_{0}^{2}+2 g h
\end{aligned}
$$

y yönünde ilk hızlı DHH'dir.
(e)

$$
\# 13 . \text { sayfa } \neq
$$

(6) ASAG̈IDAN YUKARIYA DÜSEY ATIS (AYDA) HAREKETI

Hareketin iki bileseni vardir: I. bilesen $+y$ yönünde DYH'dir.II. bilesen -y yönünde ilk hizsiz DHH CSerbesi düsme)'dir.

I. Bilesen: $V=v_{0}-g^{t}$

$$
\begin{aligned}
& h=v_{0} t-\frac{1}{2} g t^{2} \\
& v^{2}=v_{0}^{2}-2 g h \Rightarrow v=0
\end{aligned}
$$

oldugundan $v_{0}^{2}=2 g h_{\text {max }}$

$$
h_{\text {max }}=\frac{w_{0}^{2}}{2 g}
$$

II. Bilesen: $v=g t$

$$
\begin{aligned}
& h=\frac{1}{2} g t^{2} \\
& v^{2}=2 g h_{\text {max }}
\end{aligned}
$$

AYDA hareketinin konum-zaman, hiz-zaman ve ivme-zaman grafikleri:

$$
\begin{aligned}
& t_{a}=t_{i}=t \\
& t_{u}=2 t
\end{aligned}
$$

ÖRN:17: Hara direncinin inmal edildigi bir ortanda $0.5 \mathrm{kgr} . l \mathrm{k}$ bir cisim 2 sn'de birakildiğ konumdan yere düser. Cismin birakildiğ konumun yerden yüb sekligini ve cismin yere carpma hizin bulunuz.

$$
\begin{aligned}
& h=\frac{1}{2} g t^{2}=\frac{1}{2} \cdot 10 \cdot 2^{2}=20 \mathrm{~m} . \\
& v=g^{+}=10.2=20 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

ÖRN18; 10 m yükseklikten düsey olarak yere Sm / s lik hizla firlatian cismin yere aarpma hizin bulunuz. (Hava direnci inmal)

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 g h=5^{2}+2 \cdot 10 \cdot 10=225 \\
& v=15 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

ORN19: 40 mls hizla, asagidan yukarlya düsey olarak atilan bir cismin a.) Gıkobileceğ max: yük_ sekliği b) Havada kalma süresini c) $t_{1}=2$.sn ve $t_{2}=$ 6. sn. deki hizin d) $t_{1}=3$. sn. ve $t_{2}=5$. sn.de yerden yüksek ligini bulunut.
a.) $h_{m}=80 \mathrm{~m}$
b.) $t_{u}=8$
c.) $v(2)=20 \mathrm{~m} / \mathrm{s} . v(6)=20 \mathrm{~m} / \mathrm{s}$.
d.) $h(3)=75 \mathrm{~m} . ; h(5)=.75 \mathrm{~m}$.

ƠRN 20: Bir balon düsey olarak $10 \mathrm{~m} / \mathrm{s}$ nızla yükse liyor. Yerden 60 m . yükseklikteyken bir kum torbas, iainden birakiliyor. a) Kum torbasinin birakildiktan $1 \mathrm{~s}, 1,5 \mathrm{~s}$ ve 2 s. Sonraki hizini ve konumunu bulunuz. b.) Kum torbasi kac sn. Sonra yere aarpar?
c.) Kum torbasinin yere Garpma hizini ve büyüklüğ̈nü bulunuz.
a.) $v(1)=0, h(1)=80 \mathrm{~m} ; v(1,5)=5 \mathrm{~m} / \mathrm{s}$

EḠRISEL YÖRÜNGELi HAREKETLER (iki boyutta)
(1. Yatay Atis Hareketi:

Hareketin 1.bileseni yatayda $D D H^{\prime}$ dir.

$$
X_{\text {menzil }}=v_{0 x} \cdot t
$$

Hareketin 2 bileseni düseyde SD hareketidir.

$$
\begin{aligned}
& V_{y}^{2}=2 g h \\
& V_{y}=g t \\
& h=\frac{1}{z} g t^{2}
\end{aligned}
$$

2. Eğik Atıs Hareketi

Horeketin 1. bileseni yatay da DDH'dir.

$$
x_{\text {menzil }}=v_{0 x} \text {. tuauy }
$$

Harcketin 2.bileseni dïseyde AXDA hareketidir.
-
Gikarken

$$
V_{y}=v_{0 y}-g t_{u}
$$

$$
0=v_{0 y}-g+u .
$$

$$
V_{y}^{2}=V_{0 y}^{2}-2 g h_{M}
$$

$$
0=v_{o y}^{2}-2 g h_{m}
$$

$$
h_{M}=v_{0 y} t_{u}-\frac{1}{2} g t_{4}^{2}
$$

inerken

$$
\begin{aligned}
& v_{y}=v_{0 y}+g t_{i} \\
& v_{y}=0+g t_{i} \\
& v_{y}^{2}=v_{0 y}^{2}-2 g h_{m} \\
& v_{y}^{2}=0-2 g h_{m} \\
& h_{m}=\frac{1}{2} g t_{i}
\end{aligned}
$$

$$
t_{i}=t_{4} \quad t_{u} \quad a_{4}=2 t_{i}=2 t_{u}
$$

3. Düzgün Dairesel Hareket:

m küfleli bir cisim r yaricap. lı dairesel bir yörüngede, büyüle lüğ̈̈ sabit olan bir v hizıyla hareket ediyorsa bu cismin hareketi düzgün dairesel hare Kettir. Cismin hizinin büyüklü gü yourüngenin ner noktasinda

- Sabit olmasina Karsin younū her noktada degratigi iain cismin merkezcil (radyal) bir iumesi vardir.
(3) RN 21: h yüksekliginden $20 \mathrm{~m} / \mathrm{s}$ hizla yatay olarak atilan bir cismin yere carpma hizinin düsey bileseni $15 \mathrm{~m} / \mathrm{s}$ dir. Cismin yere dïsme süresini, f atilma aninda yerden yüksekliğini ve menzil uzak liğinı bulunuz.

ÖRN 22: $50 \mathrm{~m} / \mathrm{s}^{\prime}$ lik hizla ve yatayla 37° lik aal ile firlatilan bir cismin a) aikabilecegi maximum yüksekligi b) Havada Kalma sïresini ed menzil uzakliğnı d) 2 sn sonra yerden yübsebliğ́ni ve hizini bulunuz.
(1)RN23: Egik atis hareketinde

$$
\begin{aligned}
& h=\frac{v_{0}^{2} \cdot \sin ^{2} \theta}{2 g} \\
& x_{\text {manii) }}=\frac{v_{0}^{2} \sin 2 \theta}{g}
\end{aligned}
$$

olduĝunu ispatlayiniz. vo $=50 \mathrm{~m} / \mathrm{sn}$ ve
a) $\theta=15^{\circ} \quad\left(2 \theta=30^{\circ}\right)$
b) $\theta=30^{\circ} \quad\left(2 \theta=60^{\circ}\right)$
c) $\theta=45^{\circ} \quad\left(2 \theta=90^{\circ}\right)$
d) $\theta=60^{\circ} \quad\left(2 \theta=120^{\circ}\right)$
a) $\theta=75^{\circ} \quad\left(2 \theta=130^{\circ}\right)$
olduğunda h ve xmenzil uzakliklarini hesaplay'p cizim ile gösteriniz.

BAḠIL HAREKET
Hareketli bir koordinat sistemine göre cisimlerin hareketine bağl hareket, hizlarina da bag̈ll hiz denir.

$$
\vec{v}_{\text {bag̈ll }}=\vec{v}_{\text {gobzlenen }}-\vec{v}_{\text {gozlemel }}
$$

()RN 24: Tek boyutta bağı! hız uygulamaları $\left(V_{b}=v-u\right)$
a)

$$
\begin{aligned}
v_{b}=v_{-} u=5-0= & 5 \mathrm{~m} / \mathrm{s} \\
& (+x \text { yominde) }
\end{aligned}
$$

$$
\square 0 \rightarrow v=5 \mathrm{~m} / \mathrm{s}
$$

b)

$$
\prod_{0}^{\prod_{0} u=0 \quad v_{b}=v-u=} \begin{aligned}
& 5-0=-5 \mathrm{~m} / \mathrm{s} \\
& (-x \text { yonunde })
\end{aligned}
$$

C)

$$
\begin{aligned}
& \prod_{0-0}^{\prod_{0}} \rightarrow u=5 \mathrm{ma} / \mathrm{s} \\
& v_{b}=v_{-} u=10-5=5 \mathrm{~m} / \mathrm{s} \\
& \text { (}+x \text { y }=\text { orindey) } \\
& \int_{-\infty \rightarrow a} \rightarrow v=10 \mathrm{mls}
\end{aligned}
$$

d)

$$
\begin{aligned}
v_{b}= & v-u=5-10 \\
v_{b}= & -5 \mathrm{~m} / \mathrm{s} \\
& (-x y \sin \operatorname{con} \alpha)
\end{aligned}
$$

$$
\# 2 \text { a sayfa \# }
$$

e) $\left[\begin{array}{l}4 \\ 4 \\ 4\end{array}\right] \rightarrow u=5 \mathrm{~m} / \mathrm{s}$

$$
\left.V_{1}=10 w_{1} \leftarrow\right]_{0-0}
$$

$$
\begin{aligned}
& v_{b}=v-u=-10-5 \\
& v_{b}=-15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

f) ${\underset{0}{4}}_{\dot{\sim}}^{0} \rightarrow u=10 \mathrm{~m} / \mathrm{s}$

$$
v_{b}=v-4=-5-10=-15 \mathrm{~m} / \mathrm{c} .
$$

$$
V=S_{\mu} / \mathrm{L} \longmapsto \square \square \square
$$

ÖRN 25: iki boyutta bağı hiz uygulamalari Sekilde A, B ve C hareketlileri gösterilen yönler de ve hizlarda hareket etmektedir. a) B'deki göz lemciye göre A ve C^{\prime} nin hizlarinin büyüklïk ve yö nünü b) A'daki gözlemciye göre B ve C'nin hizları nin büyज̈klük ve yönünū bulunuz.

$$
\begin{aligned}
& \text { b.) } \begin{array}{c}
v_{a b}=v-u=v_{b}-v_{a}=-15-10 \\
v_{a b}=-25 \mathrm{~m} / \mathrm{s} \quad\left(-x_{\text {yonindt }}\right. \\
\vec{v}_{a c}=\vec{v}-\vec{u}=\vec{v}_{c}-\vec{v}_{a} \\
\vec{v}_{a c}=20 \hat{j}-10 \hat{i} \\
v_{a c}=\sqrt{20^{2}+\left(-10^{2}\right)}=\sqrt{400+100} \\
v_{a c}=10 \sqrt{5} \mathrm{~m} / \mathrm{s} \vec{v}_{c}=-\uparrow \vec{v}_{c} \\
\quad-\vec{v}_{a}
\end{array}
\end{aligned}
$$

a) $v_{b a}=v_{-} u=10-(-15)=25 \mathrm{~ms}$

$$
\vec{v}_{b c} \vec{v}-\vec{u}=\vec{v}_{c}-\vec{v}_{b}
$$

$$
\hat{\imath}_{c}^{c}
$$

$\stackrel{\leftarrow}{G_{b}}$

$$
\vec{v}_{b c}=20 \hat{j}-(-15 \hat{i})
$$

$$
\vec{v}_{b c}=15 \hat{i}+20 \hat{j}
$$

$$
v_{b c}=\sqrt{15^{2}+20^{2}}=25 \mathrm{mls}
$$

$$
\tan \theta=\frac{20}{15} \cong 1,3
$$

