ENM 202 OPERATIONS RESEARCH (I)

ARTIFICIAL STARTING SOLUTION

ARTIFICIAL STARTING SOLUTION

- The simplex algorithm requires a starting bfs.
- In the problems we have solved so far, we found a starting bfs by using the <u>slack variables</u> as our basic variables.
- If an LP has any ≥ or = constraints, however, a starting bfs may not be readily apparent.
- When a bfs is not readily apparent, The Big M Method or The Two-phase Simplex method may be used to solve the problem.

We illustrate this point by the following example:

Minimize $Z = 4x_1 + x_2$ subject to $3x_1 + x_2 = 3$

 $3x_{1} + x_{2} = 3 (1)$ $4x_{1} + 3x_{2} \ge 6 (2)$ $x_{1} + 2x_{2} \le 4 (3)$ $x_{1}, x_{2} \ge 0$

Standard Form:

Minimize $Z = 4x_1 + x_2$ subject to

$$3x_{1} + x_{2} = 3 (1)$$

$$4x_{1} + 3x_{2} - x_{3} = 6 (2)$$

$$x_{1} + 2x_{2} + x_{4} = 4 (3)$$

$$x_{1}, x_{2} \ge 0$$

- NOTE THAT:
- Thus, constraints of the type ≥ cannot physically represent a resource restriction, rather, they imply that the solution must meet certain requirements, such as satisfying minimum demand or minimum specifications.

THE BIG M METHOD (The Method of Penalty)

• It is a version of Simplex Algorithm

• It first finds a bfs by adding "artificial" variables to the problem.

THE BIG M METHOD (The Method of Penalty)

- The idea of using artificial variables is quite simple. It calls for adding a nonnegative variable to the LHS of each equation that has no obvious starting basic variables. The added variable will play the same role as that of a slack variable, in providing a starting basic variable.
- However, since such artificial variables have no physical meaning, the procedure will be valid only if we force these variables to be zero when the optimum is reached.

THE BIG M METHOD (The Method of Penalty)

- Given M, a sufficiently large positive value (Mathematically M→∞) the objective coefficient of an artificial variable represent an appropriate penalty if artificial objective coefficient is equal to –M in max Problems, and +M in min Problems.
- In other words, we penalize the artificial varibles in objective function.
- Using this penalty, the optimization process will automatically force the artificials to zero.

Big M Method, Example

- LP: LP in Standard Form:
- Min z=4x1+x2
- St
- 3x1+x2=3
- 4x1+3x2 ≥6
- $x1+2x2 \le 4$
- x1,x2 ≥ 0

- Min z=4x1+x2+0x3+0x4
- St
- 3x1+x2=3
- 4x1+3x2 -x3=6
- x1+2x2+x4=4
- x1,x2, x3, x4 ≥ 0

Big M Method, Example

• LP in Standard Form: • LP in Standard Form with Artificials:

Min z=4x1+x2+0x3+0x4Minz=4x1+x2+0x3+0x4+MR1+MR2StSt3x1+x2=33x1+x2+R1=34x1+3x2-x3=64x1+3x2-x3+R2=6x1+2x2+x4=4x1+2x2+x4=4 $x1,x2 \ge 0$ $x1,x2, x3, x4, R1, R2 \ge 0$

Big M Method, Example

Iteration	Basic	x1	x2	х3	R1	R2	x4	RHS
İnconsistent	Z	-4	-1	0	-M	-M	0	0
	R1	3	1	0	1	0	0	3
	R2	4	3	-1	0	1	0	6
	x4	1	2	0	0	0	1	4
(0)	z	-4+7M	-1+4M	-M	0	0	0	9M
	R1	3	1	0	1	0	0	3
	R2	4	3	-1	0	1	0	6
	x4	1	2	0	0	0	1	4

Iteration	Basic	x1	x2	x3	R1	R2	x4	RHS
(0)	Z	-4+7M	-1+4M	-M	0	0	0	9M
	R1	3	1	0	1	0	0	3
X1 enters, R1 leaves	R2	4	3	-1	0	1	0	6
	x4	1	2	0	0	0	1	4
(1)	Z	0	(1+5M)/3	-M	(4-7M)/3	0	0	4+2M
	x1	1	1/3	0	1/3	0	0	1
x2 enters, R2 leaves	R2	0	5/3	-1	-4/3	1	0	2
	x4	0	5/3	0	-1/3	0	1	3
(2)	Z	0	0	1/5	(8/5)-M	-(1/5)-M	0	18/5
	x1	1	0	1/5	3/5	-1/5	0	3/5
	x2	0	1	-3/5	-4/5	3/5	0	6/5
x3 enters, x4 leaves	x4	0	0	1	1	-1	1	1
(3)	z	0	0	0	(7/5)-M	-M	-1/5	17/5
optimum	x1	1	0	0	2/5	0	-1/5	2/5
	x2	0	1	0	-1/5	0	3/5	9/5
Big M	x3	0	0	1	1	-1	1	1

Drawback of The Big M Method

The possible computational error that could result from assigning a very large value to the constant M

Optimal Solution and Other Cases

- 1) If all the artificial variables are equal to zero in the optimal solution, then we have found the optimal solution
- 2) If any artificial variables are positive in the optimal solution, then the original problem is infeasible.
- 3) If the final tableau indicate that the LP is unbounded and all artificial variables in this tableau are equal to zero, then the original LP is unbounded.

TWO PHASE METHOD

 Because of the computational drawbacks of the Big M Method, the Two Phase Method was suggested.

• The Two Phase Simplex Method is an alternative to the Big M Method

TWO PHASE METHOD

Phase 1

- 1) Put the LP model in standard form
- 2) Add the necessary artificial variables
- 3) Find a bfs of the resulting equations that minimizes the sum of the artificial variables.
- 4) If the minimum value of the sum is positive the LP problem has no feasible solution, which ends the process,
- Otherwise, i.e, (the minimum value of the sum is zero and no artificials are in the optimal phase 1 basis) go to phase 2
- Phase 2
- 1)Use the bfs from phase 1 as a starting bfs for the original problem and solve it.

Example

• LP:

- Min z=4x1+x2
- St
- 3x1+x2=3
- $4x1+3x2 \ge 6$
- $x1+2x2 \le 4$
- x1,x2 ≥ 0

- LP in standard form with artificials:
- Min z=4x1+x2
- St
- 3x1+x2+R1=3
- 4x1+3x2 x3+R2 = 6
- x1+2x2 + x4 = 4
- $x1, x2, x3, x4, R1, R2 \ge 0$

- LP in standard form with artificials:
- Min z=4x1+x2
- St
- 3x1+x2+R1=3
- 4x1+3x2-x3+R2=6
- x1+2x2 + x4 = 4
- $x1, x2, x3, x4, R1, R2 \ge 0$

LP for phase 1

- Min r=R1+R2
- St
- 3x1+x2+R1=3
- 4x1+3x2-x3+R2=6
- x1+2x2 + x4 = 4
- $x1, x2, x3, x4, R1, R2 \ge 0$
- r in equation form
- r-R1-R2=0

Iteration	Basic	x1	x2	x3	R1	R2	x4	RHS
	r	0	0	0	-1	-1	0	0
inconsistent	R1	3	1	0	1	0	0	3
	R2	4	3	-1	0	1	0	6
	x4	1	2	0	0	0	1	4
(0)	r	7	4	-1	0	0	0	9
X1 enters R1 leaves	R1	3	1	0	1	0	0	3
	R2	4	3	-1	0	1	0	6
	x4	1	2	0	0	0	1	4
(1)	r	0	5/3	-1	-7/3	0	0	2
	x1	1	1/3	0	1/3	0	0	1
X2 enters R2 leaves	R2	0	5/3	-1	-4/3	1	0	2
	x4	0	5/3	0	-1/3	0	1	3
(2)	r	0	0	0	-1	-1	0	0
optimum	x1	1	0	1/5	3/5	-1/5	0	3/5
	x2	0	1	-3/5	4/5	3/5	0	6/5
Phase 1	x4	0	0	1	1	-1	1	1

- We found a bfs.
- We can start to solve our original problem
- The original problem is written as
- Min z = 4x1+x2
- St
- x1+(1/5)x3=(3/5)
- x2-(3/5)x3=(6/5)
- x3+x4=1
- x1,x2,x3,x4≥0
- z in equation form
- z-4x1-x2=0

Iteration	Basic	x1	x2	x3	x4	RHS
inconsistent	z	-4	-1	0	0	0
	x1	1	0	1/5	0	3/5
	x2	0	1	-3/5	0	6/5
	x4	0	0	1	1	1
(0)	z	0	0	1/5	0	18/5
	x1	1	0	1/5	0	3/5
	x2	0	1	-3/5	0	6/5
x3 enters, x4 leaves	x4	0	0	1	1	1
(1)	z	0	0	0	-1/5	17/5
Optimum	x1	1	0	0	-1/5	2/5
	x2	0	1	0	3/5	9/5
Phase 2	x3	0	0	1	1	1