ENM 202 OPERATIONS RESEARCH (I) OR (I) 5

LECTURE NOTES SPECIAL CASES in the SIMPLEX METHOD APPLICATIONS

SPECIAL CASES in the SIMPLEX METHOD APPLICATIONS

1)DEGENERACY	2)ALTERNATIVE	3)UNBOUNDED	4)INFEASIBLE
	OPTIMA	SOLUTION	SOLUTION
 1)An LP is degenerate if it has at least one bfs in which a BV is equal to zero 2) A degenerate optimal solution occurs when the model has at least one 	 When the objective	 In some LPs the values of	 LP with inconsistent
	function is parallel to a	variables may be increased	constraints has no feasible
	binding constraint,	indefinetely without violating	solutions This situation never occur
	alternative optimal solution	any of the constraints,	if all the constraints are of
	case occurs. In the simplex tableau	meaning that the solution	the type ≤ (assumming
	of the final iteration, if the	space is unbounded. As a result, the objective	nonnegative RHSs) since
3) Degeneracy can occur temporarily or permanently.	coefficient of a NBV in z-	value may increase (max.	the slack variables always
	row is equal to zero then	case) or decrease (min. case)	provide a solution.
	this indicates that	indefinately. In this case both	3)For other type of
	alternative optimal solution	the solution space and the	constraints (=, \geq) we use
	exists.	optimal objective value are	artificial variables. If the
When degeneracy occurs permanently, the objective function value will never improve and the procedure will repeat a sequence of	eneracy occurs tly, the objective alue will never and the procedure a sequence of we call this as circling. eneracy occurs y, the simplex	The general rule for recognizing unboundedness a) If at any iteration, all the	model has one artificial variable with a positive value in the optimum iteration then the model has no solution
iterations.we call this as cycling or circling. <u>When degeneracy occurs</u> temporarily, the simplex		constraint coefficients of any NBV are zero or negative, then the solution space is unbounded in that direction.	and infeasible solution case occur
iterations must always be continued until the last iteration satisfies the optimality condition		b) In addition, If the objective coefficient of that variable is negative in max problem, or positive in min problem then the objective value is also unbounded.	

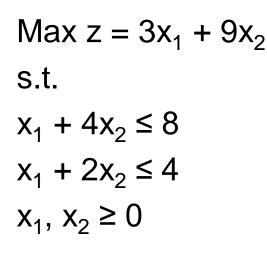
1) DEGENERACY

- 1)An LP is degenerate if it has at least one bfs in which a BV is equal to zero
- 2) A degenerate optimal solution occurs when the model has at least one redundant constraint
- But there are no reliable techniques for identifying the redundant constraints directly from the simplex tableau.
- Example
- (Degenerate Optimal Solution- degeneracy occurs temporarily))
- LP: Max z= 3x1+9x2LP in Standard Form: Max z= 3x1+9x2• Stst• $x1+4x2 \le 8$ x1+4x2+x3=8• $x1+2x2 \le 4$ x1+2x2+x4=4• $x1, x2 \ge 0$ $x1, x2, x3, x4 \ge 0$

Degenerate Optimal Solution

Iteration	Basic	x1	x2	x3	x4	RHS	MRT
(0)	z	-3	-9	0	0	0	
x2 enters x3 leaves	x3	1	4	1	0	8	(8/4)= 2 *
	x4	1	2	0	1	4	(4/2)= 2 *
(1)	Z	-3/4	0	9/4	0	18	
	x2	1/4	1	1/4	0	2	2/(1/4)=8
x1 enters x4 leaves	x4	1/2	0	-1/2	1	0	0/(1/2)=0*
(2)	Z	0	0	3/2	3/2	18	
optimum	x2	0	1	1/2	-1/2	2	
	x1	1	0	-1	2	0	

Grafical Representation of Degenerate Optimal Solution



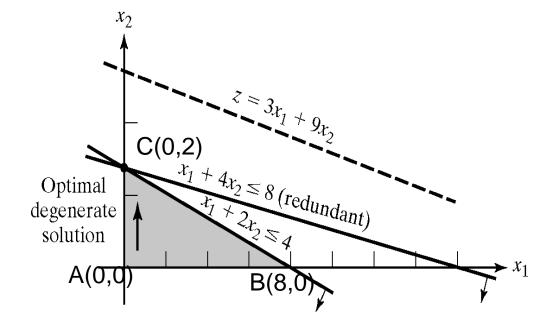


Figure 3.7 LP degeneracy in Example 3.5-1.

CYCLING (CIRCLING)

- Example
- (Taha OR Book 7th ed., Set 3.5A, Problem 4, pp 106,)
- LP:
- Max z = (3/4)x1-20x2+(1/2)x3-6x4
- St
- (1/4)x1-8x2-x3+9x4 ≤0
- $(1/2)x1-12x2-(1/3)x3+3x4 \le 0$
- x3≤ 1
- x1,x2,x3,x4 ≥0
- You will notice that the starting all-slack bfs at iteration 1 will appear identically in iteration 7.

2)ALTERNATIVE OPTIMA INFINITY of SOLUTIONS

- Example
- LP: Max z= 2x1+4x2
- St
- $x1+2x2 \le 5$
- $x1+x2 \le 4$
- x1, x2 ≥ 0

LP in Standard Form: Max z= 2x1+4x2st x1+2x2 + x3= 5 x1+x2 + x4=4 $x1, x2, x3, x4 \ge 0$

2) ALTERNATIVE OPTIMA INFINITY of SOLUTIONS

Iteration	Basic	x1	x2	x3	x4	RHS	MRT
(0)	Z	-2	-4	0	0	0	
x2 enters x3 leaves	x3	1	2	1	0	5	5/2*
	x4	1	1	0	1	4	4/1
(1) optimum	Z	0	0	2	0	10	
	x2	1/2	1	1/2	0	5/2	5
x1 enters x4 leaves	x4	1/2	0	-1/2	1	3/2	3*
(1') alt. optimum	z	0	0	2	0	10	
	x2	0	1	1	-1	1	
	x1	1	0	-1	2	3	

2. Alternative Optimal Solutions (Infinity of Solutions) (Multiple Optimal Solutions)

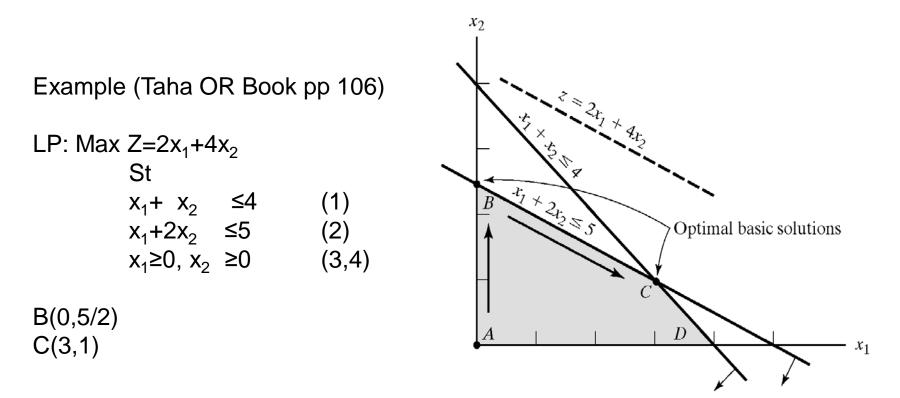


Figure 3.9 LP alternative optima in Example 3.5-2.

3) UNBOUNDED SOLUTION

- Example (Unbounded Objective Value)
- Example
- LP: Max z= 2x1+x2LP in Standard Form: Max z= 2x1+x2Ststx1-x2 ≤ 10x1-x2 + x3 = 102x1 ≤ 402x1 + x4 = 40x1, x2 ≥ 0x1, x2, x3, x4 ≥ 0

(Unbounded Objective Value)

Iteration	Basic	x1	x2	x3	x4	RHS	MRT
(0)	Z	-2	-1	0	0	0	
x1 enters x3 leaves	x3	1	-1	1	0	10	10/1*
	x4	2	0	0	1	40	40/2

•In the starting Tableau both x1 and x2 are candidates for entering the solution.

•Because x1 has the most negative coefficient, it is selected as the entering variable.

•However, all the constraint coefficients under x2 are negative or zero, meaning that x2 can be increased indefinitely without violating any of the constraints.

Each unit increase in x2 will increase z by 1, an infinite increase in x2 will also result in an infinite increase in z. Thus the problem has no bounded solution.

(Unbounded Objective Value)

Iteration	Basic	x1	x2	x3	x4	RHS	MRT
(0)	z	-2	-1	0	0	0	
x1 enters x3 leaves	x3	1	-1	1	0	10	10/1*
	x4	2	0	0	1	40	40/2
(1)	z	0	-3	2	0	20	
	x1	1	-1	1	0	10	ignore
x2 enters x4 leaves	x4	0	2	-2	1	20	20/2*
(2)	Z	0	0	-1	3/2	50	
	x1	1	0	0	1/2	20	
	x2	0	1	-1	1/2	10	

Graphical Representation of Unbounded Solution Case

•Example (Taha OR Book pp 109)

Max Z=2x1+x2 St x1- x2 ≤10 (1) $2x1 \le 40$ (2) x1, x2 ≥0 (3,4)

IN A CORRECTLY MODELLED LP, IT SHOULD NOT OCCUR

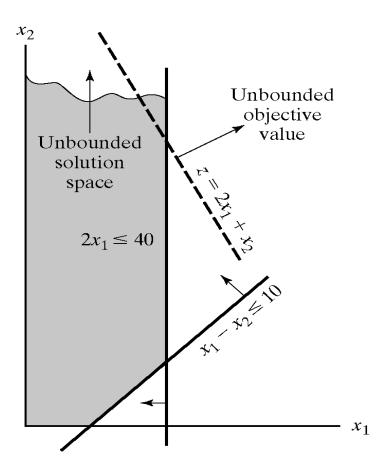


Figure 3.10 LP unbounded solution in Example 3.5-3.

UNBOUNDED SOLUTION SPACE

• Example (Unbounded Solution Space but Finite Optimum Objective Value)

•	LP: Max z= 6x1-2x2	LP in Standard Form: Max z= 6x1-2x2
•	St	st
•	2x1-x2 ≤ 2	2x1-x2 +x3= 2
•	x1 ≤ 4	x1 +x4=40
•	x1, x2 ≥ 0	x1, x2, x3, x4 ≥ 0

(Unbounded Solution Space but Finite Optimum Objective Value)

Iteration	Basic	x1	x2	х3	x4	RHS	MRT
(0)	Z	-6	2	0	0	0	
x1 enters x3 leaves	x3	2	-1	1	0	2	2/2=1*
	x4	1	0	0	1	4	4/1=4
(1)	Z	0	-1	3	0	6	
	x1	1	-1/2	1/2	0	1	ignore
x1 enters x3 leaves	x4	0	1/2	-1/2	1	3	3/(1/2)=6*
(2)	Z	0	0	2	2	12	
optimum	x1	1	0	0	1	4	
	x2	0	1	-1	2	6	

4)INFEASIBLE SOLUTION

• LP models with inconsistent constraints have no feasible solutions

- Example (Taha OR Book pp 111)
- LP:Max Z=3x1+2x2 St 2x1+x2 ≤2
- 3x1+4x2 ≥12
- x1≥0, x2≥0

- LP in Standard Form with Artificials:
- Max Z=3x1+2x2
 St
 2x1+x2 +x3=2
- 3x1+4x2 -x4+x5=12 x1, x2, x3, x4, x5 ≥0

Example for INFEASIBLE SOLUTION

Iteration	Basic	x1	x2	x4	x3	x5	RHS	MRT
Inconsistent tableau	Z	-3	-2	0	0	Μ	0	
	x3	2	1	0	1	0	2	
	x5	3	4	-1	0	1	12	
(0)	Z	-3-3M	-2-4M	Μ	0	0	-12M	
x2 enters x3 leaves	x3	2	1	0	1	0	2	2/1*
	x5	3	4	-1	0	1	12	12/4
(1)	z	1+5M	0	Μ	2+4M	0	4-4M	
PSEUDO OPTIMUM	x2	2	1	0	1	0	2	
	x5	-5	0	-1	-4	1	4	

Graphical Representation of Infeasible solution case

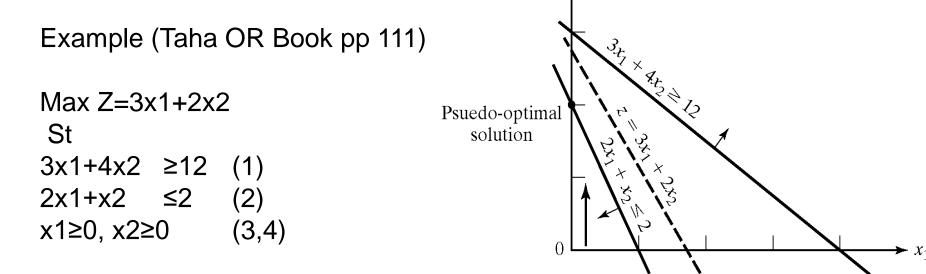


Figure 3.11 Infeasible solution of Example 3.5-4.