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SENSITIVITY ANAYSIS
(POSTOPTIMALITY ANAYSIS)

• Sensitivity analysis investigate the change in the optimum solution 
resulting from making changes in parameters of the LP model.

• The following table lists all possible cases that can arise in 
sensitivity analysis and the actions needed to obtain the new 
solution.

Condition Resulting from the 
changes

Recommended Action

Current Solution remains optimal 
and feasible

Nothing

Current solution becomes 
infeasible

Use the Dual Simplex Algorithm to 
recover feasibility

Current solution becomes non-
optimal

Use The Primal Simplex Algorithm 
to recover optimality



• Q. When the current optimum solution becomes 
infeasible?

• Changes affecting feasibility:
• 1) The RHSs of the current constraints are changed or
• 2) A new constraint is added to the model
• In both cases, infeasibility occurs when at least one 

element of the RHS of the optimal Tablaeu becomes 
negative (ie. one or more of the current BV become 
negative)

• Q. When the solution becomes non-optimal?
• 1) The original objective coefficients are changed.
• 2) A new activity (variable) is added to the model 



SENSITIVITY ANAYSIS
(POSTOPTIMALITY ANAYSIS)

1) Changes affecting feasibility 
– Changes in the RHSs
– Feasibility Range for the elements of the RHSs
– Addition of a New Constraint

2) Changes affecting optimality
– Change in the cj of a NBV
– Change in the cj of a BV
– Optimality Range of the objective coefficents
– Addition of a New Variable

• Changes in the Technological Coefficients



SENSITIVITY ANAYSIS
(POSTOPTIMALITY ANAYSIS)

• In sensitivity analysis, after finding the optimal solution we try to investigate 
the changes of the data affecting the solution.

• We will talk about 2 main cases resulting from the changes

• 1) CHANGES AFFECTING FEASIBILITY
• Infeasibility occurs when at least one element of the RHS of the optimal 

tablaeu becomes negative (ie. One or more of the current BV become 
negative)

a) Feasibility range of the elements of the RHS
b) The RHS of the current constraints is changed 
c) A new constraint is added to the model

• 2) CHANGES AFFECTING OPTIMALITY
• Nonoptimality occurs when one or more z-row coefficients becomes 

negative in max problem or becomes positive in min problem
a) Optimality Range of the objective coefficents for a BV
b) Optimality Range of the objective coefficents for a NBV
c) Change in the cj of a BV
d) Change in the cj of a NBV
e) Addition of new activity
f) Changes in the Technological Coefficients



Toyco Example, Taha OR Book PP 135 
for sensitivity analysis

• Toyco assembles three types of toys: trains, 
trucks and cars using three operations. The daily 
limits on the available times for the three 
operations are 430,460, and 420 minutes, 
respectively; and the profits per toy train, truck 
and car are $3, $2, and $5, respectively. The 
assembly times per train at the three operations 
are 1, 3 and 1 minutes, respectively. The 
corresponding times per truck and per car are 
(2, 0, 4) and (1, 2, 0) minutes (a zero time 
indicates that the operation is not used.)



Mathematical Model
Decision variables
x1: The daily number of units 

assembled of trains
x2: The daily number of units 

assembled of trucks
x3: The daily number of units 

assembled of cars
LP: (P)
Max z= 3x1+2x2+5x3
St
x1+2x2  +x3 ≤ 430

3x1       +2x3  ≤ 460
x1+4x2         ≤420

x1,x2,x3 ≥0

(D):
Min w= 430y1+460y2+420y3
St
y1+3y2+y3  ≥ 3

2y1      +4y3  ≥ 2
y1+2y2        ≥ 5

y1,y2,y3 ≥ 0



The associated optimal primal tableau

Basis x1 x2 x3 x4 x5 x6 RHS

z 4 0 0 1 2 0 1350

x2 -1/4 1 0 1/2 -1/4 0 100

x3 3/2 0 1 0 1/2 0 230

x6 2 0 0 -2 1 1 20



1.CHANGES AFFECTING 
FEASIBILITY

The feasibility of the current solution may be 
affected only if 

a) The RHS of the current constraints is 
changed 

b) A new constraint is added to the model



1-a) Changes in the right-Hand
Side

If a change occur at the right-hand side of the original problem, we 
need to recompute the right-hand side of the tableau

Recall that the right-hand side of the tableau gives the values of the 
basic variables.
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Example: Suppose that TOYCO wants to expand its assembly lines 
by increasing the daily capacity of each line by 40 %, 602, 644 and 
588 minutes, respectively.

Thus, current basic variables – x2, x3, and x6 – remain feasible at the 
new values 140, 322, and 28. The associated optimum profit is $1890.
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Although the new solution is attractive from the standpoint of increased 
profit, TOYCO recognizes that its implementation will take time. 
Another proposal was thus made to shift the slack capacity of 
operation 3 (x6=20 minutes) to the capacity of operation 1, which 
changes the capacity mix of three operations to 450, 460 and 400 
minutes, respectively.

The resulting solution is infeasible because x6=-40. We apply the dual 
simplex method to recover feasibility. First, we modify the right-hand 
side of the tableau as shown by the shaded column.
(** Don’t forget to modify the objective function value)
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Iteration Basic x1 x2 x3 x4 x5 x6 RHS

x6 leaves 
x4 enters

Z 4 0 0 1 2 0 1370

x2 -1/4 1 0 1/2 -1/4 0 110

x3 3/2 0 1 0 1/2 0 230

X6 2 0 0 -2 1 1 -40

Z 5 0 0 0 5/2 1/2 1350

x2 1/4 1 0 0 0 1/4 100

x3 3/2 0 1 0 1/2 0 230

x4 -1 0 0 1 -1/2 -1/2 20

The optimum solution (in terms of x1, x2, and x3) remains the same as in 
the original model. It also shows that the additional capacity for operation 
1 was not used (x4=20). The only conclusion then is that operation 2 is 
the bottleneck.



Feasibility Range of the Elements of the Right-
Hand Side

Another way of looking at the affect of changing the availability of 
resources (i.e. the right hand side vector) is to determine the range 
for which the current solution remains feasible.

Example: In the TOYCO model, suppose that we are interested in 
determining the feasibility range of the capacity of operation 1. We 
can do so by replacing the right-hand side with

The amount of D1 represents the change in the capacity of 
operation1 above and below the present level of 430 minutes.
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• The change in the optimal objective value associated with D1 is D1y1, 
where y1 is the unit worth per unit (dual price) in dollars per minute of 
operation 1.
• To illustrate the use of the determined range, suppose that the 
capacity of operation 1 is changed from the current level of 430 
minutes to 400 minutes.
•The current basic solution remains feasible because the new capacity 
falls within the feasible range.

To compute the new values of the variables we use 
D1=400-430=-30

Thus,
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• To compute the associated change in the optimal value of the
objective function, we first compute the dual prices using the formula

Thus,

This means that the worth per unit of operation 1 is y1 = $1 per minute,
and the change in the optimal profit is D1y1=-30*1=-$30
Remember that the given worth per unit, y1=1, remains valid only within
the specified range -200 ≤ D1 ≤ 10.
Any change outside this range causes infeasibility – hence we need to
use the dual simplex method to determine the new solution, if one
exists.
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1-b) Addition of a New Constraint
The addition of a new constraint can lead to one of two 

cases:

1) The new constraint is redundant, meaning that it is 
satisfied by the current optimum solution and, hence, 
can be dropped from the model altogether.

2) The current solution violates the new constraint, in which 
case the dual simplex method can be used to recover 
feasibility.

Note that: The addition of a new constraint can never 
improve the current optimum objective value. 



Example: Suppose that TOYCO is changing the design of its toys, and 
that change will require the addition of a fourth operation in the 
assembly lines. The daily capacity of the new operation is 500 minutes; 
and the times per unit for the three products on this operation are 3, 1, 
and 1 minutes, respectively. The resulting constraint is thus constructed 
as

3x1 + x2 + x3 ≤ 500

This constraint is redundant because it is satisfied by the current 
optimum solution x1=0, x2=100, and x3=230. This means that the 
current optimum solution remains unchanged.

Suppose, instead, that the unit times on the fourth operation are 3, 3, 
and 1 minutes, respectively. All the remaining data of the model remain 
unchanged. In this case, the fourth constraint 

3x1 + 3x2 + x3 ≤ 500

is not satisfied by the current optimum solution.



We must thus augment the new constraint to the current optimum tableau 
as follows (x7 is slack):

Because the variables x2 and x3 are basic, we must substitute out their 
constraint coefficients in the x7 row, which can be achieved by performing 
the following operation:

New x7-row = Old x7-row – (3×(x2-row) + 1×(x3-row))

Basic x1 x2 x3 x4 x5 x6 x7 RHS

Z 4 0 0 1 2 0 0 1350

x2 -1/4 1 0 1/2 -1/4 0 0 100

x3 3/2 0 1 0 1/2 0 0 230

x6 2 0 0 -2 1 1 0 20

x7 3 3 1 0 0 0 1 500



Basic
x1 x2 x3 x4 x5 x6 x7 RHS

Z 4 0 0 1 2 0 0 1350
x2 -1/4 1 0 1/2 -1/4 0 0 100
x3 3/2 0 1 0 1/2 0 0 230
x6 2 0 0 -2 1 1 0 20
x7 9/4 0 0 -3/2 1/4 0 1 -30

Z 11/2 0 0 0 13/6 0 2/3 1330

x2 1/2 1 0 0 -1/6 0 1/3 90

x3 3/2 0 1 0 1/2 0 0 230

x6 -1 0 0 0 2/3 1 -4/3 60

x4 -3/2 0 0 1 -1/6 0 -2/3 20

The new tableau is thus given as

The new optimum solution is x1=0, x2=90, x3=230, and Z=$1330 (verify!)



2. CHANGES AFFECTING 
OPTIMALITY

This section considers two particular situations that could 
affect the optimality of the current solution:

1. Changes in the original objective coefficients
• Changes in the objective coefficients of the basic variables

• Finding the optimality range of a BV
• Changes in the objective coefficients of the nonbasic variables

• Finding the optimality range of a NBV

2. Addition of a new activity (variable) to the model
• Changes in activity’s usage of resources



Changes in the Objective Function 
Coefficients

These changes only affect the optimalility of the solution.

• For a Basic Variable
1. Compute the new dual values (using Method I)
2. Use the new dual values to determine the new z-row

coefficients

• For a Nonbasic Variable
1. Use the current dual values.
2. Calculate the z-row coefficient only of that NBV (because only z-

row coefficient of that NBV changes)



Two cases will result:

• The new z-row satisfies the optimality condition and
the solution remains unchanged (the optimum
objective value may change , however).

• The optimality condition is not satisfied, in which case
the (primal) simplex method is used to recover
optimality.



Example: In the TOYCO model, suppose that the company has a new
pricing policy to meet or match the competition. The unit profits under
the new policy are $2, $3, and $4 for train, truck, and car toys,
respectively. The new objective function is

Maximize Z = 2x1 + 3x2 + 4x3

Thus,
(New objective coefficients of basic variables x2, x3 and x6)

Using Method I the dual variables are computed as;
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• The z-row coefficients are determined as the difference between the
left- and right-hand sides of the dual constraints.

• It is not necessary to recompute the objective row coefficients of the
basic variables x2, x3, and x6 because they always equal zero
regardless of the changes made in the objective coefficients
(verify!).
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Note that the right-hand side of the dual constraint
associated with x1 is 2, the new coefficient in the modified
objective function.
The computations show that the current solution show that
the current solution – x1=0 train, x2=100 trucks and x3=230
cars – remain optimal.

⇒The corresponding new profit is computed as (objective
function)

2×0 + 3 ×100 + 4 ×230 = $1220



Suppose that the TOYCO objective function is changed to

Maximize Z = 6x1 +3x2 +4x3

Determine if the current solution remains optimal or not.
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Iteration Basic x1 x2 x3 x4 x5 x6 RHS

x6 leaves 
x1 enters

Z -3/4 0 0 3/2 5/4 0 1220

x2 -1/4 1 0 1/2 -1/4 0 100

x3 3/2 0 1 0 1/2 0 230

X6 2 0 0 -2 1 1 20

Z 0 0 0 3/4 13/8 3/8 1227,5

x2 0 1 0 1/4 -1/8 1/8 102,5

x3 0 0 1 3/2 -1/4 -3/4 215

x1 1 0 0 -1 1/2 1/2 10

The new optimum solution is

x1=10, x2=102,5, x3=215 and Z=$1227,5

The new tableau is given below. The corresponding changes in the 
optimal z-row are highlighted. The table is not optimal. Primal-simplex is 
applied to recover optimality



A change in the cj of a nonbasic variable
Let’s cosider a change in the objective function coefficient of a
nonbasic variable. Note that, in this case, cB (objective coefficients of
the basic variables) is not affected.
Thus, the only impact of such a change is on the single tableau
element zk-ck.
In the TOYCO example x1 is a nonbasic variable. Suppose that the new
c1 equals to 5 (old c1=3).
To determine if the current basis remains optimal or not we recompute
z1-c1 as follows:

The computation shows that the current solution remains optimal.
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Optimality Range of the Objective Coefficients

Another way to investigate effect of changes in the objective function 
coefficients is to compute the range for each individual coefficient that 
will keep the current solution optimal.
This is achieved by replacing the current cj with cj+dj where dj
represents the (positive or negative) amount of change.

Example: Suppose that the objective function of the TOYCO model 
is changed to

Maximize Z = (3+d1)x1 + 2x2 + 5x3

Find the optimality range for the change d1.



Note that, because x1 is not basic in the optimal tableau, the dual 
values will not be affected by this change and  hence, will remain 
the same as in the original model (i.e., y1=1, y2=2, y3=0). Indeed 
because x1 is nonbasic, only its z-row coefficient will be affected, and 
all the remaining z-row coefficients remain unchanged.
This means we only need to compute z1-c1.
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Because TOYCO model is a maximization problem, the 
original solution will remain optimal so long as

4 - d1 ≥ 0 ⇒ d1 ≤ 4

This is equivalent to saying that the current solution remains 
optimal so long as the objective coefficient c1 (= 3 + d1) of x1 
does not exceed 3 + 4 = $7.



⇒ Next, we consider the change d2 in the objective coefficient of x2:
Maximize Z = 3x1 + (2 + d2)x2 + 5x3

In this case, x2 is basic and its change will affect the dual variables and
subsequently, the z-row coefficients of all the nonbasic variables.

Equivalently, given c2 = 2 + d2, we get 0 ≤ c2 ≤ 10
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Addition of a new Activity

⇒ The addition of a new activity in an LP model is
equivalent to adding a new variable.

⇒ Intuitively, the addition of a new activity is desirable
only if it is profitable – that is, if it improves the optimal
value of the objective function.

⇒ Because the new activity is not yet part of the solution,
it can be thought of as a nonbasic variable. This
means that the dual values associated with the current
solution remain unchanged.



Example: TOYCO recognizes that toy trains are not currently in
production because they are not profitable. The company wants to
replace toy trains with a new product, a toy fire engine, to be
assembled on the existing facilities. TOYCO estimates the profit per toy
fire engine to be $4 and the assembly times per unit to be 1 minute on
each of operations 1 and 2, and 2 minutes on operation 3.

Let x7 represent the new fire engine product. Given (y1 y2 y3)=(1 2 0)
are the optimal dual values, the reduced cost for x7 is computed as
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The result shows that it is profitable to include x7 in the optimal 
solution.
To obtain the new optimum, we first compute its column constraint as 
given below.
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Basic x1 x2 x3 x7 x4 x5 x6 RHS

Z 4 0 0 -1 1 2 0 1350

x2 -1/4 1 0 1/4 1/2 -1/4 0 100

x3 3/2 0 1 1/2 0 1/2 0 230

x6 2 0 0 1 -2 1 1 20



Basic x1 x2 x3 x7 x4 x5 x6 RHS

Z 6 0 0 0 -1 3 1 1370

x2 -3/4 1 0 0 1 -1/2 -1/4 95

x3 1/2 0 1 0 1 0 -1/2 220

x7 2 0 0 1 -2 1 1 20

Z 21/4 1 0 0 0 5/2 3/4 1465

x4 -3/4 1 0 0 1 -1/2 -1/4 95

x3 5/4 -1 1 0 0 1/2 -1/4 125

x7 1/2 2 0 1 0 0 1/2 210
The new optimum is determined by letting x7 enter the basic solution, in which 
case x6 must leave. The new solution is x1=0, x2=0, x3=125, x7=210 and 
Z=$1465 



Changes in Activity’s Usage of 
Resources

This kind of a change can affect only the optimality of the
solution, since it affects the LHS of its dual constraint.

⇒ However, we must restrict this statement to activities that
are currently nonbasic. A change in the constraint
coefficients of basic activities will affect the inverse matrix
and could lead to complications in the computations.

⇒ We shall thus restrict our presentation to changes in
nonbasic activities.

⇒ The easiest way to handle changes in basic activities is to
solve the problem anew.



Let us consider in TOYCO example the constraint column associated
with the nonbasic activity x1 is changed as

(the old )

Then the corresponding dual constraint is:

Since the objective function coefficients and the dual variables are
unchanged, the new x1 coefficient in the z-row is computed as

Since it is ≥0, the proposed change does not affect the optimum
solution.

2
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⇒The addition of a new constraint can never improve the
value of the objective function.

⇒The addition of a new variable can never worsen the
value of the objective function.
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