ENM 202 OPERATIONS RESEARCH (I) OR (I) 9

 LECTURE NOTES SENSITIVITY ANAYSIS (POSTOPTIMALITY ANAYSIS)
SENSITIVITY ANAYSIS (POSTOPTIMALITY ANAYSIS)

- Sensitivity analysis investigate the change in the optimum solution resulting from making changes in parameters of the LP model.
- The following table lists all possible cases that can arise in sensitivity analysis and the actions needed to obtain the new solution.

Condition Resulting from the changes	Recommended Action
Current Solution remains optimal and feasible	Nothing
Current solution becomes infeasible	Use the Dual Simplex Algorithm to recover feasibility
Current solution becomes non- optimal	Use The Primal Simplex Algorithm to recover optimality

- Q. When the current optimum solution becomes infeasible?
- Changes affecting feasibility:
- 1) The RHSs of the current constraints are changed or
- 2) A new constraint is added to the model
- In both cases, infeasibility occurs when at least one element of the RHS of the optimal Tablaeu becomes negative (ie. one or more of the current BV become negative)
- Q. When the solution becomes non-optimal?
- 1) The original objective coefficients are changed.
- 2) A new activity (variable) is added to the model

SENSITIVITY ANAYSIS (POSTOPTIMALITY ANAYSIS)

1) Changes affecting feasibility

- Changes in the RHSs
- Feasibility Range for the elements of the RHSs
- Addition of a New Constraint

2) Changes affecting optimality

- Change in the c_{j} of a NBV
- Change in the c_{j} of a BV
- Optimality Range of the objective coefficents
- Addition of a New Variable
- Changes in the Technological Coefficients

SENSITIVITY ANAYSIS

(POSTOPTIMALITY ANAYSIS)

- In sensitivity analysis, after finding the optimal solution we try to investigate the changes of the data affecting the solution.
- We will talk about 2 main cases resulting from the changes
- 1) CHANGES AFFECTING FEASIBILITY
- Infeasibility occurs when at least one element of the RHS of the optimal tablaeu becomes negative (ie. One or more of the current BV become negative)
a) Feasibility range of the elements of the RHS
b) The RHS of the current constraints is changed
c) A new constraint is added to the model
- 2) CHANGES AFFECTING OPTIMALITY
- Nonoptimality occurs when one or more z-row coefficients becomes negative in max problem or becomes positive in min problem
a) Optimality Range of the objective coefficents for a BV
b) Optimality Range of the objective coefficents for a NBV
c) Change in the c_{j} of a BV
d) Change in the c_{j} of a NBV
e) Addition of new activity
f) Changes in the Technological Coefficients

Toyco Example, Taha OR Book PP 135 for sensitivity analysis

- Toyco assembles three types of toys: trains, trucks and cars using three operations. The daily limits on the available times for the three operations are 430,460, and 420 minutes, respectively; and the profits per toy train, truck and car are $\$ 3, \$ 2$, and $\$ 5$, respectively. The assembly times per train at the three operations are 1, 3 and 1 minutes, respectively. The corresponding times per truck and per car are $(2,0,4)$ and $(1,2,0)$ minutes (a zero time indicates that the operation is not used.)

Mathematical Model

Decision variables
x1: The daily number of units assembled of trains
x2: The daily number of units assembled of trucks
$x 3$: The daily number of units assembled of cars
LP: (P)
Max $z=3 \times 1+2 \times 2+5 \times 3$
St

$x 1+2 \times 2+x 3$	≤ 430
$3 \times 1 \quad+2 x 3$	≤ 460
$x 1+4 \times 2 \quad$	≤ 420
$x 1, x 2, x 3 \geq 0$	

(D):

Min $w=430 y 1+460 y 2+420 y 3$
St

$$
\begin{aligned}
y 1+3 y 2+y 3 & \geq 3 \\
2 y 1+4 y 3 & \geq 2 \\
y 1+2 y 2 & \geq 5 \\
y 1, y 2, y 3 \geq 0 &
\end{aligned}
$$

The associated optimal primal tableau							
Basis	x 1	x 2	x 3	x 4	x 5	x 6	RHS
z	4	0	0	1	2	0	1350
x 2	$-1 / 4$	1	0	$1 / 2$	$-1 / 4$	0	100
x 3	$3 / 2$	0	1	0	$1 / 2$	0	230
$x 6$	2	0	0	-2	1	1	20

1.CHANGES AFFECTING FEASIBILITY

The feasibility of the current solution may be affected only if
a) The RHS of the current constraints is changed
b) A new constraint is added to the model

1-a) Changes in the right-Hand Side

If a change occur at the right-hand side of the original problem, we need to recompute the right-hand side of the tableau

$$
\begin{aligned}
& \binom{\text { New right - hand side }}{\text { of tableau in iteration i }}=\left(\begin{array}{c}
\text { Inverse in } \\
\text { iteration } \\
\mathrm{i}
\end{array}\right) \times\left(\begin{array}{l}
\text { New right - } \\
\text { hand side of } \\
\text { the constraints }
\end{array}\right) \\
& X_{B}=B^{-1} b
\end{aligned}
$$

Recall that the right-hand side of the tableau gives the values of the basic variables.

Example: Suppose that TOYCO wants to expand its assembly lines by increasing the daily capacity of each line by $40 \%, 602,644$ and 588 minutes, respectively.

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{6}
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
602 \\
644 \\
588
\end{array}\right)=\left(\begin{array}{c}
140 \\
322 \\
28
\end{array}\right) \\
& Z=c_{B} B^{-1} b=\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
602 \\
644 \\
588
\end{array}\right)=1890
\end{aligned}
$$

Thus, current basic variables $-x_{2}, x_{3}$, and x_{6} - remain feasible at the new values 140,322 , and 28 . The associated optimum profit is $\$ 1890$.

Although the new solution is attractive from the standpoint of increased profit, TOYCO recognizes that its implementation will take time. Another proposal was thus made to shift the slack capacity of operation 3 ($\mathrm{x}_{6}=20$ minutes) to the capacity of operation 1 , which changes the capacity mix of three operations to 450,460 and 400 minutes, respectively.

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{6}
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
450 \\
460 \\
400
\end{array}\right)=\left(\begin{array}{c}
110 \\
230 \\
-40
\end{array}\right) \\
& Z=c_{B} B^{-1} b=\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
450 \\
460 \\
400
\end{array}\right)=\$ 1370
\end{aligned}
$$

The resulting solution is infeasible because $x_{6}=-40$. We apply the dual simplex method to recover feasibility. First, we modify the right-hand side of the tableau as shown by the shaded column. (** Don't forget to modify the objective function value)

Iteration	Basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
	Z	4	0	0	1	2	0	1370
	x_{2}	$-1 / 4$	1	0	$1 / 2$	$-1 / 4$	0	110
	x_{3}	$3 / 2$	0	1	0	$1 / 2$	0	230
	x_{6}	2	0	0	-2	1	1	-40
	Z	5	0	0	0	$5 / 2$	$1 / 2$	1350
	x_{2}	$1 / 4$	1	0	0	0	$1 / 4$	100
	x_{3}	$3 / 2$	0	1	0	$1 / 2$	0	230
	x_{4}	-1	0	0	1	$-1 / 2$	$-1 / 2$	20

The optimum solution (in terms of x_{1}, x_{2}, and x_{3}) remains the same as in the original model. It also shows that the additional capacity for operation 1 was not used ($x_{4}=20$). The only conclusion then is that operation 2 is the bottleneck.

Feasibility Range of the Elements of the RightHand Side

Another way of looking at the affect of changing the availability of resources (i.e. the right hand side vector) is to determine the range for which the current solution remains feasible.

Example: In the TOYCO model, suppose that we are interested in determining the feasibility range of the capacity of operation 1 . We can do so by replacing the right-hand side with

$$
\left(\begin{array}{c}
430+D_{1} \\
460 \\
420
\end{array}\right)
$$

The amount of D_{1} represents the change in the capacity of operation1 above and below the present level of 430 minutes.

- Answer :

The current bfs remains feasible if all the BVs are nonnegative, ie :

$$
x=B^{-1} b
$$

$$
\left(\begin{array}{l}
x 2 \\
x 3 \\
x 6
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
430+D_{1} \\
460 \\
420
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
100+D_{1} / 2 \\
230 \\
20-2 D_{1}
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

These conditions lead to the following bounds on D_{1} :

$$
\left(x_{2} \geq 0\right): 100+D_{1} / 2 \geq 0 \quad \Rightarrow \quad D_{1} \geq-200
$$

$\left(x_{3} \geq 0\right): x_{3}$ is independent of D_{1}
$\left(x_{6} \geq 0\right): 20-2 D_{1} \geq 0 \quad \Rightarrow \quad D_{1} \leq 10$

Thus, the current basic solution remains feasible for

$$
-200 \leq D_{1} \leq 10
$$

Feasibility Range for b_{1}

$$
230 \leq(\text { operation } 1 \text { capacity }) \leq 440
$$

- The change in the optimal objective value associated with D_{1} is $D_{1} y_{1}$, where y_{1} is the unit worth per unit (dual price) in dollars per minute of operation 1.
- To illustrate the use of the determined range, suppose that the capacity of operation 1 is changed from the current level of 430 minutes to 400 minutes.
-The current basic solution remains feasible because the new capacity falls within the feasible range.

To compute the new values of the variables we use

$$
D_{1}=400-430=-30
$$

Thus,

$$
\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
100+(-30) / 2 \\
230 \\
20-2(-30)
\end{array}\right)=\left(\begin{array}{c}
85 \\
230 \\
80
\end{array}\right)
$$

- To compute the associated change in the optimal value of the objective function, we first compute the dual prices using the formula

$$
y=c_{B} B^{-1} \quad(\text { Method } I)
$$

Thus,

$$
\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right)=\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 0
\end{array}\right)
$$

This means that the worth per unit of operation 1 is $y_{1}=\$ 1$ per minute, and the change in the optimal profit is $D_{1} y_{1}=-30 * 1=-\$ 30$
Remember that the given worth per unit, $y_{1}=1$, remains valid only within the specified range $-200 \leq D_{1} \leq 10$.
Any change outside this range causes infeasibility - hence we need to use the dual simplex method to determine the new solution, if one exists.

1-b) Addition of a New Constraint

The addition of a new constraint can lead to one of two cases:

1) The new constraint is redundant, meaning that it is satisfied by the current optimum solution and, hence, can be dropped from the model altogether.
2) The current solution violates the new constraint, in which case the dual simplex method can be used to recover feasibility.

Note that: The addition of a new constraint can never improve the current optimum objective value.

Example: Suppose that TOYCO is changing the design of its toys, and that change will require the addition of a fourth operation in the assembly lines. The daily capacity of the new operation is 500 minutes; and the times per unit for the three products on this operation are 3,1 , and 1 minutes, respectively. The resulting constraint is thus constructed as

$$
3 x_{1}+x_{2}+x_{3} \leq 500
$$

This constraint is redundant because it is satisfied by the current optimum solution $x_{1}=0, x_{2}=100$, and $x_{3}=230$. This means that the current optimum solution remains unchanged.

Suppose, instead, that the unit times on the fourth operation are 3, 3, and 1 minutes, respectively. All the remaining data of the model remain unchanged. In this case, the fourth constraint

$$
3 x_{1}+3 x_{2}+x_{3} \leq 500
$$

is not satisfied by the current optimum solution.

We must thus augment the new constraint to the current optimum tableau as follows (x_{7} is slack):

Basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
Z	4	0	0	1	2	0	0	1350
x_{2}	$-1 / 4$	1	0	$1 / 2$	$-1 / 4$	0	0	100
x_{3}	$3 / 2$	0	1	0	$1 / 2$	0	0	230
x_{6}	2	0	0	-2	1	1	0	20
x_{7}	3	3	1	0	0	0	1	500

Because the variables x_{2} and x_{3} are basic, we must substitute out their constraint coefficients in the x_{7} row, which can be achieved by performing the following operation:

$$
\text { New } x_{7} \text {-row }=\text { Old } x_{7} \text {-row }-\left(3 \times\left(x_{2}-\text { row }\right)+1 \times\left(x_{3} \text {-row }\right)\right)
$$

The new tableau is thus given as

Basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
Z	4	0	0	1	2	0	0	1350
x_{2}	$-1 / 4$	1	0	$1 / 2$	$-1 / 4$	0	0	100
x_{3}	$3 / 2$	0	1	0	$1 / 2$	0	0	230
x_{6}	2	0	0	-2	1	1	0	20
x_{7}	$9 / 4$	0	0	$-3 / 2$	$1 / 4$	0	1	-30
Z	$11 / 2$	0	0	0	$13 / 6$	0	$2 / 3$	1330
x_{2}	$1 / 2$	1	0	0	$-1 / 6$	0	$1 / 3$	90
x_{3}	$3 / 2$	0	1	0	$1 / 2$	0	0	230
x_{6}	-1	0	0	0	$2 / 3$	1	$-4 / 3$	60
x_{4}	$-3 / 2$	0	0	1	$-1 / 6$	0	$-2 / 3$	20

The new optimum solution is $x_{1}=0, x_{2}=90, x_{3}=230$, and $Z=\$ 1330$ (verify!)

2. CHANGES AFFECTING OPTIMALITY

This section considers two particular situations that could affect the optimality of the current solution:

1. Changes in the original objective coefficients

- Changes in the objective coefficients of the basic variables
- Finding the optimality range of a BV
- Changes in the objective coefficients of the nonbasic variables
- Finding the optimality range of a NBV

2. Addition of a new activity (variable) to the model

- Changes in activity's usage of resources

Changes in the Objective Function Coefficients

These changes only affect the optimalility of the solution.

- For a Basic Variable

1. Compute the new dual values (using Method I)
2. Use the new dual values to determine the new z-row coefficients

- For a Nonbasic Variable

1. Use the current dual values.
2. Calculate the z-row coefficient only of that NBV (because only zrow coefficient of that NBV changes)

Two cases will result:

- The new z-row satisfies the optimality condition and the solution remains unchanged (the optimum objective value may change, however).
- The optimality condition is not satisfied, in which case the (primal) simplex method is used to recover optimality.

Example: In the TOYCO model, suppose that the company has a new pricing policy to meet or match the competition. The unit profits under the new policy are $\$ 2$, $\$ 3$, and $\$ 4$ for train, truck, and car toys, respectively. The new objective function is

$$
\text { Maximize } Z=2 x_{1}+3 x_{2}+4 x_{3}
$$

Thus,
(New objective coefficients of basic variables $x 2, x 3$ and $\times 6$)

$$
c_{B}=\left(\begin{array}{lll}
3 & 4 & 0
\end{array}\right)
$$

Using Method I $\left(y=c_{B} B^{-1}\right)$ the dual variables are computed as;

$$
\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right)=\left(\begin{array}{lll}
3 & 4 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
3 / 2 & 5 / 4 & 0
\end{array}\right)
$$

- The z-row coefficients are determined as the difference between the left- and right-hand sides of the dual constraints.
- It is not necessary to recompute the objective row coefficients of the basic variables x_{2}, x_{3}, and x_{6} because they always equal zero regardless of the changes made in the objective coefficients (verify!).

$$
\begin{aligned}
& x_{1}: z_{1}-c_{1}=y_{1}+3 y_{2}+y_{3}-2=\frac{3}{2}+3 \frac{5}{4}+0-2=\frac{13}{4} \\
& x_{4}: z_{4}-c_{4}=y_{1}-0=\frac{3}{2} \\
& x_{5}: z_{5}-c_{5}=y_{2}-0=\frac{5}{4}
\end{aligned}
$$

Note that the right-hand side of the dual constraint associated with x_{1} is 2 , the new coefficient in the modified objective function.
The computations show that the current solution show that the current solution $-x_{1}=0$ train, $x_{2}=100$ trucks and $x_{3}=230$ cars - remain optimal.
\Rightarrow The corresponding new profit is computed as (objective function)

$$
2 \times 0+3 \times 100+4 \times 230=\$ 1220
$$

Suppose that the TOYCO objective function is changed to

Maximize $Z=6 x_{1}+3 x_{2}+4 x_{3}$

Determine if the current solution remains optimal or not.
Dual variables:
$\left(\begin{array}{lll}\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3}\end{array}\right)=\left(\begin{array}{lll}3 & 4 & 0\end{array}\right)\left(\begin{array}{ccc}1 / 2 & -1 / 4 & 0 \\ 0 & 1 / 2 & 0 \\ -2 & 1 & 1\end{array}\right)=\left(\begin{array}{ll}3 / 2 & 5 / 4\end{array}\right.$
$x_{1}: y_{1}+3 y_{2}+y_{3}-6=\frac{3}{2}+3\left(\frac{5}{4}\right)+0-6=\frac{21}{4}-6=-3 / 4$
$x_{4}: y_{1}-0=\frac{3}{2}$
$x_{5}: y_{2}-0=\frac{5}{4}$

The new tableau is given below. The corresponding changes in the optimal z-row are highlighted. The table is not optimal. Primal-simplex is applied to recover optimality

Iteration	Basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
x_{6} leaves x_{1} enters	Z	-3/4	0	0	(3/2)	5/4	0	1220
	x_{2}	-1/4	1	0	1/2	-1/4	0	100
	x_{3}	3/2	0	1	0	1/2	0	230
	X_{6}	(2)	0	0	-2	1	1	20
	Z	0	0	0	3/4	13/8	3/8	1227,5
	x_{2}	0	1	0	1/4	-1/8	1/8	102,5
	x_{3}	0	0	1	3/2	-1/4	-3/4	215
	x_{1}	1	0	0	-1	1/2	1/2	10

The new optimum solution is

$$
x_{1}=10, x_{2}=102,5, x_{3}=215 \text { and } Z=\$ 1227,5
$$

A change in the c_{j} of a nonbasic variable

Let's cosider a change in the objective function coefficient of a nonbasic variable. Note that, in this case, C_{B} (objective coefficients of the basic variables) is not affected.
Thus, the only impact of such a change is on the single tableau element $\mathrm{z}_{\mathrm{k}}-\mathrm{C}_{\mathrm{k}}$.
In the TOYCO example x_{1} is a nonbasic variable. Suppose that the new c_{1} equals to 5 (old $\mathrm{c}_{1}=3$).
To determine if the current basis remains optimal or not we recompute $\mathrm{z}_{1}-\mathrm{c}_{1}$ as follows:

$$
\begin{aligned}
z_{1}-c_{1} & =c_{B} B^{-1} a_{j}-c_{1} \\
& =\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)-5=7-5=2
\end{aligned}
$$

The computation shows that the current solution remains optimal.

Optimality Range of the Objective Coefficients

Another way to investigate effect of changes in the objective function coefficients is to compute the range for each individual coefficient that will keep the current solution optimal.
This is achieved by replacing the current c_{j} with $c_{j}+d_{j}$ where d_{j} represents the (positive or negative) amount of change.

Example: Suppose that the objective function of the TOYCO model is changed to

$$
\text { Maximize } Z=\left(3+d_{1}\right) x_{1}+2 x_{2}+5 x_{3}
$$

Find the optimality range for the change d_{1}.

Note that, because x_{1} is not basic in the optimal tableau, the dual values will not be affected by this change and hence, will remain the same as in the original model (i.e., $y_{1}=1, y_{2}=2, y_{3}=0$). Indeed because x_{1} is nonbasic, only its z-row coefficient will be affected, and all the remaining z-row coefficients remain unchanged.
This means we only need to compute $z_{1}-\mathrm{c}_{1}$.
$x_{1}: z_{1}-c_{1}=y_{1}+3 y_{2}+y_{3}-\left(3+d_{1}\right)=1+3 \times 2+0-\left(3+d_{1}\right)=4-d_{1}$
or

$$
=c_{B} B^{-1} a_{1}-c_{1}^{\prime}=\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)-\left(3+d_{1}\right)=4-d_{1}
$$

Because TOYCO model is a maximization problem, the original solution will remain optimal so long as

$$
4-d_{1} \geq 0 \Rightarrow d_{1} \leq 4
$$

This is equivalent to saying that the current solution remains optimal so long as the objective coefficient $c_{1}\left(=3+d_{1}\right)$ of x_{1} does not exceed $3+4=\$ 7$.
\Rightarrow Next, we consider the change d_{2} in the objective coefficient of x_{2} :

$$
\text { Maximize } Z=3 x_{1}+\left(2+d_{2}\right) x_{2}+5 x_{3}
$$

In this case, x_{2} is basic and its change will affect the dual variables and subsequently, the z-row coefficients of all the nonbasic variables.

$$
\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right)=\left(\begin{array}{lll}
2+d_{2} & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1+\frac{d_{2}}{2} & 2-\frac{d_{2}}{4} & 0
\end{array}\right)
$$

We can thus compute the z -row coefficients of the NBVs as :

$$
\begin{aligned}
& x_{1}: z_{1}-c_{1}=y_{1}+3 y_{2}+y_{3}-3=\left(1+\frac{d_{2}}{2}\right)+3\left(2-\frac{d_{2}}{4}\right)+0-3=4-\frac{d_{2}}{4} \geq 0 \Rightarrow d_{2} \leq 16 \\
& x_{4}: z_{4}-c_{4}=y_{1}-0=\left(1+\frac{d_{2}}{2}\right)-0=1+\frac{d_{2}}{2} \geq 0 \Rightarrow d_{2} \geq-2 \\
& x_{5}: z_{5}-c_{5}=y_{2}-0=\left(2-\frac{d_{2}}{4}\right)-0=2-\frac{d_{2}}{4} \geq 0 \Rightarrow d_{2} \leq 8 \\
& \text { or }-2 \leq d_{2} \leq 8
\end{aligned}
$$

Equivalently, given $\mathrm{c}_{2}=2+\mathrm{d}_{2}$, we get $0 \leq \mathrm{c}_{2} \leq 10$

Addition of a new Activity

\Rightarrow The addition of a new activity in an LP model is equivalent to adding a new variable.
\Rightarrow Intuitively, the addition of a new activity is desirable only if it is profitable - that is, if it improves the optimal value of the objective function.
\Rightarrow Because the new activity is not yet part of the solution, it can be thought of as a nonbasic variable. This means that the dual values associated with the current solution remain unchanged.

Example: TOYCO recognizes that toy trains are not currently in production because they are not profitable. The company wants to replace toy trains with a new product, a toy fire engine, to be assembled on the existing facilities. TOYCO estimates the profit per toy fire engine to be $\$ 4$ and the assembly times per unit to be 1 minute on each of operations 1 and 2 , and 2 minutes on operation 3 .

Let x_{7} represent the new fire engine product. Given $\left(y_{1} y_{2} y_{3}\right)=\left(\begin{array}{lll}1 & 2 & 0\end{array}\right)$ are the optimal dual values, the reduced cost for x_{7} is computed as

$$
x_{7}: z_{7}-c_{7}=1 y_{1}+1 y_{2}+2 y_{3}-4=1 \times 1+1 \times 2+2 \times 0-4=-1
$$

or

$$
=c_{B} B^{-1} a_{7}-c_{7}=\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)-4=-1
$$

The result shows that it is profitable to include x_{7} in the optimal solution.
To obtain the new optimum, we first compute its column constraint as given below.

$$
\alpha_{7}=B^{-1} a_{7}=\left(\begin{array}{ccc}
1 / 2 & -1 / 4 & 0 \\
0 & 1 / 2 & 0 \\
-2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
1 / 4 \\
1 / 2 \\
1
\end{array}\right)
$$

Basic	x_{1}	x_{2}	x_{3}	x_{7}	x_{4}	x_{5}	x_{6}	RHS
Z	4	0	0	-1	1	2	0	1350
x_{2}	$-1 / 4$	1	0	$1 / 4$	$1 / 2$	$-1 / 4$	0	100
x_{3}	$3 / 2$	0	1	$1 / 2$	0	$1 / 2$	0	230
x_{6}	2	0	0	1	-2	1	1	20

Basic	x_{1}	x_{2}	x_{3}	x_{7}	x_{4}	x_{5}	x_{6}	RHS
z	6	0	0	0	-1	3	1	1370
x_{2}	$-3 / 4$	1	0	0	1	$-1 / 2$	$-1 / 4$	95
x_{3}	$1 / 2$	0	1	0	1	0	$-1 / 2$	220
x_{7}	2	0	0	1	-2	1	1	20
z	$21 / 4$	1	0	0	0	$5 / 2$	$3 / 4$	1465
x_{4}	$-3 / 4$	1	0	0	1	$-1 / 2$	$-1 / 4$	95
x_{3}	$5 / 4$	-1	1	0	0	$1 / 2$	$-1 / 4$	125
x_{7}	$1 / 2$	2	0	1	0	0	$1 / 2$	210

The new optimum is determined by letting x_{7} enter the basic solution, in which case x_{6} must leave. The new solution is $x_{1}=0, x_{2}=0, x_{3}=125, x_{7}=210$ and Z=\$1465

Changes in Activity's Usage of Resources

This kind of a change can affect only the optimality of the solution, since it affects the LHS of its dual constraint.
\Rightarrow However, we must restrict this statement to activities that are currently nonbasic. A change in the constraint coefficients of basic activities will affect the inverse matrix and could lead to complications in the computations.
\Rightarrow We shall thus restrict our presentation to changes in nonbasic activities.
\Rightarrow The easiest way to handle changes in basic activities is to solve the problem anew.

Let us consider in TOYCO example the constraint column associated with the nonbasic activity X_{1} is changed as

$$
a_{1}=\left(\begin{array}{c}
1 / 2 \\
2 \\
1 / 2
\end{array}\right) \quad \text { (the old } \quad a_{1}=\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right) \text {) }
$$

Then the corresponding dual constraint is:

$$
\frac{1}{2} y_{1}+2 y_{2}+\frac{1}{2} y_{3} \geq 3
$$

Since the objective function coefficients and the dual variables are unchanged, the new x_{1} coefficient in the z-row is computed as

$$
x_{1}: z_{1}-c_{1}=(1 / 2) \times 1+2 \times 2+(1 / 2) \times 0-3=\frac{3}{2}
$$

Since it is ≥ 0, the proposed change does not affect the optimum solution.
\Rightarrow The addition of a new constraint can never improve the value of the objective function.
\Rightarrow The addition of a new variable can never worsen the value of the objective function.

