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PROF.DR. NURİ YÜCEL 

 

1. APPROXIMATE SOLUTIONS OF EQUATIONS 

 

Sometimes, we encounter problems such as finding the roots of equations of the form 

  0xf   

 

1.1. Newton-Rapson Method 

 

To find the roots of an equation given by the function     0xf , let's open the Taylor 

series at 0xx  . So we can write it as 0

1

1 ... axaxa n

n

n

n  

  

 

For the Fourier series expansion, it can be written as: 

 

          ...sincossincos 1111   xdcxbaxdcxbaxf nnnnnnnn  

 

If we write Taylor Series expansion;        
 

  ...
!2

0

2

0

000 


 xf
xx

xfxxxfxf  

In this series, at 0x  the McLauren series occurs.  If we solve this equation, 0x  is the 

closest value to root.  Therefore, the 3rd term and after converge to 0.  

 

=>        000 xfxxxfxf   

        0xf  

      0000 xfxxxf   
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=> 
 
 0

0
0

xf

xf
xx


   => 

 
 n

n
nn

xf

xf
xx


1   (Newton-Raphson Method) 

 

 

Example-1: Find the roots of the equation given by 022 x   

 414213562.122,1  x  

  

  22  xxf  

   xxf 2  

 

=> 

n

n

nn
x

x
xx

2

22

1


   (we can take any value as an first approximation) 

If we choose 10 x , as the first approximation value. 

 

=> 5.1
1*2

21
1

2

1 


x  

 4166667.1
5.1*2

25.1
5.1

2

2 


x  

 4142157.1
4166667.1*2

24166667.1
4166667.1

2

3 


x  

 4142143.1
4142157.1*2

24142157.1
4142157.1

2

4 


x  

 4142136.1
4142143.1*2

24142143.1
4142143.1

2

5 


x  * Solution 

 4142136.16 x  

 

Note: The found root converges to the root closest to the initially accepted value. 
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Example-2: Find the roots of the equation given by 04.332

 xxe x
 

   4.332

 xxexf x
 

   332 22

 xexxf x
 

 

5.00 x  is chosen as a first approximation, 

 
 
 

     
    35.0*3*5.0*2

45.0*35.0
5.0

25.0

35.0

0

0

01 2

2









e

e

xf

xf
xx  

 

=> 

     
   

8794467.0
35.0*3*5.0*2

45.0*35.0
5.0

25.0

35.0

1 2

2







e

e
x  bulunarak iterasyona devam edilir.  

 

     
   

8515428.0
38794467.0*3*8794467.0*2

48794467.0*38794467.0
8794467.0

28794467.0

38794467.0

2 2

2







e

e
x  

 

     
   

851049.0
38515428.0*3*8515428.0*2

48515428.0*38515428.0
8515428.0

28515428.0

38515428.0

3 2

2







e

e
x  *Çözüm 

 851049.04 x  

 

The root found is the closest root to 0.5. 

 

1.2. Newton's Modified Method 

 

  
 
 xf

xf
xu


   => 

 
 n

n

nn
xu

xu
xx


1  

     

      
   

  2
*

1
n

nn

n
xf

xfxf
xu




  

 

 

In this method, the solution can be reached more easily by reducing the number of 

iterations. However, it is not preferred because the quadratic derivative of the function is 

used during the solution. 
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1.3. Secant Method 

 

If we define the derivative;  
   

1

1

0
lim

1 



 




 nn

nn

xx xx

xfxf
xf

nn

 

 

When we apply this definition to the Newton-Rapson model, we obtain the Secant method 

equation: 

 

=> 
 

      11

1
/ 





nnnn

n

nn
xxxfxf

xf
xx  

  

 
   
    1

1

1

*











nn

nnn

nn
xfxf

xxxf
xx  

 

In this method, we do not take the derivative of the function, but instead of one initial 

value, two initial values must be chosen. 

 

 

 

Homework: 

 

1) Find 
5 83    835  xxf ; by using all methods with precision up to the 6th digit.  

 

2) Find the root of the equation   xx exexxf 332 *2    by taking initial values as 

10 x  and 21 x  (by using all methods). 

 

3) Find the root of the equation  
x

x
1

2sin 3   by taking initial values as 10 x  and 31 x  

(by using all methods). 
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2. SOLUTION OF LINEAR EQUATIONS AND INVERSION OF THE MATRIX 

 





















44434241

34333231

24232221

14131211

cccc

cccc

cccc

cccc

C   4*4 matrix 

 

44332211 ,,, cccc  diagonal terms 

If jiij CC  , then this matrix is a symmetric matrix 

 





















44

3433

242322

14131211

000

00

0

c

cc

ccc

cccc

C   This matrix is called the upper trigonal matrix. 

 

In the opposite case, it is called the lower trigonal matrix. 

 





















44

33

22

11

000

000

000

000

c

c

c

c

C   Diagonal matrix 

 





















1000

0100

0010

0001

I    Unit matrix 

 





















4443

343332

232221

1211

00

0

0

00

cc

ccc

ccc

cc

C   Band type matrix [Tri-diagonal matrix] 
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Some Matrix Properties 

 

1) The sum of two matrices (such as A and B) is defined as long as their dimensions are 

the same. 

 

 ABBAS   

 ijijijijij abbas   

 





















































34

14

33

31

04

12

03

10

21

 

 

2) The difference of two matrices of the same size, 

 

 ABBAS   

 



























































32

14

11

31

04

12

03

10

21

 

 

3) In multiplication of two matrices, if the number of columns in the first matrix is equal 

to the number of rows in the second matrix, the multiplication operation is defined. 

 

 ABBAS **   

 


































































12

01

14

0*01*11*02*1

0*11*01*12*0

0*21*11*22*1

01

12

01

10

21

 

 

General formula;  



n

k

kjikij baP
1

 

 

4) When a matrix is multiplied by the unit matrix, the result is the matrix itself.  

IAAAI   
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5) If the inverse of the C matrix C-1 exists, ICC 1.  and   CC 
 11

 (For the inverse to 

happen, the matrix must be a square matrix and its determinant must be different from 

"0") 

 

 
 

C

M

C

Cofcofactor
C

ji

ji

ij

ij







1

1
 

 

Example-3: Find the inverse of 



















041

123

108

C  

 

If we calculate the determinant, 

 

             0*3*04*1*81*2*14*3*11*1*00*2*8

41

23

08

041

123

108



















C  

183012

41

23

08

041

123

108



















C  

 

 
18

4

18

4

18

04

12
*1

1 11

11

1

11 


















C

M
c  

 

 
18

4

18

4

18

04

10
*1

1 21

21

1

12 
















C

M
c  
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18

2

18

2

18

12

10
*1

1 31

31

1

13 















C

M
c  

 

 
18

1

18

1

18

01

13
*1

1 12

21

1

21 
















C

M
c  

 

 
18

1

18

1

18

01

18
*1

1 22

22

1

22 















C

M
c  

 

 
18

5

18

5

18

13

18
*1

1 32

32

1

23 


















C

M
c  

 

 
18

14

18

14

18

41

23
*1

1 13

13

1

31 
















C

M
c  

 

 
18

32

18

32

18

41

08
*1

1 23

23

1

32 


















C

M
c  

 

 
18

16

18

16

18

23

08
*1

1 33

33

1

33 

















C

M
c  

 

























163214

511

244

18

11C  
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6) The determinant of a matrix of n*n dimensions is  





n

j

kjkj

jk
McC

1

1 . In this formula, 

a solution can be made by considering the desired row or column in the matrix. Selecting 

the row or column with the highest number of "0" is convenient for analysis. 

Example-4: Calculate the determinant of 

















 



06140

1030

01410

81613

C   

The analysis will be made by considering the 1st column with the maximum number of “0”. 

           ...01

0614

103

8161

01

0614

103

0141

31

06140

1030

01410

81613

312111 






















 

C  

 

=>          5701966*314*146*1*13
614

141
113

0614

103

0141

3
32












 

Matrix Representation of Systems of Linear Equations 

 

1414313212111 rxcxcxcxc   

2424323222121 rxcxcxcxc   

3434333232131 rxcxcxcxc   

4444343242141 rxcxcxcxc   

 

=> 

























































4

3

2

1

4

3

2

1

44434241

34333231

24232221

14131211

r

r

r

r

x

x

x

x

cccc

cccc

cccc

cccc

 

  

 RXC .  
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Note: The determinant of a matrix whose two rows or two columns are the same is always 

0. 

 

The classical solution of this system of equations is done by Cramer's rule. 

 
 
 C

C
X k

k
det

det
  

 

kC ; is the resulting matrix with the kth column replaced with R. The reason for not using 

this method is the total number of operations consisting of addition, subtraction, 

multiplication and division operations for each calculation.  Approximately   4NO  

operation is needed.  

 

 

 RXC .  

=> RCXCC ... 11    

 RCXI .. 1  

 RCX .1  

 

Example–5: Solve the following system of equations using Cramer's rule. 

 

  143 321  xxx  

  143 321  xxx  

  53 32  xx  

 

 

5

14

1

310

311

431

3

2

1









x

x

x
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If we calculate its determinant, 

 13121

10

11

31

310

311

431











 

 

 9
13

117

13

15

114

31

315

3114

431

1 












x  

 

 
13

10

13

50

141

11

350

3141

411

2












x  

  

 
13

25

13

10

11

31

510

1411

131

3












x  

 

 

  

GAUSS VE GAUSS-JORDAN ELEMINATION METHODS 

 

1414313212111 rxcxcxcxc   

2424323222121 rxcxcxcxc   

3434333232131 rxcxcxcxc   

4444343242141 rxcxcxcxc   
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=> 

























































4

3

2

1

4

3

2

1

44434241

34333231

24232221

14131211

r

r

r

r

x

x

x

x

cccc

cccc

cccc

cccc

 

 

 RXC .  

 

If we divide the first row of the matrix by 11c , 

 

=> 

















 





































 

4

3

2

1

4

3

2

1

44434241

34333231

24232221

1413121

r

r

r

r

x

x

x

x

cccc

cccc

cccc

ccc

 

 

After this step, we will multiply the first row by 
21c  and subtract from the second row, 

multiply the first row by 31c  and subtract from the third row and multiply the first row by 

41c  and subtract from the fourth row, the matrix becomes: 

 

=> 









































































4

3

2

1

4

3

2

1

444342

343332

242322

141312

0

0

0

1

r

r

r

r

x

x

x

x

ccc

ccc

ccc

ccc

 

 

If we repeat this sequence of operations for the second row (Dividing second row by 22c , 

multiplying second row by 32c  and subtracting from third row; multiplying second row by 

42c  and subtracting from fourth row) the matrix becomes: 
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=> 











































































4

3

2

1

4

3

2

1

4443

3433

2423

141312

00

00

10

1

r

r

r

r

x

x

x

x

cc

cc

cc

ccc

 

 

When the same operations are done for the 3rd and 4th rows, 

=> 









































































4

3

2

1

4

3

2

1

44

34

2423

141312

000

100

10

1

r

r

r

r

x

x

x

x

c

c

cc

ccc

 

 

=> 







































































4

3

2

1

4

3

2

1

34

2423

141312

1000

100

10

1

r

r

r

r

x

x

x

x

c

cc

ccc

 

 

=> 44 rx   

 34343 . rxcx     => 43433 .xcrx   

 24243232 .. rxcxcx    => 42432322 .. xcxcrx   

 14143132121 ... rxcxcxcx   => 41431321211 ... xcxcxcrx   

 

When the solution is made with the Gauss-Jordon method, the following matrix system is 

formed, 

 

=> 

































































4

3

2

1

4

3

2

1

1000

0100

0010

0001

r

r

r

r

x

x

x

x

 

 

In this method, the number of operations is 1.5 times higher than the Gaussian elimination 

method. For this reason, the Gaussian elimination method is preferred. 
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Example: 

















































 

10

12

2

212

141

113

3

2

1

x

x

x

 Solve the equation with Gauss and Gauss-Jordan 

method. 

If we start the solution with the Gauss method, 

 

Step 1. Operations related to the first row, 

 

















































 

10

12

3/2

212

141

3/13/11

3

2

1

x

x

x

 

 

=> 

















































 

3/26

3/34

3/2

3/83/10

3/43/110

3/13/11

3

2

1

x

x

x

 

 

Step 2. Operations related to the second row, 

 

=> 

















































 

3/26

11/34

3/2

3/83/10

33/1210

3/13/11

3

2

1

x

x

x

 

 

=> 

















































 

33/252

11/34

3/2

33/8400

11/410

3/13/11

3

2

1

x

x

x

 

 

Step 3. Operations related to the third row, 

 

=> 

















































 

3

11/34

3/2

100

11/410

3/13/11

3

2

1

x

x

x
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           33 x  

 
11

34

11

4
32  xx   => 22 x  

 
3

2

3

1

3

1
321  xxx   => 11 x  

 

The final set of equations to be obtained when solving with Gauss-Jordan is below, 

 



















































3

2

1

100

010

001

3

2

1

x

x

x

 

 

Homework: 

 

1) 

























































































n

n

n

n

nn

nnn

r

r

r

r

r

x

x

x

x

x

ba

cba

cba

cba

cb

1

3

2

1

1

3

2

1

111

333

222

11

.

.

.

.

00000

..0

0.....0

0.....0

0..0

0..0

00000

 Develop an algorithm for this system 

that can be solved using the Gaussian elimination technique. 

2) 































































82

34

26

18

7126617

18112256

10171611

204753

4

3

2

1

x

x

x

x

 Solve the system of equations. 

Results: 076888.11 x , 99028.12 x , 474477.13 x  and 906078.14 x  
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3) NUMERICAL INTEGRATION 

 

3.1) Rectangles Integration Rule 

 

    


 
n

j

jjj

b

a

xxcfdxxf
1

11  

       

n

ab
h


  (pitch range) 

 

        110 ......  n

b

a

cfcfcfhdxxf  

 

If 11   jj xc , 

 

          1210 ......  n

b

a

xfxfxfxfhdxxf  

 

If 
2

1

1








jj

j

xx
c , (that is generally used) 

 

        110 ......  n

b

a

cfcfcfhdxxf  
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The order of error that occurs as a result of the integral solved in this method, 

 

m  If minimum value of  xf   

M  If maximum value of  xf  ; the error,  is in range of  

 

   
2

3

2

3

1212 n

abM

n

abm 



   

 

 

If we interpret this formula; It is seen that the error decreases as the number of intervals 

2/1 n , in other words, when h (step interval) increases, the error also increases. 

 

Example:  

4

1

2 ?dxx , for n=2, obtain the approximate result of the integral using the 

rectangular integration method. 

 

 
21

3

4

1

4

1

3
2 

x
dxx

 

 

For 2n , 

hjxx j .0    , nj ,......,2,1,0  

5.1
2

14








n

ab
h  

 

jx j 5.11   , 2,1,0j  

10 x  

5.21 x  

42 x  
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=>     10

4

1

2 cfcfhdxx   

 
2

1

1








jj

j

xx
c  

 75.1
2

5.21

2

01

0 






xx

c  

 25.3
2

45.2

2

12
1 







xx
c  

 

           4375.2025.375.15.1
22

10

4

1

2  cfcfhdxx  

 

As the number of steps, n is increased, the process gets closer to the correct result. 

n 
4

1

2dxx  

2 20.4375 

4 20.859375 

10 20.9775 

50 20.9991 

100 20.999775 

 

Example:   ?1sin

2/

0

22






dxxe x
 

 

Solution;  for 100n     7484696904.01sin

2/

0

22






dxxe x
 and  

  For 200n    748468314.01sin

2/

0

22






dxxe x
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3.2) Trapezoidal Integration Rule 

 

 

=>         1112210110
2

1
......

2

1

2

1
)(   nnnn xxyyxxyyxxyyxf  

 
n

ab
h


  

 

Formula of trapezoidal integration rule  

    nno

b

a

yyyyyhdxxf   121 2......22
2

1
 * 

 

Error,  
 

  2

12
hcf

ab
E 


   bca   

 

     2

121 2......22
2

1
hOyyyyyhdxxf nno

b

a

   

 

Example: For n=2 by using trapezoidal integration rule, find the approximate value of   

 

4

1

2 ?dxx . 

For 2n , 

hjxx j .0    , nj ,......,2,1,0  

5.1
2

14








n

ab
h  
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jx j 5.11   , 2,1,0j  

10 x      5.21 x     42 x  

 

       222

21

4

1

45.2.21
2

5.1
2

2

1
 yyyhdxxf o  

 

=>   125.22

4

1

 dxxf  

 

As the number of steps is increased, the process gets closer to the correct result. 

 

n 
4

1

2dxx  

2 22.125 

4 21.28125 

10 21.045 

50 21.00180 

100 21.00045 

 

Example:   

2/

0

2 ?sin



dxx  

 

n Rectangular Rule Trapezoidal Rule 

2 0.89293919 0.69947699 

4 0.84420228 0.79620809 

10 0.83064857 0.82305960 

50 0.82821727 0.82791446 

100 0.82814156 0.82806586 
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3.3) Simpson Integration Rule 

 

 

 

 

 

In this method, each interval divided between a and b is 

also divided into two within itself. It is tried to approach 

the solution by defining a quadratic curve passing 

thorough each point. Here, as we can see in the error 

expression, the error rates decrease with respect to 

order of h4.  

 

 

 

=>

 

     4

1243210
42......2424

3
hOyyyyyyyy

h
dxxf

nnn

b

a


  

 

Error,  
 

   44.
180

hOhcf
ab

E 


  bca   

 

Example:  

4

1

2 ?dxx , for n=2, obtain the integral using Simpson's integration method. 

For 2n , 

hjxx j .0    , nj ,......,2,1,0  

5.1
2

14








n

ab
h  

 

jx j 5.11   , 2,1,0j  

10 x  
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5.21 x  

42 x  

 

    210 4
3

yyy
h

dxxf

b

a

  

 

     222 45.241
3

5.1


b

a

dxxf  

 

=>   21

4

1

 dxxf  

Example: ?
sin2

1

0
2


x

dx
 Find the result of the integration according to all three rules? 

Solution: 

n Rectangular Rule Trapezoidal Rule Simpson’s Rule 

2 0.76260967 0.77253221 0.7655945 

10 0.76582073 0.76620815 0.76594906 

50 0.76594477 0.76596025 0.76594992 

100 0.76594864 0.76595251 0.76594993 

 

3.4) Romberg Integration Rule 

 

This rule will not be used in this course. 

HOMEWORK 

1)   



0

?sin dxx     2)    



0

?cos.45ln dxx  

 

3)  

8.0

0

?
2

dxe x
    4) 

 
 



1

1.0

?
1

ln
dx

x

x
 

 

By choosing n=100, solve the integrals using all the methods.  
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3.5) Gauss-Legendre Quadrature and Integration 

The aim of the method, to calculate the integral  


1

1

dxxf . In the formula given below, kx  

and kw  values are gauss quadratures. kx ’s represent the roots of the Legendre polynomial 

and the kw 's represent the weight functions dependent on these roots. The limits of integral 

are between -1 and 1.  

         



n

k

kknn xfwxfwxfwxfwdxxf
1

2211

1

1

.........  * 

 

Legendre Polynomials, 

 

    n

n

n

nn x
dx

d

n
xP 1

!.2

1 2    can be calculated by “Rodriguez Formula”. 

 

  10 xP  

  xxP 1
 

   13
2

1 2

2  xxP  

   xxxP 35
2

1 3

3   

   33035
8

1 24

4  xxxP  

. 

. 

 

If two previous Legendre polynomials are known, the remaining Legendre polynomials can 

be calculated by the "recurrence relation". 
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Recurrence relation :           0..12.1 11   xPnxPxnxPn nnn   

 

If this formula is applied for n=1, 

 

      0.3.2 012  xPxPxxP  

 

=>       1.3.3.2 012  xxxPxPxxP  

 

=>  
2

13 2

2




x
xP  

 

Weight Function : 
 

  21

2

2
12

kn

k
k

xPn

x
w




    

 

 

Example: Find the Gauss quadratures for n=3. 

 

     035
2

1 3

3  xxxP  => 035 3  xx  

     => 01 x   7745966.0
5

3
3,2  x  

  

 

 
    

888889.0
9

8

10.3
2

1
9

2

03

012
2

2

2

2

2

2

1 















P

w
 

 

 

 
  

 

 
555556.0

17745966.0*3
2

1
9

7745966.012

7745966.03

7745966.012
2

2

2

2

2

2

2

2 

















P
w

 

 23 ww   
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Example: Find the Gauss quadratures for n=2. 

 

     013
2

1 2

2  xxP  => 577350.02,1 x  

 

 

 
  21

2

212

kn

k
k

xPn

x
w






 

 

1

3

1
2

3

1
12

2

2

2

1 




































w
  & 12 ww   

 

----------ooooooooooooo----------- 

 

The error equation that occurs in the solutions made with the Gauss-Legendre formulas is 

as follows, 

 

 
 

    
  cf

nn

n
R n

n

n

2

2

412

!212

!2






  , 11  c  

If the limits of the integral are not between -1 and 1, but between two different values 

such as a and b, the following formulas must be used to calculate the integral.   

 

    ni

b

a

n

i

i Ryfw
ab

dyyf 






 
 

1

.
2

  * 

 








 








 


22

ab
x

ab
y ii  
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Error Function ; 
   

    
  cf

nn

nab
R n

n

n

2

3

412

!212

!








 

 

 

Example: Calculate the integral  


1

1

2 cos dxxx  for 3n  by using  Gauss-Legendre 

formulas. 

     035
2

1 3

3  xxxP  => 035 3  xx  

     => 01 x   & 7745966.0
5

3
3,2  x  

  

 

 
    

888889.0
9

8

10.3
2

1
9

2

03

012
2

2

2

2

2

2

1 















P

w
 

 

 

 
  

 

 
555556.0

17745966.0*3
2

1
9

7745966.012

03

7745966.012
2

2

2

2

2

2

2

2 

















P
w

    & 23 ww   

       3322

1

1

11

2 ...cos xfwxfwxfwdxxx 


 

 

        


77459.0cos*77459.0*555556.00*888889.0cos
2

1

1

2 dxxx  

          77459.0cos*77459.0*555556.0
2

  

  




1

1

2 47650.0cos dxxx  

Check by analytical solution; 

 

         47830.0sin*2cos*2cos
1

1

1

1

22 


 xxxxdxxx  
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Example: Calculate the integral 
2

0

dye y
 for 3n  by using  Gauss-Legendre formulas.

  

  









 


3

1

2

0

.
2

02

i

ii

y yfwdye  

  

1
22








 








 
 iii x

ab
x

ab
y  

 110111  xy  

 77459.1177459.0122  xy  

22541.0177459.0133  xy  

 

=>    22541.077459.11
3

1

2

0

*555556.0*555556.0*888889.01.
2

02
eeeyfwdye

i

ii

y 






 
 



 

  

2

0

388853.6dye y
 

Check by analytical solution;  
2

0

02
2

0

389056.6eeedye yy
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3.6) Gauss-Chebysev Integration Formula 

 

 
dx

x

xf

 

1

1
21

          ,  The integral has singular points in 1x . if we try to solve 

it with normal numerical methods, the integral goes to 

infinity at these points. In this case we use Chebysev 

formulas, 

 

     in xnxT arccos.cos  

 

=> 
 

 





n

i

nii Rxfwdx
x

xf

1

1

1
2

*
1

   ,  
n

wi


  

 

We can calculate ix  such that 

 

If      0arccos.cos  in xnxT   , 

  
 

2

12
arccos*




i
xn i    becomes. 

=> 
 

n

i
xi

2

12
arccos


  

  
 








 


n

i
xi

2

12
cosarccoscos


 

 

=> 
 








 


n

i
xi

2

12
cos


 

 

 

Error function, 
 

  cf
n

R n

nn

2

122!*2 



 , 11  c  
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Example: Calculate the integral 
 

1

1
21 x

dx
 for 3n  by using Gauss-Chebysev integration 

formula. 

 

  
 








 


n

i
xi

2

12
cos


 

 

For 1i   
 

2

3

6
cos

3*2

11*2
cos1 
















 



x  

For 2i   
 

0
2

cos
3*2

12*2
cos2 
















 



x  

For 3i   
 

2

3

6

5
cos

3*2

13*2
cos3 
















 



x  

   

  
3

321




n
www  

where   1xf , 

 

=>      332211

1

1
2

***
1

xfwxfwxfw
x

dx






 

   








111
31

1

1
2x

dx
 

 

Check by analytical solution ;   












 


22

arcsin
1

1

1

1

1
2

x
x

dx
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Example: Calculate the integral dx
x

x

 

1

1
2

4

1
  for 3n  by using Gauss-Chebysev 

integration formula.  

 

    4xxf   

  
 








 


n

i
xi

2

12
cos


 

 

For 1i   
 

2

3

6
cos

3*2

11*2
cos1 
















 



x  

For 2i   
 

0
2

cos
3*2

12*2
cos2 
















 



x  

For 3i   
 

2

3

6

5
cos

3*2

13*2
cos3 
















 



x  

   

  
3

321




n
www  

 

=>      332211

1

1
2

4

***
1

xfwxfwxfw
x

dxx






 

 
8

3

2

3
0

2

3

31

4

4

4
1

1
2

4 
















































 x

dxx
 

 

NOTE: If the limits of integral are between a and b, the formula becomes  

 

 
 

  
 










 




n

i

nii

b

a

Ryfw
ab

dy
ybay

yf

1

*
2

 

 

 






 








 


22

ab
x

ab
y ii  
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3.7) Gauss-Laguerre Formula 

 

     




 
0 1

*
n

i

nii

x Rxfwdxxfe  

 

Laguerre functions ,    nx

n

n
x

n xe
dx

d
exL    

 

Weighting function , 
 

  2
2

!

ini

i
xLx

n
w


  

 

Error function  , 
 
 

   cf
n

n
R n

n

2

2

!2

!
  

 

Example:  


 
0

?sin dxxe x
 

 

    xxf sin  

 

     




 
0 0

sin*sin
n

i

ii

x xwdxxe  

 

n 2 6 10 14 

 


n

i

ii xw
0

sin*  0.43 0.50005 0.500002 0.500000 
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3.8) Gauss-Hermite Formula 

 

    


 

 
n

i

nii

x Rxfwdxxfe
1

*
2

 

 

Where ix ’s are the roots of Hermite functions. 

 

     22

1 x

n

n
xn

n e
dx

d
exH   

 

  2
1 !2

in

n

i
xH

n
w




 
 and  

 
  cf

n

n
R n

nn

2

!22

! 
  

 

Example:   ?sin22






 dxxe x
 

 

=>    






 
n

i

ii

x xwdxxe
1

22 sin*sin
2

 

 

n 2 4 6 8 10 

 


n

i

ii xw
0

2sin*  0.748 0.5655 0.560255 0.560202 0.560202 

 

HOMEWORKS 

 

1)  

1

0

?dxx x
      2) 

  ?
0

sin 


dxe x
  

3) ?
0

4 


 dxxe x
       4) ?

0

1














dxe x
x
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5)  




  ?cos
2

dxxe x
    6) ?

2

2 1








dxe x
x

  

 

7) 
 

?
1

cos
1

1
2







dx
x

x
     8) 







1

1
2

2

?
1

1
dx

x

x
 

 

 

3.9) Multiple Integrals 

 

  
 



b

ax

d

cy

dxdyyxfI ..,    

The integral can be separated two parts, 

If we say    




d

cy

dyyxfxF ., , then I integral becomes  




b

ax

dxxFI .  . 

 

=>      









 


m

j

jj

d

cy

yxfw
cd

dyyxfxF
1

,*
2

.,   

 

 






 








 


22

cd
x

cd
y jj  

=>    dxyxfw
cd

dxxFI

b

ax

m

j

jj

b

ax

.,*
2

.
1

 
 








 
  

 

   
 
















 







 


n

k

m

j
jkjk yxfww

abcd
I

1 1

,*
22

 

 

 






 








 


22

ab
x

ab
x kk  

 

 
     

 










n

k

m

j
jkjk yxfww

cdab
I

1 1

,**
4
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Example: ?
.

2

0

1

1

22



  

 x y
yx

dxdy
A  Find the approximate value of  integral by dividing the 

integrals by x and y into two parts. 

  

 
    

 
  









2

1

2

1
22

2

0

1

1

22

1
**

4

1102.

k j jk

jk

x y
yx

ww
yx

dxdy
A  

 

 1
22








 








 
 kkk x

ab
x

ab
x  

 jj xy   

 If we assume 2 nm , 

  

 For integral depends on x,  

 57735.01 x    => 57735.1157735.0111  xx  

 57735.02 x   => 42265.0157735.0122  xx  

 121  ww  

 

 For integral depends on y, 

 57735.01 x    => 57735.011  xy  

 57735.02 x   => 57735.022  xy  

 121  ww  

 

    
 
  









2

1

2

1
22

2

0

1

1

22

1
**

4

1102.

k j jk

jk

x y
yx

ww
yx

dxdy
A  












































2

2

2

2

2

1

2

2

2

2

2

1

2

1

2

1

2

1
2

2

22

1

2

111111

yxyxyxyxyxyx
A

k kk

 

=> 61538.4A  
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Example: ?...
1

0 0

2

  


x
y dxdyeyxA  Find the approximate value of  integral by dividing the 

integrals by x and y into two parts.  

dxdyeyxA

x

y

 








 

1

0 0

2

.  

=> If   


x

y dyeyxI
0

2

.   then “A” integral becomes  dxxIxA 
1

0

..   

    










 


2

10

*
2

.
2

i

ii

x

y yfw
ab

dyeyxI  

 

 57735.02,1 x   and   121  ww  

 

 






 








 


22

ab
x

ab
y ii  => 

222

0

2

0 x
x

xx
x

x
y iii 
















 








 
  

        x
xx

y 788675.0
2

57735.0
2

1   

        x
xx

y 211325.0
2

57735.0
2

2   

 

=>       21 *1*1
2

yfyf
x

xI   

           22
211325.0788675.0 *.211325.0*.788675.0

2

xx exex
x

xI    

 

=>  
 

1

0

.04466.03.622.03 22

..105663.0..394338.0 dxexexA xx
 

 






 








 


22

ab
x

ab
x ii  => 

2

1

22

01

2

01








 








 
 i

ii

x
xx  

      788675.0
2

1

2

57735.0
1 x  
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      211325.0
2

1

2

57735.0
2 


x  

  









 


2

1

*
2 j

jj xgw
ab

A  

 

=>          
22

788675.0*04466.03788675.0*622.03
.788675.0.105663.0.788675.0.394338.0

2

1
eeA  

         22
211325.0*04466.03211325.0*622.03

.211325.0.105663.0.211325.0.394338.0
2

1   ee  

 

=> 0932.0A  
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4) NUMERICAL DIFFERENTIAL 

 

4.1) Forward and Backward Differences 

 

If we expand the  xf  function to a Taylor series at a distance h from x, we get, 

 

          ...
!3!2

.
32

 xf
h

xf
h

xfhxfhxf  

 

In this case  xf  can be obtained such that, 

 

=>  
   

    ...
62

2




 xf
h

xf
h

h

xfhxf
xf  

 

=>  
   

 hO
h

xfhxf
xf 


  (Forward Difference Formula) 

 

 

 

 xf   => if  

 hxf   => 1if  

 

=>  hO
h

ff
f ii

i 


 1
   (Forward Difference Formula) 
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If we repeat the above operations for a point at a negative distance of h from the 

selected point x, we get 

          ...
!3!2

.
32

 xf
h

xf
h

xfhxfhxf  

 

 
   

    ...
62

2




 xf
h

xf
h

h

hxfxf
xf  

 

=>  
   

 hO
h

hxfxf
xf 


  

 

=>  hO
h

ff
f ii

i 


 1
   (Backward Difference Formula) 

 

Operators 

iii fff  1   =>  hO
h

f
f i

i 





 (Forward Difference Formula) 

 

1 iii fff   =>  hO
h

f
f i

i 





 (Backward Difference Formula) 

 

In order to calculate the quadratic forward difference formula, the solution is obtained by 

opening the  hxf   and  hxf 2  functions to the Taylor series.  

2/           ...
!3!2

.
32

 xf
h

xf
h

xfhxfhxf  

     
 

 
 

  ...
!3

2

!2

2
.22

32

 xf
h

xf
h

xfhxfhxf  

 

           ...22 32  xfhxfhxfhxfhxf  

 

=>  
     

  ...
22

2



 xfh

h

xfhxfhxf
xf  
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  hO
h

fff
f iii

i 


 

2

12 2
  (Quadratic Forward Difference Formula) 

  

 hO
h

fff
f iii

i 


 

2

212
  (Quadratic Backward Difference Formula) 

 

iiii ffff   12

2 2  =>  hO
h

f
f i

i 



2

2

 

 

21

2 2   iiii ffff  =>  hO
h

f
f i

i 



2

2

 

 

4.2) Central Differences 

 

 

 

 
   

tan
2





h

hxfhxf
xf  

 

 

 

 

           ...
!3!2

.
32

 xf
h

xf
h

xfhxfhxf   (1) 

          ...
!3!2

.
32

 xf
h

xf
h

xfhxfhxf     (2) 

 

         ...
!3

2
.2

3

 xf
h

xfhhxfhxf  

 

=>  
   

  ...
62

2




 xf
h

h

hxfhxf
xf  
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=>  
     2

2
hO

h

hxfhxf
xf 


  

 

If we add formulas (1) and (2) side by side, 

          4
2

!2

2
2 hOxf

h
xfhxfhxf   

 

=>  
       2

2

2
hO

h

hxfxfhxf
xf 


  

 

 

  211

2
hO

h

ff
f ii

i 



 

 

       Central Difference Formula 

  2
2

11 2
hO

h

fff
f iii
i 




 
 

 

4.3) Generalization of Difference Formulas 

 

 hO
h

f

dx

fd
n

j

n

x

n

n

j




   Forward Difference Formula 

 hO
h

f

dx

fd
n

j

n

x

n

n

j




   Backward Difference Formula 

 

 

 222

2
hO

h

ff

dx

fd
n

n
j

n

n
j

n

x

n

n

j








  , if n is even      

                                                 Central Difference Formula 

   

 22

1

2

1

2
hO

h

ff

dx

fd
n

n
j

n

n
j

n

x

n

n

j













 , if n is odd 
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General Formulas, 

 

j

n

j

n

j

n fff 1

1

1 



   

 

1

11



  j

n

j

n

j

n fff  

 

Example: Calculate the central difference formula for 2n . 

 2
2

2

2

2

2

2

2

2

2

2
hO

h

ff

dx

fd jj

x j








 

 

 
   

 2
2

112

2

1

2

1

2

2

2

22
hO

h

ffff
hO

h

ff

dx

fd jjjjjj

x j










 

 

   
 2

2

1111

2

2

2
hO

h

ffffffff

dx

fd jjjjjjjj

x j







 

 

 
 2

2

11

2

2 2
hO

h

fff

dx

fd jjj

x j
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Example:  

 

x  0 1 2 3 4 5 

 xf  1 0.5 8.0 35.5 95 198.5 

 

Find the third derivative of the function f(x) at 2,1,0x  using the forward difference 

formulas.  

 

Since the step interval is 1, it is taken as h=1 in the expressions. 

 

i  ix  if  iii fff  1  
iii fff  1

2
 iii fff 2

1

23    

0 0 1 5.015.0     85.05.7   12820   

1 1 0.5 5.75.00.8   205.75.27   122032   

2 2 8.0 5.270.85.35   325.275.59   123244   

3 3 35.5 5.595.3595   445.595.103    

4 4 95 5.103955.198     

5 5 198.5    

 

 hO
h

f

dx

fd j

x j





3

3

3

3

 

 

1h  => 

 

12
13

0

3

0
3

3





f

dx

fd
  12

13
1

3

1
3

3





f

dx

fd
  12

13
2

3

2
3

3





f

dx

fd
 

 

4.4) Higher Order Forward, Backward, and Central Difference Formulas 

 

If we write the forward difference formula, 

 

 
   

    ...
62

2




 xf
h

xf
h

h

xfhxf
xf  
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When we write the second order forward difference formula instead of  xf   in this 

formula, 

 

 
     

  ...
22

2



 xfh

h

xfhxfhxf
xf  

 

=>  
         

    ...
6

22

2

2

2















 xf

h
hO

h

xfhxfhxfh

h

xfhxf
xf  

 

=>  
       2

2

342
hO

h

xfhxfhxf
xf 


  

 

 212

2

34
hO

h

fff
f iii

i 


 
 Forward Difference  

          

 211

2
hO

h

ff
f ii

i 


 
  Central Difference      (Three-Point Formulas) 

          

 212

2

34
hO

h

fff
f iii

i



 

 Backward Difference 

 

 

 42112

2

88
hO

h

ffff
f iiii

i 


 
 Central Difference (Five Point Formula) 
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HOMEWORK 

 

1)  

x  0 0.5 1.0 1.5 2 2.5 3.0 

 xf  1 0.8 1.2 0.4 0.6 0.8 0.7 

 

 

Solve by all approximations  5.1f   and  5.1f   so that the error order of  25.0O   

 

2) Obtain central difference formula for  xf  . 
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 5) INTERPOLATION AND EXTRAPOLATION 

 

5.1) Gregory-Newton Interpolation Formula 

 

If the function  xf  expand to Taylor series at  0x , 

 

          ...0
!3

0
!2

0.0
32

 f
x

f
x

fxfxf  

 

     20 0.0 hOfh
h

f
f 


  , by substituting forward difference expression in Taylor 

series, we obtain 

 

   
    

...
!.3
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0 0
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 f
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hxhxx
f

h

hxx
f

h

x
fxf  

 

If we expand it to the Taylor series at nxx  , we can generalize the formula as 
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(Gregory-Newton interpolation formula with forward difference) 

 

If we repeat these steps with the backward difference formula, 
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(Gregory-Newton interpolation formula with backward difference) 

 

If the data are equally spaced, the Gregory-Newton interpolation formula is used to 

interpolate or extrapolate. 
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Example:  

x  0 1 2 3 4 5 

 xf  -7 -3 6 25 62 129 

 

Estimate the value of  1.1f  based on the given values. 

 

When we look at the values, since there are more points beyond the 1.1 point, the forward 

difference formula will be used. 

  

   
              

...
!.3

2

!.2

3

3

2

2









 n

nnn

n

nn

n

n

n f
h

hxxhxxxx
f

h

hxxxx
f

h

xx
xfxf  

 

i  ix  if  iii fff  1  
iii fff  1

2
 iii fff 2

1

23    

0 0 7    473   549   5510   

1 1 3    936   10919   81018   

2 2 6  19625   181937   121830   

3 3 25  372562   303767   - 

4 4 62  6762129   - - 

5 5 129  - - - 

 

 

i  ix  if  
iii fff 3

1

34    iii fff 4

1

45    

0 0 7  358   134   

1 1 3  4812   - 

2 2 6  - - 

3 3 25  - - 

4 4 62  - - 

5 5 129  - - 

 

Since the closest value to 1.1 is 1.0, 1nx  will be accepted. ( 1h  and 1.1x ) 
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 1

3

31

2

21
1!.3

21.011.01.0

1!.2

111.111.1

1

11.1
11.1 fffff  

 
        

1

4

41!.4

31.021.011.01.0
f


 

 

 
          

4
24

9.29.1*9.0*1.0
8

6

9.1*9.0*1.0
10

2

9.0*1.0
9*1.031.1








f  

 

  40465.21.1 f  

 

If we consider only first to terms the result would be 

  1.29*1.031.1 f   (Linear Interpolation) 

 

5.2) INTERPOLATION TO UNEVEN DATA (LAGRANGE POLYNOMIALS) 

 

If we write nth order polynomial  for  jx  point,  

 

          njjjj xxxxxxxxxxxxAxP   ............ 11210  

 

  )(
0






n

ji
i

ijj xxAxP
 

 

If we were to find the value of the polynomial for any point, kx   
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      (Lagrange Polynomials) 
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=>                  xPxfxPxfxPxfxPxfxf 33221100 ****   

 

=>  














01

00

0

k

k

xP k  

 

 

=>           0*0*0*1* 32100 xfxfxfxfxf   

           0*0*1*0* 32101 xfxfxfxfxf   

 

Example:  

i  0 1 2 3 

ix  1 2 4 8 

 ixf  1 3 7 11 

 

Find the Lagrangian function and calculate the value  7f . 
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=>  
   

   
   
   814121

842

302010

321

0










xxx

xxxxxx

xxxxxx
xP  

 

  
   
   

   
   824212

841

312101

320

1










xxx

xxxxxx

xxxxxx
xP  

 

 
   

   
   
   842414

821

321202

310

2










xxx

xxxxxx

xxxxxx
xP  

 

 
   

   
   
   482818

421

231303

210

3










xxx

xxxxxx

xxxxxx
xP  

 

=>                  xPxfxPxfxPxfxPxfxf 33221100 ****   

 

=>          xPxPxPxPxf 3210 *11*7*3*1   

 

=>          7*117*77*37*17 3210 PPPPf   

 

 
   

   
   
   

71429.0
7*3*1

1*3*5

814121

874727
7

302010

321

0 















xxxxxx

xxxxxx
P  

  
   
   

   
   

5.1
6*2*1

1*3*6

824212

874717
7

312101

320

1 















xxxxxx

xxxxxx
P  

 
   

   
   
   

25.1
4*2*3

1*5*6

842414

872717
7

321202

310

2 















xxxxxx

xxxxxx
P  

 
   

   
   
   

53571.0
4*6*7

3*5*6

482818

472717
7

231303

210

3 










xxxxxx

xxxxxx
P  

 

=>     53571.0*1125.1*75.1*371429.0*17 f   

 

=>   8571.107 f   
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HOMEWORK 

 

1)  

i  0 1 2 3 4 

ix  2 4 6 7 9 

 ixf  3 6 9 5 8 

 

Find the Lagrange polynomial for the data given. Calculate the  8f  and  1f  values. 

 

 

2)  

i  0 1 2 3 4 5 6 7 

ix  0.1 0.3 0.7 0.9 1.2 1.5 1.7 2.0 

 ixf  0.99 0.92 0.7 0.57 0.39 0.24 0.16 0.07 

 

Find the Lagrange polynomial for the data given. Calculate the   1f  value. 

 

5.3) Extrapolation 

 

If the function  xf  is known only bxa    in the range, but the values of   xf in ax   

or bx   are desired, then extrapolation is performed. Gregory-Newton or Lagrange 

functions are used. 

 

In order to be able to perform interpolation and extrapolation for  xf , it must be suitable 

for polynomial interpolation. 
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Example: 

 

x  1 2 3 4 5 

 xf  100 25 11.111 6.25 4 

 

=> Find estimated value of  7.5f . 

 

Since the intervals are equal, we need to use the Gregory-Newton forward or backward 

difference formulas. Since the desired value is 5.7, we need to use the backward 

differences formula. 

   
              

...
!.3

2

!.2

3

3

2

2









 n

nnn

n

nn

n

n

n f
h

hxxhxxxx
f

h

hxxxx
f

h

xx
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(Gregory-Newton interpolation function with backward difference formula) 

 

i  ix  if  1 iii fff  
1

2

 iii fff  1

223

 iii fff  1

334

 iii fff  

0 1 100  - - - - 

1 2 25  75  - - - 

2 3 111.11  889.13  111.61  - - 

3 4 25.6  861.4  028.9  083.52  - 

4 5 4  25.2  611.2  417.6  666.45  

 

5nx  (closest to 5.7) 

7.5x  

1h  
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xfxf  

7.057.5  nxx  

 

   
        

5

4

5

3

5

2

5
24

7.37.27.17.0

6

7.27.17.0

2

17.07.0
7.057.5 ffffff 
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      666.45
24

7.3*7.2*7.1*7.0
417.6

6

7.2*7.1*7.0
611.2

2

7.1*7.0
25.2*7.047.5 f  

 

  163.237.5 f  

 

Not suitable for interpolation and extrapolation. 

 

If we do linear interpolation taking the first two terms, we get 

 

      425.225.2*7.047.057.5 5  fff  

 

 

Real Value 

 
2

100

x
xf   

Linear 2. Degree 3. Degree 4. Degree 

 7.5f  3.078 2.425 3.979 0.543 23.163 

 

In such a case, the safest approach is the linear interpolation approach. 

 

5.4) Spline Interpolation 

 

In the interpolation methods we have examined under other headings, an nth degree curve 

passes from the (n+1) points. However, passing high-order polynomials across data points 

could produce erroneous results when there were abrupt changes in data values. To avoid 

this, the data can be divided into smaller data groups and smaller order polynomial 

overlays can be made for each data group. Thus, the curve fitting operations made from 

small-order polynomials are called spline interpolation. 
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Linear Spline 

 

First-order spline functions for data groups given in order can be given as follows, 

 

      000 xxmxfxf    10 xxx   

      111 xxmxfxf    
21 xxx   

 . 

 . 

 . 

      111   nnn xxmxfxf  nn xxx 1  

 

Here the slope expression,  
   

ii

ii

i
xx

xfxf
m










1

1
 

 

Example: For the data group given below, apply the linear spline and calculate  5f . 

 

i  0 1 2 3 

ix  3.0 4.5 7.0 9.0 

 ixf  2.5 1.0 2.5 0.5 
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      111 xxmxfxf    
21 xxx   

    5.41 1  xmxf  

 
   

6.0
5.47

15.2

12

12
1 











xx

xfxf
m  

    5.4*6.01  xxf   75.4  x  

=>     3.15.45*6.015 f  

 

Quadratic Spline 

 

As seen in the example above, the curve at the node (data) points is discontinuous and 1., 

2., …, n. derivatives are undefined. If it is required, the continuous mth derivative, It is 

necessary to pass a (m+1) degree polynomial. If a third-order polynomial is passed 

through the data points, both the 1st and 2nd derivatives are defined. For this reason, cubic 

splines are mostly used in spline interpolation. In a quadratic spline, the goal is to pass a 

second-order curve through the data points. As a result, the first derivative is defined at 

the data points. 

 

 

 

  iiii cxbxaxf  .. 2
 

 

For (n+1) data points, there are n intervals in total. 

 

There are (3n) unknowns in total consisting of a's, b's and c's. 
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Then a total of (3n) conditions (equations) are needed. These; 

 

i) At internal data points, the function values must be equal to the data values. 

 

 



 11

2

1

1111

2

11

..

...,,3,2

..











iiiiii

iiiiii

xfcxbxa

ni

xfcxbxa

 

 

This condition satisfies 2(n-1) equation. 

 

ii) First and last functions must pass through first and last data points. 

 

  0101

2

01 .. xfcxbxa   

  nnnnnn xfcxbxa  .. 2
 

 

This provides 2 equations. 

 

iii) The first derivatives must be equal at the internal data points. 

 

   bxaxf  .2  

 iiiiii bxabxa   1111 .2.2   ni ...,,3,2  

 This provides  1n  equations. 

 

iv) At the first data point, the second derivative is assumed to be “0”. 

 

 02 1 a   =>  01 a  

 

In this case, the first function is a straight line, not a quadratic curve. 
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Example: For the data given in the previous example, solve the quadratic spline and 

calculate  5f . 

 

i  0 1 2 3 

ix  3.0 4.5 7.0 9.0 

 ixf  2.5 1.0 2.5 0.5 

 

Here n=3 and 3n=9 unknowns. If we write the 9 equations that depend on these 9 

unknowns, 

 15.425,20 111  cba         (1) 

 15.425,20 222  cba         (2) 

 5.2749 222  cba          (3) 

 5.2749 333  cba          (4) 

 5.239 111  cba          (5) 

 5.0981 333  cba          (6) 

 2211 99 baba           (7) 

 3322 1414 baba           (8) 

 01 a            (9) 

 

If we solve these equations with the Gauss elimination method, the equation becomes as 

follows, 
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2
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1

1
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a

c

b

a

c

b
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If a solution is made, 

 

 01 a     11 b     5.51 c  

 64.02 a    76.62 b     46.182 c  

 6.13 a    6.243 b     3.913 c  

 

=>   5.51  xxf      5.43  x  

  46.1876.664.0 2

2  xxxf    75.4  x  

  3.916.246.1 2

3  xxxf    97  x  

 

 

 

5x   =>   46.185*76.625*64.052 f  

     66.052 f  

 

There are two important shortcomings in the quadratic spline solution; 

 

i) The first two data points are joined with a straight line. 

ii) Functions in both the first and last intervals show extreme oscillation. 

 

The remedy for these weaknesses is the cubic spline. These deficiencies are not observed 

in the cubic spline.  
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Cubic Spline 

 

=>   iiiii dxcxbxaxf  23
 

 For (n+1) data points, 

There are n intervals. 

4n unknowns appear (a, b, c, d's) 

 

Conditions: 

 

1) Function values at internal data points must be equal to the data value. 

  It provides 2(n-1) equations. 

 

2) The first function must pass through the first data point, and the last function 

must pass through the last data point. 

It provides 2 equations. 

 

3) The value of the first derivatives of the functions at the internal data points must 

be equal. 

  It provides (n-1) equations. 

 

4) The value of the second derivatives of the functions at the internal data points 

must be equal. 

 It provides (n-1) equations. 

 

5) The second derivatives of the functions passing through the first and last data 

points must be “0”. (Forcing Condition). It provides 2 equations. 
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In the sum of these items, 4n equations are obtained and a solution is made in this way. 

 

Since the number of equations is too large during these operations, a set of equations has 

been developed for each region and generalized as; 
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    ii
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iiiiiiiii xfxf
xx

xfxxxfxxxfxx 


 



 1

1

111111

6
2  

 
    ii

ii

xfxf
xx




 



1

1

6
   , 1,......,3,2,1  ni       (B) 

 

First, equation B is solved. After obtaining f   values at internal points, those can be 

substituted in equation  A and for each interval a third order curve is obtained.  

 

 

Example: Calculate the cubic spline curves using the data below and calculate f(5). 

 

i  0 1 2 3 

ix  3.0 4.5 7.0 9.0 

 ixf  2.5 1.0 2.5 0.5 

 

=> If we say i=1 in equation B, 

  

           
 

    
 

    10

01

12

12

212102001

66
2' xfxf

xx
xfxf

xx
xfxxxfxxxfxx 





  

           
 

    
 

    5.43
35.4

6
5.47

5.47

6
75.475.4372'335.4 fffffff 





  

 

If we say i=2 in equation B, 
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    75.4
5.47

6
79

79

6
97975.492'5.45.47 fffffff 





  

 

 3f   and  9f   values are equal to zero from the 5th condition. In this case, the above 

equations take the form: 

    6.975.25.4.8  ff   if  i=1 

    6.97.95.4.5.2  ff   if  i=2 

 

=>   67909.15.4 f  

   53308.17 f  

 

For the first interval; 

 

If equation A is solved by setting i=1; 

 

 
 

 
 

 
 

 
  

 x
f

x
f

x
f

xf 






 













 5.4

6

35.43

35.4

5.2
3

35.46

5.4
5.4

35.46

3 33

1  

  
 3

6

35.45.4

35.4

1








 



 x

f
  , 1i             

 

       3246894.05.466667.1386566.1
3

1  xxxxf  

 

For the second interval; 

 

If equation A is solved by setting i=2; 

 

         5.4638783.17299621.05.4102205.07111939.0
33

2  xxxxxf     , 2i             

 

 

 

 

For the third interval; 
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If equation A is solved by setting i=3; 

       725.09761027.19127757.0
3

3  xxxxf     , 3i             

 

The point x=5 is valid for the second interval. In this situation, 

 

  102886.152 f   

 Cubic Interpolation 

 

HOMEWORK 

 

1) Construct quadratic and cubic splines for the data given below. Find the value of  47.0f

. 

i  0 1 2 3 4 5 6 7 8 

ix  0 0.1 0.7 0.9 1.2 2.8 2.1 2.4 2.7 

if  3.0 4.0 6.5 7.2 4.3 3.2 6.0 7.1 8.3 

 

2) Write a computer program that overlaps a cubic spline with a curve. 
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LEAST SQUARE REGRESSION 

 

If the data contains errors or is thought to contain errors, instead of the curve that will 

pass through all data points, the lower-order curve fitting that is thought to represent these 

data approximately and does not pass through all data points is called regression. 

 

1. Linear Regression 

 

 

 

exaay  10  ,  e ; error  

xaaye 10   

iii xaaye 10   (The difference between each point that makes up the function and 

the actual value gives the error value for that point.) 

 

Criterion for Optimal Curve 

 

The optimal curve is defined as the curve that minimizes the sum of the squared errors. 

 

ix  iy  

1x  1y  

2x  2y  

. 

. 

. 

. 

. 

. 

nx  ny  
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n

i
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i

iiir xaayeS
1 1

2

10

2
 

0
0






a

S r
 =>   0.2

1

10  


n

i

ii xaay          (1) 

0
1






a

S r
 =>   0.2

1

10  


n

i

iii xxaay          (2) 

 

(1) 0
1

1

1

0

1

 


n

i

i

n

i

n

i

i xaay   => 



n

i

i

n

i

i xaany
1

10

1

.      (3) 

 

(2) 0..
1

2

1

1

0

1

 


n

i

i

n

i

i

n

i

ii xaxayx   => 



n

i

i

n

i

i

n

i

ii axaxyx
1

1

2

1

0

1

...     (4) 

 

Example: Find the most appropriate linear line for the following data. 

 

6n  

i  ix  iy  ii yx .  2

ix  y  (result) 

1 0.1 0.61 0.061 0.01 0.46262 

2 0.4 0.92 0.368 0.16 0.99198 

3 0.5 0.99 0.495 0.25 1.16844 

4 0.7 1.52 1.064 0.49 1.52135 

5 0.7 1.47 1.029 0.49 1.52135 

6 0.9 2.03 1.827 0.81 1.87426 

  3.3 7.54 4.844 2.21  

 

According to equation 3,  54.73.36 10  aa  

According to equation 4,  844.421.23.3 10  aa  

    7645.11 a  and 2862.00a  

    xaay 10   

  =>  xy 7645.12862.0   
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25667.1
6

54.7



n

y
y

i
 

 

Determining the Amount of Error in Linear Regression: 

 

a) Standard deviation of the regression line 

 
2

/



n

S
S r

xy   xyS /  : Standard deviation 

     2n  : Degrees of freedom 

b) Coefficient of determination 

 

t

rt

S

SS
r


2

 

 



n

i

ir eS
1

2
 

   



n

i

iit oyyS
1

22
 

tS , is the sum of the squares of the difference from the mean value of the dependent 

variable. Here, r is defined as the correlation coefficient. 

 

In case of perfect curve overlap, r=0. 

 12  rr  

t

t

S

S
r

02 
  

 

If rt SS   then 02  rr , it means the curve did not provide any improvement. 
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If we calculate the amount of error for the previous example, 

 

   22

10 iii exaay    22 yyo ii   

 0.02172 0.4181 

 0.00518 0.1133 

 0.03183 0.07111 

 0.000001822 0.06931 

 0.0026368 0.0455 

 0.02425 0.598 

  0.08562 1.3153 

 

  08562.02

ir eS   and    3153.12

it oS  

 

14630.0
26

08562.0

2
/ 







n

S
S r

xy  (standard error) 

 

935.0
3153.1

08562.03153.12 






t

rt

S

SS
r  

 

=> 9669.0r  
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2. Polynomial Regression 

 

It may be more appropriate to represent the same data as a polynomial rather than a 

straight line. In this case, the least squares method can be applied similarly for the mth 

degree polynomial. 

exaxaxaay m

m  ......... 2

210  

m

imiiii xaxaxaaye ......... 2

210   

 22

210

2 .........  m

imiiiir xaxaxaayeS  

 

(1)   0.........2 2

210

0







m

imiii
r xaxaxaay
a

S
 

(2)   0..........2 2

210

1





 i

m

imiii
r xxaxaxaay
a

S
 

. 

. 

(m+1)   0..........2 2

210 





m

i

m

imiii

m

r xxaxaxaay
a

S
 

 

1)    i

m

imii yxaxaxana ......2

210  

2)    

ii

m

imiii yxxaxaxaxa 13

2

2

10 ......  

. 

. 

. 

m+1)   

i

m

i

m

im

m

i

m

i

m

i yxxaxaxaxa 22

2

1

10 ......  

 

Standard deviation, 

 1/



mn

S
S r

xy  

Coefficient of determination, 

t

rt

S

SS
r


2
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Example: Calculate the 2nd order regression curve for the values given in the previous 

example? 

 

6n  

i  ix  iy  ii yx .  2

ix  

1 0.1 0.61 0.061 0.01 

2 0.4 0.92 0.368 0.16 

3 0.5 0.99 0.495 0.25 

4 0.7 1.52 1.064 0.49 

5 0.7 1.47 1.029 0.49 

6 0.9 2.03 1.827 0.81 

  3.3 7.54 4.844 2.21 

 

exaxaay  2

210 ..  

=> 2

210 .. iii xaxaaye   

    
22

210

2 .. iiir xaxaayeS  

0
0






a

S r
 =>   0..2 2

210   ii xaxaay      (1) 

0
1






a

S r
 =>   0..2 2

210   iii xxaxaay      (2) 

0
2






a

S r
 =>   0..2 22

210   iii xxaxaay      (3) 

1)   iii yxaxana 2

210   => 54.721.23.36 210  aaa  

2)   iiiii yxxaxaxa 3

2

2

10  => 844.4605.121.23.3 210  aaa  

3)   iiiii yxxaxaxa 24

2

3

1

2

0  =>   5102.32245.1605.121.2 210  aaa  

 

587114.00 a  

059102.01 a  

729537.12 a  
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2.729537.1.059102.0587114.0 xxy    2. degree regression polynomial 

xy 7645.12862.0       Linear regression polynomial 

 

NOTE: Calculate correlation coefficient. Compare result with the linear regression result.  

Probably here r=0.98. 

 

 

3. Multiple Linear Regression 

 

If there is more than one variable. (assuming there are 2 variables) 

ix1  ix2  iy  

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

In this case, not the best curve, but the plane that best represents the data will be found. 

 

 

 

iiii xaxaaye 22110   

 
2

22110

2   iiiir xaxaayeS  
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iii

r xaxaay
a

S
22110

0

20  =>   iii yaxaxan 22110.  

  iiii

r xxaxaay
a

S
122110

1

.20  



 =>   iiiiii yxaxxaxax ... 12211

2

101
 

  iiii

r xxaxaay
a

S
222110

2

.20  



 =>   iiiiii yxaxaxxax .. 22

2

212102
 

 

HOMEWORK 

 

1) Using the least squares regression method, find the first (linear), second, and third 

order polynomials for the data set given below. Compute and compare the coefficient of 

correlation for each case. 

 

ix  0 0.1 0.2 0.4 0.5 0.7 0.8 1.0 

iy  0 1.3 2.0 2.4 2.8 2.7 2.4 2.1 

 

2) Using the least squares regression method, write a computer program that 

superimposes a 3rd degree polynomial curve and apply it to the above data. 
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6) NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 

 

6.1.1) Numerical Solution of Initial Value Problems 

 

 yxfy ,  and   00 yxy   

 

 

 

 00 xyy   

 hxyy  01  

 hxyy 202   

. 

. 

. 

 nhxyyn  0  
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  01001 xxxyyy   

  12112 xxxyyy   

. 

. 

. 

  nnnnn xxxyyy   11  

=>  hxyyy nnn
1  

    nnn yxfxy ,  

    2

1 ,. hOyxfhyy nnnn   

 

This method is called the Euler method or the tangent line method. 

 

6.1.2) Three-term Taylor Series Method 

 

In the  yxfy ,  differential equation, if the initial value   00 yxy   is known, if we 

expand  hxy   to the Taylor series, we get, 

 

          ......
!3!2

.
32


h

xy
h

xyhxyxyhxy  

 

If we take first three term in Taylor series and apply chain rule to  xy  and  xy   

 

      xyxfyxfxy ,,   

 

 
     

dx

dy

y

xyxf

dx

dx

x

xyxf
xy .

,
.

,









  

 

=>  
     

  xyxf
y

xyxf

x

xyxf
xy ,

,,









   

 



MM597 ADVANCED NUMERICAL METHODS IN ENGINEERS / PROF.DR. NURİ YÜCEL 

74/141 

      
     

    3
2

,
,,

2
,. hOxyxf

y

xyxf

x

xyxfh
xyxfhxyhxy 

















  

 

  
   

   3
2

1 ,
,,

2
,. hOyxf

y

yxf

x

yxfh
xyxfhyy nn

nnnn

nn 
















  

 

Example: Numerically solve the differential equation given as yxy   and   21 y  

compare the solution with the analytical solution results. 

 

Analytical solution:  1 xy  

 

  yxyxf ,  , 1




x

f
  , 1





y

f
 

 

=>       3
2

1 11
2

,. hOyx
h

yxfhyy nnnnnn   

 If we choose 1.0h , 

 nhxxn  0    => nxn *1.01  

 

n  nx  ny  (Analytical) ny  (Numerical) 

0 1 -2.0 -2.0 

1 1.1 -2.1 -2.1 

2 1.2 -2.2 -2.2 

3 1.3 -2.3 -2.3 

. 

. 

. 

. 

. 

. 

. 

. 

10 1.8 -2.8 -2.8 

 

=>  
 

    3

2

11,1 2111
2

1.0
211.0 hOyy   

 1.21.00.21,1 y  
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Example:     yxxyy 2cossin. 22  ,                    23 y  

 

      yxxyyxf 2cossin., 22   

 

   22 sin.2cos.2 xxxxy
x

f





 

  2sin 2 



x

y

f
 

 

                   322222
2

22

1 2cossin.2sinsin.2cos.2
2

2cossin.. hOyxxyxxxxxy
h

yxxyhyy nnnn 
 

If we choose 1.0h , 

nhxxn  0   => nxn *1.03  

 

n  nx  ny  

0 3.0 4142.12   

1 3.1 1.7138 

2 3.2 1.9156 

3 3.3 1.9787 

4 3.4 1.9512 

5 3.5 1.9238 

6 3.6 2.0176 

. 

. 

. 

. 

. 

. 

. 

. 

. 

10 4 4.0834 
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6.1.3) Runge-Kutta Method 

 

   yxfxy ,  and   00 yxy   

 nnn yxfhA ,.  









 nnnn AyhxfhB

2

1
,

2

1
.  









 nnnn ByhxfhC

2

1
,

2

1
.  

 nnnn CyhxfhD  ,.  

 

   5

1 .2.2
6

1
hODCBAyy nnnnnn   

 

 

 

 nnnn yxfhyy ,.1   

 nnn xyhyy  .1  

 

It is a very reliable method. The degree of error is extremely low and there is no problem 

of derivation.  
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Example: Solve the differential equation given by  22 sin yxy   and   7.41 y   

 

If we choose 1.0h , 

 

   22 sin, yxyxf   10 x   7.40 y  

 

      1099.07.4sin1*1.0,1.0 22

000  yxfA  

1682.0
2

1099.0
7.4sin

2

1.0
11.0

22

0 





























B  

1884.0
2

1682.0
7.4sin

2

1.0
11.0

22

0 





























C  

     2115.01884.07.4sin1.011.0
22

0 D  

 

     2155.01884.0*21682.0*21099.0
6

1
7.4.2.2

6

1 5

000001  hODCBAyy  

=> 8731.41 y  

nhxxn  0  

nxn *1.01  

1.1x , 8731.41 y  

 

n  nx  ny  

0 1.0 4.7 (given) 

1 1.1 4.8731 

2 1.2 5.0426 

3 1.3 5.1313 

4 1.4 5.2168 

5 1.5 5.4039 

6 1.6 5.6797 

7 1.7 5.8708 
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6.2) NUMERICAL SOLUTION OF SECOND DEGREE INITIAL VALUE PROBLEMS 

 

 yyxfy  ,,    Axy 0     Bxy 
0  

 

6.2.1) Taylor Method 

 

If we expand  xy  to Taylor series at hx  , 

 

          ......
!3!2

.
32


h

xy
h

xyhxyxyhxy  

and 

          ......
!3!2

.
3

)4(
2


h

xy
h

xyhxyxyhxy  

 

         3
2

!2
. hOxy

h
xyhxyhxy   

 

       2. hOxyhxyhxy   

 

=>  jjjj yyxfy  ,,  

  hjxx j 101   

 3
2

1
!2

. hOy
h

yhyy jjjj   

  2

1 . hOyhyy jjj 
  

 

First we will take 0j , and calculate 0y  , 1y  and 1y . Then take 1j  and calculate 1y  , 

2y  and 2y . By continuing the iteration process, 1y , 2y , 3y , …, ny  will be obtained 
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Example: Solve the differential equation given by   yeyxy x   ..2cos2
 with initial 

conditions   11 y  and   31 y   

 

 

10 x   10 y  30 y       yeyxyyxf x   ..2cos,, 2
 

 

If 1.0h is chosen. 

 

Step 1: 0j  

 

  666974.23..21cos1 12

0  ey  

1.11*1.001  xx  

 
686665.0666974.2

2

1.0
3*1.01

2

1 y  

2666974.3666974.2*1.031 y  

 

Step 2: 1j  

 

    611405.2266974.3*.2686665.0cos1.1 1.12

1  ey  

2.11*1.012  xx  

 
346938.0611405.2

2

1.0
2666974.3*1.0686665.0

2

2 y  

527838.3611405.2*1.02666974.32 y  

 

Step 3: 2j  

 

  018939.03.13  yy  
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6.2.2) Runge-Kutta Method 

 

 yyxfy  ,,2
    00 yxy      00 Pxy   

 

 pyxfpy ,,1   =>    00 yxy   

 pyxfpy ,,2   =>    00 Pxp   

 

If   pyxfxpy ,,1  then 

  pyxfp ,,1 2  is obtained 

 

 nnn pyxfhk ,,. 11   

 nnn pyxfhl ,,. 21   









 1112

2

1
,

2

1
,

2

1
. lpkyhxfhk nnn  









 1122

2

1
,

2

1
,

2

1
. lpkyhxfhl nnn  









 2213

2

1
,

2

1
,

2

1
. lpkyhxfhk nnn  









 2223

2

1
,

2

1
,

2

1
. lpkyhxfhl nnn  

 3314 ,,. lpkyhxfhk nnn   

 3324 ,,. lpkyhxfhl nnn   

 43211 .2.2
6

1
kkkkyy nn   

 43211 .2.2
6

1
llllpp nn   
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Example: Solve the differential equation given by 0.20..5.2  yyxyx  with initial 

conditions   01 y  and   21 y . Evaluate   ?2.1 y  

=> y
xx

y
y

2

20.5



  

 If  pyxfpy ,,1  is assumed 

  pyxfy
x

p
x

p ,,
205

22
  

   010  yy  

   210  pp  

 

If 2.0h  is chosen, 

 

4.02*2.01 k  

20
1

20
2

1

5
*2.0

21 







l  

  2.02
2

1
22.0

2

1
2.0 102 


















 lpk  

570.1
2

4.0
0

2

2.0
1

20

2

2
2

2

2.0
1

5
2.0

22 




















































 





l  

  243.057.1
2

1
22.03 









k  

435.1
2

2.0
0

2

2.0
1

20

2

57.1
2

2

2.0
1

5
2.0

23 




















































 





l  

   113.0435.122.04 k  

 
 

  146.1243.00
2.01

20
435.12

2.01

5
2.0

24 















l  
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   113.0243.0*22.0*24.0
6

1
02.11  yy  

  233.02.11  yy  

 

Analytical solution 

 

  xxy ln.4sin
2

1 2  

  23137.02.1 y  

 

6.2.3) Runge Kutta – Nystrom Method 

 

 yyxfy  ,,     Kxy 0     Lxy 
0  

 

 
jjjj yyxfhA  ,,.

2

1
 


















 jjjjjjj AyAyhyhxfhB ,

2

1

2

1
,

2

1
.

2

1
 


















 jjjjjjj ByAyhyhxfhC ,

2

1

2

1
,

2

1
.

2

1
 

  jjjjjjj CyCyhyhxfhD .2,,.
2

1
  

 

 







 jjjjjj CBAyhyy

3

1
1  

 jjjjjj DCBAyy 
 .2.2

3

1
1  

 

Since it is only for 2nd order differential equation, its usage is limited. 
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HOMEWORK 

 

1) Differential equation 
yeyxy
 .3.4 2
 is given with initial conditions of   32 y  and 

  42 y . By choosing 1.0h , calculate  5y . 

 

2) Differential equation   yeyxy x   ..2cos2
 is given with initial conditions of   11 y  

and   31 y . By choosing 1.0h , calculate  5y . 

 

6.3) Numerical Solution of Second Order Boundary Value Problems 

 

 yyxfy  ,,     ay     by  

 

 

 

n

ab
h


  

hjxx j .0   

hjax j .  

 

 jjjj yyxfy  ,,  
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 211

.2
hO

h

yy
y

jj

j 





 

 

 2

2

11 .2
hO

h

yyy
y

jjj

j 





 

 

If we substitute and rearrange the finite difference formulas in the differential equation, 

then if 1,......,3,2,1  nj  is chosen, we get (n-1) algebraic equations. If we substitute the 

boundary conditions   ay  and   by   properly in this (n-1) equation, we get an (n-

1) set of equations. By solving  this (n-1) equation, values of 
1y , 

2y , 3y , ……, 1ny  can be 

found.  

 

Example: Differential equation yyxy  2  with boundary conditions   10 y  and 

  31 y  is given. If 10n is chosen, solve the differential equation numerically.  

 

 

1.0
10

01








n

ab
h  

 

jjjj yyxy  2  

 

If we use the central difference formulas, 
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=> 
h

yy
yx

h

yyy jj

jj

jjj

.2
.2

.2 11

2

11  



 

 

=>   jjjj xhy
h

yhy
h

.
2

122
2

1 2

1

2

1 
















 

 

 

hjxx j .0    => jx j *1.0  

 

jyyy jjj *001.0*95.0*98.1*05.1 11     

 

Except “j=0” and “j=10”, for j=1,2,3…, (n-1) values, the set of linear equations: 

 

001.0*95.0*98.1*05.1 210  yyy     1j  

002.0*95.0*98.1*05.1 321  yyy     2j  

003.0*95.0*98.1*05.1 432  yyy     3j  

004.0*95.0*98.1*05.1 543  yyy     4j  

005.0*95.0*98.1*05.1 654  yyy     5j  

006.0*95.0*98.1*05.1 765  yyy     6j  

007.0*95.0*98.1*05.1 876  yyy     7j  

008.0*95.0*98.1*05.1 987  yyy     8j  

009.0*95.0*98.1*05.1 1098  yyy     9j  

 

If the boundary conditions are entered, the first and last equations become: 

  10 0  yy   

 

001.0*95.0*98.11*05.1 21  yy   => 049.1*95.0*98.1 21  yy  

 

  31 10  yy  

009.03*95.0*98.1*05.1 98  yy  => 8590.2*98.1*05.1 98  yy  
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Matrix created with equations, 

 



























































































































8590.2

008.0

007.0

006.0

005.0

004.0

003.0

002.0

049.1

98.105.10000000

95.098.105.1000000

095.098.105.100000

0095.098.105.10000

00095.098.105.1000

000095.098.105.100

0000095.098.105.10

00000095.098.105.1

000000095.098.1

9

8

7

6

5

4

3

2

1

y

y

y

y

y

y

y

y

y

 

 

10 y  

7299.01 y     3231.04 y     6371.17 y  

4171.02 y     7406.05 y     0991.28 y  

0646.03 y     1813.16 y     5571.29 y  

          310 y  

 

HOMEWORK 

 

1) Differential equation yyxy  2  with boundary conditions   10 y  and    31 y  

is given. By choosing n=100, solve the problem. 

 

2) Differential equation yyxy  .4.42
 with boundary conditions   21 y  and 

  42 y  is given. By choosing n=100, solve the problem. 
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6.3.1) Mixed Boundary Condition 

 

The most general expression of boundary conditions that can be encountered in boundary 

value problems is   y
dx

dy
. . Here  ,   and   are constants. In these boundary 

conditions; In the case of 0  and 0 , the condition that arises with these conditions 

is called the Mixed Boundary Condition. In the case of 0  and 0 , the previous 

boundary condition is obtained and called the Dirichlet Boundary Condition, in the case of 

0  and 0  a2 and b2 the Neuman Boundary Condition is obtained  

 

Let's formulate the following differential equation for mixed boundary conditions at both 

endpoints, 

 

Differential equation is given  xfyC
dx

yd
 .

2

2

  

 

at ax     111 .   y
dx

dy
 

       Boundary conditions   

  

At bx     2222 .   y
dx

dy
 

 

Under these boundary conditions, nothing can be said between the function values at 

ax 0  and bx  .   0yay   and   myby   are unknown. In this case, the number of 

unknowns is equal to the number of points obtained by dividing the interval into (m) equal 

parts, that is (m+1).  
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If we write the finite difference expression of the differential equation, we get 

 ii
iii xfyC

h

yyy


  .
.2

2

11  

 

   iiii xfhyyhCy ..2. 2

1

2

1                       (1) 

 

if i=0 in equation (1), 

 

   0

2

10

2

1 ..2. xfhyyhCy    

          (2) 

In this equation, the unknown 1y  y-1 is encountered. This unknown represents an 

imaginary point behind ax   to h , i.e. x = a-h. We can make use of the first boundary 

condition to eliminate this imaginary point outside the range.  

111 .   y
dx

dy
 

 

101
11

1 .
2

 






   y
h

yy
 

 

=>  011

1

11 .
.2

y
h

yy 


  

 

If this expression is substituted in equation (2) and summed under common factors, the 

difference equation for the left endpoint is, 
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1

1

0

2

10

1

12 ..2
..2

..2
2.







 h
xfhyy

h
Ch 










     for 0i  

 

Likewise, if mi   is written in equation (1) to obtain the difference equation of the right 

endpoint, 

 

   mmmm xfhyyhCy ..2. 2

1

2

1      mi         (3) 

 

In this equation, 1my , represents an imaginary point hbx  . This imaginary point can 

be eliminated using the second boundary condition.  

 

22

11

2 .
2

 






  

m

mm y
h

yy
 

 

=>  mmm y
h

yy .
2

22

2

11 


   

 

If this expression is substituted in equation (3) and summed under common factors, the 

difference equation for the right end point is, 

 

 
2

22

2

22

1

..2
.

..2
2..2







 h
xfhy

h
Chy mmm 










   mi   

 

 

For midpoints 1,......,3,2,1  mi , equation (1) is valid. 

 

 
1

1

0

2

10

1

12 ..2
..2

..2
2.







 h
xfhyy

h
Ch 










     0i  

 

   1

2

21

2

0 ..2. xfhyyhCy        1i  

   2

2

32

2

1 ..2. xfhyyhCy        2i  



MM597 ADVANCED NUMERICAL METHODS IN ENGINEERS / PROF.DR. NURİ YÜCEL 

90/141 

   3

2

43

2

2 ..2. xfhyyhCy        3i  

.          . 

.          . 

.          . 

   1

2

1

2

2 ..2.   mmmm xfhyyhCy      1mi  

 
2

22

2

22

1

..2
.

..2
2..2







 h
xfhy

h
Chy mmm 










    mi   

 

Example: Solve the following differential equation for decreasing h values under the given 

boundary conditions by means of a computer program and compare with the analytical 

solution. 

 

Differential Equation ;   02.2.  yyxyx  

Boundary conditions ;   00 y     
2

1
11  yy  

 

Analytical Solution ;     22
2

1 2  xxexy x
 

 

 

First, let's divide the interval "0-1" into m  equal parts, since both of the boundary 

conditions are of mixed type, the unknown number is  1m . A general formula for any 

point ix  is produced by using central difference formulas instead of derivatives in the 

differential equation. 

 

  0.2
.2

2
.2 11

2

11 






 








  
i

ii
i

iii
i y

h

yy
x

h

yyy
x  

 

  0.
2

1..2.
2

1 1

2

1 
































  iiiiii yx

h
hyxhyx

h
h  
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hixxi .0   

hixi .  

 

If hixi .  is substituted divide side by side  h , 

 

  0.
2

11..2.
2

11 11 
































  iii yi

h
yihyi

h
   , mi ,......,2,1,0           (1) 

 

If we put 0i in equation (1), we get, 

 

0..2 101  yyhy        0i  

 

 

If the left boundary condition is used, 

 

  00 y  => 0
.2

11 
 

h

yy
  => 11 yy   

 

=> 0..2 101  yyhy  

 00 y         0i  

 

 

 

If we put mi   in equation (1), 

 

  0.
2

11..2.
2

11 11 
































  mmm ym

h
ymhym

h
 mi   
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From the second boundary condition, 

 

2

1

.2

11 
 

m

mm y
h

yy
 

 

=> hyhyy mmm   ..211  

 

If this expression is replaced and arranged above; 

  















 m

h
hymhhym mm

2
11..22.2 2

1    for mi   

 

For 1,......,2,1  mi , from the equation (1),  1m  equations are also obtained. Thus, the 

solution is completed by solving m  equations with m  unknown Gauss method. 

 

x  

Numerical Solution 
Analytical 

Solution 
1.0h  

n=10 

05.0h  

n=20 

0025.0h  

n=400 

001.0h  

n=1000 

0.2 0.000935 0.001285 0.001375 0.001398 0.001402 

0.4 0.010563 0.011508 0.011745 0.011813 0.011824 

0.6 0.039696 0.041510 0.041960 0.042098 0.042110 

0.8 0.101570 0.104547 0.105290 0.105508 0.105541 

1.0 0.212410 0.216810 0.217915 0.218230 0.218280 
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6.3.2) The Boundary Condition Given at Infinite 

 

Some differential equations may have a limit value at infinity. If we give an example of 

this, 

Differential equation  ;  xfyCy  .  

Boundary conditions  ;   00 y  ,   y  

 

In order to solve this problem by creating difference equations, we need to know what order the 

value specified as infinity is. Since we cannot form an idea about the order of x , we need to solve 

the problem as an initial value problem. But there is another problem here as well. The one of the 

initial condition, I mean   y  is missing. In other words, in order to solve the above differential 

equation, not only  0y ,  we need to know  0y  initial value as well as . However,  0y  value is 

unknown. By the way, we solve the problem as an initial value problem by making an estimation for 

the initial condition  0y  and see where  0y is going on the way to x . In other words, when 

  ay  0 is taken, it converges to a value such as Ay  when it goes to x  . Then let's make 

a second guess for the initial condition; When   by  0  is taken, it converges to a value such as

By   when it goes to x  . Then a new predict value is calculated for   y  when it goes 

to infinity . This is a kind of Newton-Rapson application, 

 

   baBA

A
ac






/


             

)(

)(
1

n

n
nn

xf

xf
xx


  

 

        

1

1
1 )()(

)(











nn

nn

n
nn

xx

xfxf

xf
xx  

 

This method, which is applied, is called the shooting method.  
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Example: Solve the following differential equation, 

 

Differential equation  ; 1.4  yy  

Boundary conditions  ;   00 y  ,  
4

1
y  

 

To solve the problem as an initial value problem, we reduce the differential equation to a 

first-order system of equations, 

 

 pyxfpy ,,1  

 pyxfyp ,,.41 2  

 

  00 y  

If     100  apy is chosen 

 

 

If the solution is made, 

 

    82425  Ayy  

 

If     100  bpy  is chosen, 

 

If the solution is made, 

 

    27495  Byy  

 

If we put these values into the expression given for “c” above, we get a new predict for 

the derivative, 

 

     
499818.0

11/27498242

)4/1(8242
1 




c  
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If we repeat the solution with this new value, 

 

It is found at     25.06.4  yy , we see that the solution is fixed. In reality the value 

of “c” is 0.5. Some equations can be solved several times with the number of predictions 

Newton-Rapson. 

 

The second boundary condition is not necessarily like   Ky  . The shooting method can 

be applied similarly to boundary value problems such as   KLy  . 
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7. NUMERICAL SOLUTION OF PARABOLIC EQUATIONS 

 

7.1. Transform into Dimensionless Form 

 

Numerical solutions of problems involve quite a lot of arithmetic operations. Therefore, it 

is desirable that a solution be valid for as many problems as possible. This solution can be 

achieved by bringing the desired equation into dimensionless form. For example, although 

the swing of a pendulum in a viscous medium and the discharge of voltage across a 

capacitor through resistance and inductance are physically separate, the differential 

equation governing these two different expressions is exactly the same. 

2

2

X

U
K

T

U









 

 

 

 

L

X
x    (The size of the object has been made dimensionless) 

 

=> LxX .  

 

0U

U
u     =>  0.UuU   

 

=> 
 2

0

2

0

.

..

Lx

Uu
K

T

Uu









  =>  

22

2

00
. xL

u
KU

T

u
U









  

 

=> 
2

22

x

u

T

u

K

L









   ,if 

2

.

L

TK
t  ,  t

K

L
T

2

  becomes 
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2

2

2

2

x

u

t
K

L

u

K

L

















  =>  

2

2

x

u

t

u









 

 

7.2. Explicit Solution Method 

 

The one-dimensional, time-dependent conduction heat equation is a parabolic equation 

and its formula is as follows, 

2

2

x

u

t

u









 

 

  jiutxu ,,    xi   and tj   

 

The first-degree derivative expression on the left side of the equation must be opened with 

the forward difference formula (Due to stability and convergence problem). Although the 

right side of the equation is usually opened with the central difference formula, it can also 

be opened with the forward and backward difference formulas, if desired. 

 

 

 2
,1,,1,1, .2

x

uuu

t

uu jijijijiji



 



  , FTCS (Forward Time Central Space) 

 

 

 

  jijijiji urururu ,1,,11, ..21.     and  
 2

x

t
r




  

1, jiu ,  1, ji  is the unknown temperature at the lattice point. If the temperatures in the

j step are known, the temperatures in the 1j  time step can be calculated with the finite 

difference formula above.  Since the temperatures at the first moment, that is, at the 

moment 0j , are given, the temperatures in the step nj ,......,3,2,1  are calculated step 

by step. This method is called the explicit solution method. 
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Example: The initial temperature of the stick (in dimensionless form) whose ends are in 

contact with a melting ice block is given by 

   xxu .20,    
2

1
0  x  

    xxu  1.20,  1
2

1
 x  

Calculate the change in temperature of the rod with time. 

 

   xxu .20,    
2

1
0  x   

       Initial condition  

    xxu  1.20,  1
2

1
 x  

  

   0,0 tu     

       Boundary conditions  

   0,1 tu   

 

 

 

Finite difference expression, 

  jijijiji urururu ,1,,11, ..21.     and  
 2

x

t
r




  

 

Since the system is symmetrical, it will be sufficient to solve half of it. 
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Case 1: Let's take 10n  (divide the bar into 10 parts) 

Let’s choose 1.0
10

1
x   and    

1000

1
t   

 
 

1.0
2


x

t
r




 

 

=> jijijiji uuuu ,1,,11, *1.0*8.0*1.0    

  
jijijiji uuuu ,1,,11, .8

10

1
   

 xixxi .0    =>  ixi *1.0  

 

 
0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  
. . . . .  

10i  

1x  

000.0t  0 0.2 0.4 0.6 0.8 1 . . . . . . 

001.0t  0 0.2 0.4 0.6 0.8 0.96 . . . . . . 

002.0t  0 0.2 0.4 0.6 0.7960 0.9280 . . . . . . 

003.0t  0 0.2 0.4 0.5996 0.7816 0.9016 . . . . . . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

01.0t  0 0.1996 0.3968 0.5822 0.7281 0.7867 . . . . .  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

02.0t  0 0.1938 0.3781 0.5373 0.6486 0.6891 . . . . . . 

 

If ixi *1.0 , 

 

  xxu .20,    
2

1
0  x  => ixui *2.0.20,     

2

1
0  x  
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   xxu  1.20,  1
2

1
 x  =>      ixxu *1.01.21.20,   1

2

1
 x  

 

Analytical solution of differential equation, 

 

  tn

n

exnn
n

u
22

...sin.
2

1
sin

18

1
22









 







  

 

 

Finite Difference 

Solution at 

3.0x  

Analytical 

Solution at 

3.0x  

Difference 
Percentage 

Error 

01.0t  0.5822 0.5799 0.0023 0.4 

02.0t  0.5373 0.5334 0.0039 0.7 

1.0t  0.2472 0.2444 0.0028 1.1 

 

Case 2: Let's take 10n  (divide the bar into 10 parts) 

 

Let’s choose 1.0
10

1
x   and    005.0

1000

5
t  

 
 

5.0
2


x

t
r




 

=>  
jijijijiji uuuuu ,1,1,1,11,

2

1
*5.0*5.0    

 

 
0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  
. . . . .  

10i  

1x  

000.0t  0 0.2 0.4 0.6 0.8 1 . . . . . . 

005.0t  0 0.2 0.4 0.6 0.8 0.8 . . . . . . 

01.0t  0 0.2 0.4 0.6 0.7 0.8 . . . . . . 

015.0t  0 0.2 0.4 0.55 0.7 0.7 . . . . . . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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. . . . . . . . . 

1.0t  0 0.0949 0.1717 0.2484 0.2778 0.3071 . . . . . . 

 

 

 

Finite 

Difference 

Solution at 

3.0x  

Analytical 

Solution at 

3.0x  

Difference 
Percentage 

Error 

005.0t  0.6 0.5966 0.0034 0.57 

01.0t  0.6 0.5799 0.0201 3.5 

02.0t  0.55 0.5334 0.0166 3.1 

1.0t  0.2484 0.2444 0.0040 1.6 

 

Case 3: Let's take 10n  (divide the bar into 10 parts) 

 

Let’s choose 1.0
10

1
x   and    01.0

100

1
t  

 
 

1
2


x

t
r




 

=> jijijiji uuuu ,1,,11,    

 

 
0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  
. . . . .  

10i  

1x  

000.0t  0 0.2 0.4 0.6 0.8 1.0 . . . . . . 

01.0t  0 0.2 0.4 0.6 0.8 0.6 . . . . . . 

02.0t  0 0.2 0.4 0.6 0.4 1.0 . . . . . . 

03.0t  0 0.2 0.4 0.2 1.2 -0.2   

04.0t  0 0.2 0.4 1.4 -1.2 2.6 . . . . . . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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The solution is completely pointless. These 3 case studies show that the r  value is an 

important parameter. In the explicit method, the solution range is valid for 
2

1
0  r . Later, 

this limitation will be analytically demonstrated on stability and convergence issues. 

2

2

2

2

y

u

x

u

t

u














  => 

 21
x

t
r




 , 

 22
y

t
r




  and it must be 

4

1
, 21 rr  

 

 

2

2

2

2

2

2

z

u

y

u

x

u

t

u



















 => 

 21
x

t
r




 , 

 22
y

t
r




 , 

 22
z

t
r




  and  

8

1
,, 321 rrr   

 

 

7.3. Crank-Nicolson Implicit Method 

 

Although the Explicit method is computationally simple, it has a very important 

shortcoming. The time digit t  must be taken very, very small. Because the calculations 

are valid for the 
2

1
0  r  range. Therefore, t  should be taken very small in order to 

obtain sufficiently accurate results. If the t  value is taken too small, the computational 

load increases. In 1947, Crank-Nicolson proposed a method that reduces the 

computational volume and is valid for all values. They thought that the partial differential 

equation was valid at the midpoints of the lattice points and took the finite differences of 

2

2

x

u




 as the mean of the approximations at the lattice points j  and 1j . 
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2

2

x

u

t

u









 

 

   2
1,11,1,1

2

,1,,1,1, *2

2

1*2

2

1

x

uuu

x

uuu

t

uu jijijijijijijiji



 






 

 

 
 

 2

1,11,1,1

2

,1,,1,1, *2
1

*2

x

uuu

x

uuu

t

uu jijijijijijijiji









 






 

 

1   : Explicit method 

2

1
   : Crank-Nicolson Implicit Method 

0   :  Full Implicit Method 

 

If 
2

1
  is chosen, 

 

    jijijijijiji urururururur ,1,,11,11,1,1 ...22....22.    
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There are 3 unknown 1j terms on the left side of the finite difference expression and 3 

known  j  expressions on the right side. If there are  1n  inner lattice points during 

each time step (For example, 0j  and 1,......,2,1  ni )  1n sets of interconnected 

equations are obtained and  1n  will be unknown. Since the u  values are given as the 

first condition and the boundary conditions are given during the time at the first time 

 0j , the u  values at the 1j  order are found from the data at the 0j  time order. 

This method is defined as the Implicit method. 

 

 

Example: Solve the previous example using the Crank-Nicolson method. 

2

2

x

u

t

u









 

 

  xxu .20,    
2

1
0  x   

       Initial condition  

   xxu  1.20,  1
2

1
 x  

  

  0,0 tu     

       Boundary conditions  

  0,1 tu   
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If 10n  i.e. 1.0
10

1
x  and if we choose  01.0

100

1
t   

 

=> 
 

1
2


x

t
r




 

 

=> jijijijiji uuuuu ,1,11,11,1,1 .4    

If we take 0j , )9(1,......,3,2,1  ni  (It is sufficient to calculate up to 5i  since it is 

symmetrical) 

  

If we take 0j , 

 

0,20,01,21,11,0 .4 uuuuu    1i   

0,30,11,31,21,1 .4 uuuuu    2i  

0,40,21,41,31,2 .4 uuuuu    3i  

0,50,31,51,41,3 .4 uuuuu    4i  

0,60,41,61,51,4 .4 uuuuu    5i  

 

Since ixi *1.0 , 

 

  xxu .20,    
2

1
0  x  => ixui *2.0.20,     

2

1
0  x  

   xxu  1.20,  1
2

1
 x  =>      ixxu *1.01.21.20,   1

2

1
 x  

 

4.00.0.4 1,21,11,0  uuu   1i    ( 01,0 u ) 

6.02.0.4 1,31,21,1  uuu   2i  

8.04.0.4 1,41,31,2  uuu   3i  

0.16.0.4 1,51,41,3  uuu   4i  
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8.08.0.4 1,61,51,4  uuu   5i    ( 0,60,4 uu   and 1,61,4 uu  ) 

 

    Unknowns       Knowns 

 

 

20210 .4 uuuuu    1i    ( 01,0 u ) 

31321 .4 uuuuu    2i  

42432 .4 uuuuu    3i  

53543 .4 uuuuu    4i  

64654 .4 uuuuu    5i    ( 0,60,4 uu   and 1,61,4 uu  ) 

 

























































































8.08.0

0.16.0

8.04.0

6.02.0

4.00.0

42000

14100

01410

00141

00014

5

4

3

2

1

54321

u

u

u

u

u

uuuuu

 

 

1989.01 u       3956.02 u  

5834.03 u       7381.04 u  

7691.05 u  

 

If 1j , 

3956.00.4 20210  uuuuu   1i   ( 01,0 u ) 

5834.01989.0.4 31321  uuuuu  2i  

7381.03956.0.4 42432  uuuuu  3i  

7691.05834.0.4 53543  uuuuu   4i  

7381.07381.0.4 64654  uuuuu   5i   ( 0,60,4 uu   and 1,61,4 uu  ) 
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0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  

. . . . 

.  

10i  

1x  

000.0t  0 0.2 0.4 0.6 0.8 1.0 
. . . . 

. 
. 

01.0t  0 0.1989 0.3956 0.5834 0.7381 0.7691 
. . . . 

. 
. 

02.0t  0 0.1936 0.3789 0.5400 0.6461 0.6921 
. . . . 

. 
. 

. 

. 

. 

0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

1.0t  0 0.0948 0.1803 0.2482 0.2918 0.3069 
. . . . 

. 
. 

1.0t  

(Analytical 

Solution) 

0 0.0934 0.1776 0.2444 0.2873 0.3021 
. . . . 

. 
. 

 

 

The Crank-Nicolson method is stable for all r values. But for large values of r  (around 40), 

undesirable finite oscillations occur in numerical solutions. The problem can be solved 

systematically with the method of Gauss and Gauss-Jordan elimination. 

 

HOMEWORK: 

 

1) Solve the question in the previous Example with the fully implicit (closed) method. 

 

7.4. Derivative Type Boundary Conditions 

 

 

In practice, derivative-type boundary conditions are frequently encountered. For example, 

if a surface is thermally isolated, that is, there is no heat transfer perpendicular to this 

surface, the boundary condition is 0




n

u
 everywhere on this surface. Similarly, if a surface 

with temperature u  is in contact with a fluid with temperature v , the condition that the 
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heat transfer by conduction equals the heat transfer by convection can be given as 

 vuH
n

u
K 



 . . 

 

Here, K  is the heat transfer coefficient (thermal conductivity) of the material and H  (film 

coefficient) is the heat transfer coefficient of the surface. 

 

 

 

 

 vuh
n

u





.  

 

K

H
h   (positive coefficient) 

Let the surface of a rod of length L be thermally insulated and allow the heat to be 

transferred by convection at 0x . At time t , the temperature at this end will be unknown. 

It can be determined this by using the boundary condition. 
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 vuh
x

u





 .  

 

Since 0x is the left end and in the opposite direction to the normal x -axis outward from 

the boundary condition, the    sign is placed at the beginning of the expression. 

 

 
0

.







x

vuh
x

u
 

 

If we write the forward difference finite difference expression, 

 

 vuh
x

uu
j

jj



,0

,0,1


 

 

Thus we get an additional equation for ju ,0 . 

 

If we want to express 
n

u




 more precisely, we can open the first derivative with the central 

difference formula, 

 

 vuh
x

uu
j

jj


 

,0

,1,1

.2 
 

 

 

ju ,1  is an imaginary temperature and is the temperature of the outer lattice point outside 

the domain  tjx  , . ju ,1 is an unknown temperature and another equation is needed 

for the solution. This can be achieved by obtaining one more equation, assuming that the 

finite difference expression of the differential equation is also satisfied at the point 0x of 

the bar. Similar equations can be used for the point of the bar at lx  . 
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Example: Solve the equation 
2

2

x

u

t

u









 with the explicit method for the following 

boundary and initial conditions. Use the central difference expression for the boundary 

conditions. 

 

  10, xu   =>  Initial condition 

 

 
 tu

x

tu
,0

,0





 

     Boundary conditions 

 
 tu

x

tu
,1

,1





 

 

 2
,1,,1,1, *2

x

uuu

t

uu jijijijiji



 



 

 

=>  
jijijijiji uuuruu ,1,,1,1, .2      and   

 2
x

t
r




   

 

nni ,1,......,2,1,0   Since the derivative type is the boundary condition and central 

differences are used in this equation, it is valid for the values 

of “0” and “ n  ”. 

  

 
jjjjj uuuruu ,1,0,1,01,0 .2    

 

 
 tu

x

tu
,0

,0





 =>  j

jj
u

x

uu
,0

,1,1

.2


 


 

 

 =>  jojj uxuu ,,1,1 ..2  

 

From the general equation  
jjjojjj uuuxuruu ,1,0,,1,01,0 .2..2   , 
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  jjjj uxuruu ,0,1,01,0 12       for 0i  

 

If 10n  is chosen, 

 

10n   =>  1.0
10

1
x  

 

 

 

If 10i , 

 

 
jjjjj uuuruu ,11,10,9,101,10 .2   

 

j

jj
u

x

uu
,10

,9,11

.2





   =>  jjj uxuu ,10,9,11 ..2  

 

 
jjjjjj uxuuuruu ,10,9,10,9,101,10 ..2.2   

 

  
jjjj uxuruu ,10,9,101,10 1.2     for 10 ni , 

 

The first and last boundary conditions show that the equations are symmetrical. In this 

case, it is sufficient to take half of the system and make a solution. 

The solution is valid for  
x

r



2

1
. 

If 
4

1
r  is chosen, 

 2
x

t
r




  =>    0025.0.

2
 xrt   
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 jjjj uuuu ,0,1,01,0 *1.1
2

1
  

 

 jjj uuu ,1,01,0 *9.0
2

1
     0i  

 jijijiji uuuu ,1,,11, *2
4

1
      5,4,3,2,1i  

 

xixxi *0    =>   ixi *1.0  

 

 
0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  

000.0t  1.0 1.0 1.0 1.0 1.0 1.0 

0025.0t  0.95 1.0 1.0 1.0 1.0 1.0 

0050.0t  0.9275 0.9875 1.0 1.0 1.0 1.0 

. . . . . . . 

100.0t  0.7175 0.7829 0.8345 0.8718 0.8942 0.9017 

250.0t  0.5542 0.6048 0.6492 0.6745 0.6923 0.6983 

500.0t  0.3612 0.3942 0.4205 0.4396 0.4512 0.4551 

000.1t  0.1534 0.1674 0.1786 0.1867 0.1917 0.1933 

 

The analytical solution of this differential equation is 

 

       
 

 



















1

..4

2
)

2

1
(2

.43

sec
4

2

n
n

t

n

n xCoseu n 


 
                   )10(  x  

 

Here n  is the positive roots of the 
2

1
tan.   function.  
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0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  

000.0t  1.0 1.0 1.0 1.0 1.0 1.0 

0025.0t  0.9400 0.9951 0.9999 1.0 1.0 1.0 

0050.0t  0.9250 0.9841 0.9984 0.9999 1.0 1.0 

. . . . . . . 

100.0t  0.7176 0.7828 0.8342 0.8713 0.8936 0.9010 

250.0t  0.5546 0.6052 0.6454 0.6747 0.6924 0.6984 

500.0t  0.3619 0.3949 0.4212 0.4403 0.4519 0.4558 

000.1t  0.1542 0.1682 0.1794 0.1875 0.1925 0.1941 

 

 

Example: Solve the same problem with the forward (backward) finite difference expansion 

for boundary conditions and the differential equation with the explicit method. 

 

2

2

x

u

t

u









  =>  

 2

,1,,1,1, .2

x

uuu

t

uu jijijijiji



 



 

 

=>  jijijijiji uuuruu ,1,,1,1, .2.     and  
 2

x

t
r




  

 

In this case, it is valid for 1,......,3,2,1  ni  (forward and backward difference expansion 

applied to the boundary conditions) 

 

If 1i , 

 

 jjjjj uuuruu ,2,1,0,11,1 .2.     1i  
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If we write the forward difference expression of the boundary condition at 0x , 

 

 
 tu

x

tu
,0

,0





  =>  j

jj
u

x

uu
,0

,0,1





 

    =>  
x

u
u

j

j



1

,1

,0                  
x

u
u

j

j






1

1,1

1,0   

 

 












 jj

j

jj uu
x

u
ruu ,2,1

,1

,11,1 .2
1

.


 

 

jjj uru
x

r
ru ,2,11,1 .

1
21 













   for 1i , 

 

If 1.0x  and 
4

1
r  is chosen, 

 

0025.0t  becomes, 

 

jjj uuu ,2,11,1
4

1

11

8
     1i  

 

1.1

1,1

1,0



 
j

j

u
u  

 

 
jijijiji uuuu ,1,,11, .2

4

1
     5,4,3,2i  
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For ix *1.0 , 

 

 
0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  

000.0t  1.0 1.0 1.0 1.0 1.0 1.0 

0025.0t  0.8884 <= 0.9773 1.0 1.0 1.0 1.0 

0050.0t  0.8734 <= 0.9607 0.9943 1.0 1.0 1.0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

100.0t  0.6869 <= 0.7556 0.8102 0.8498 0.8738 0.8818 

250.0t  0.5206 <= 0.5727 0.6142 0.6444 0.6628 0.6689 

500.0t  0.3283 <= 0.3611 0.3873 0.4063 0.4179 0.4218 

000.1t  0.1305 <= 0.1435 0.1540 0.1615 0.1661 0.1677 

 

HOMEWORK 

 

1) Solve the same problem with the Crank-Nicolson method. For derivative boundary 

conditions, use the forward (backward) difference expansion. 

 

2) Solve the same problem with the Full Implicit method. For derivative boundary 

conditions, use the central difference expansion. 
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Example: Solve the same equation using the Crank-Nicolson method. For derivative 

boundary conditions, use the central difference expression. 

 

 2

2

x

u

t

u









 => 

   2

1,11,1,1

2

,1,,1,1, .2

2

1.2

2

1

x

uuu

x

uuu

t

uu jijijijijijijiji



 






 

 

    jijijijijiji urururururur ,1,,11,11,1,1 ..22....22.      (1) 

 

 
 tu

x

tu
,0

,0





 => j

jj
u

x

uu
,0

,1,1

.2


 


 => jjj uxuu ,0,1,1 ..2   (2) 

 

and 1,01,11,1 ..2   jjj uxuu   (3) 

 

    jjjjjj urururururur ,1,0,11,11,01,1 ..22...22.                (4) 

 

if 1.0x  is chosen and 1r  is taken, when equations (2) and (3) are substituted and 

arranged in equation (4), 

  

jjjj uuuu ,1,01,11,0 *1.0*1.2       for 0i , 

 

Equation (1) can be used for the remaining points. 

 

jijijijiji uuuuu ,1,11,11,1,1 *4      5,4,3,2,1i  
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If 0j , 

 

0,10,01,11,0 *1.0*1.2 uuuu    0i  

0,20,01,21,11,0 *4 uuuuu    1i  

0,30,11,31,21,1 *4 uuuuu    2i  

0,40,21,41,31,2 *4 uuuuu    3i  

0,50,31,51,41,3 *4 uuuuu    4i  

0,60,41,61,51,4 *4 uuuuu    5i  

 

When the initial condition is entered, 

 

0.11.0*1.2 1,11,0  uu    0i  

0.10.1*4 1,21,11,0  uuu   1i  

0.10.1*4 1,31,21,1  uuu   2i  

0.10.1*4 1,41,31,2  uuu   3i  

0.10.1*4 1,51,41,3  uuu   4i  

0.10.1*4 1,61,51,4  uuu   5i  , 1,41,6 uu   and 0,40,6 uu   

 

If matrix editing is done, 

 

0.11.0*1.0*1.2 1010  uuuu   0i  

0.10.1*4 20210  uuuuu   1i  

0.10.1*4 31321  uuuuu   2i  

0.10.1*4 42432  uuuuu   3i  

0.10.1*4 53543  uuuuu   4i  

0.10.1*4 44454  uuuuu   5i  
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0.10.1

0.10.1
0.10.1

0.10.1

0.10.1

0.11.0

420000

141000

014100

001410

000141

000011.2

5

4

3

2

1

0

543210

u

u

u

u

u

u

uuuuuu

 

 

8908.00 u  

9707.01 u      

9922.02 u     For 01.0t ,  

9979.03 u     1r  and  2/1.0 xtrx    

9994.04 u  

9997.05 u  

 

If 1j , 

 

9707.008908.0*1.0*1.2 1010  uuuu   0i  

9922.08908.0*4 20210  uuuuu   1i  

9979.09707.0*4 31321  uuuuu   2i  

9994.09922.0*4 42432  uuuuu   3i  

9997.09979.0*4 53543  uuuuu   4i  

9994.09994.0*4 64654  uuuuu   5i  
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9994.09994.0

9997.09979.0
9994.09922.0

9979.09707.0

9922.08908.0

0970708908.0

420000

141000

014100

001410

000141

000011.2

5

4

3

2

1

0

543210

u

u

u

u

u

u

uuuuuu

 

 

 
0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  

000.0t  1.0 1.0 1.0 1.0 1.0 1.0 

01.0t  0.8908 0.9707 0.9922 0.9979 0.9994 0.9997 

02.0t  0.8624 0.9293 0.9720 0.9900 0.9964 0.9979 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

10.0t  0.7179 0.7834 0.8349 0.8720 0.8944 0.9018 

25.0t  0.5547 0.6054 0.6458 0.6751 0.6929 0.6989 

50.0t  0.3618 0.3949 0.4212 0.4404 0.4520 0.4559 

00.1t  0.1540 0.1680 0.1793 0.1874 0.1923 0.1940 

 

 

NOT: xu
x

u
x

x

u

t

u















2

2

2

 

 

When the equation is opened with Crank-Nicolson, the values other than the second 

derivative become: 

ijiji

jijijiji

i xuu
x

uu

x

uu
x 
















 



 



1,,

1,11,1,1,1

2

1

2

1

.22

1

.22

1
.2......
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7.5. Convergence and Stability 

 

It is very difficult to estimate the accuracy of the results of finite difference equations. 

However, if the two criteria known as convergence and stability are met, accuracy can be 

achieved by increasing the number of steps and thus increasing the number of operations. 

 

If the time and size steps goes to “0”, the approximate numerical solution converges to the 

analytical solution, the solution is said to be convergent. If the numerical method 

converges to the analytical solution in the limit, it can be said that the method has achieved 

the convergence criterion. 

 

When the differential equation and boundary conditions are written as a finite difference 

equation, operations are performed for a finite number of time and dimension steps. 

Rounding errors are also processed during these operations. If these errors do not grow 

as the solution progresses, it can be said that the solution is stable. Stability is also a 

necessary condition for convergence in reality. 

 

 

2

2

x

u

t

u









 

 

=>  
 

 2

2

,1,,1,1, *2
xO

x

uuu
tO

t

uu jijijijiji











 
 

 

1- the finite difference equation cannot be represented 

2- rounding error 

  jijijiji urururu ,1,,11, ..21.     and  
 2

x

t
r




  

 

 

At any instant t , the solution can be expanded to the Fourier series. If we neglect the 

constants, the general term of solution of the differential equation will be in the form of 
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    xıettxu ..ˆ.,  . By substituting this expression in the finite difference equation,  t  can 

be determined, and as t  gets larger, the criterion for  t  to be limited can be determined. 

 

1ˆ ı  and xıxe xı .sin.̂.cos..ˆ    

 

As time progresses  
 
 

1


t

tt




  must be (convergence condition). 

  xı

ji etu .ˆ

, .   

   xxı

ji etu  

  .ˆ

,1 .  

   xxi

ji etu  

  .

,1 .  

  xı

ji ettu .ˆ

1, .    

 

Substituting these in the finite difference equation expression, we get 

             xxıxıxxıxı etretretrett     .ˆ.ˆ.ˆ.ˆ
....21...  

 

If we divide both sides by   xıet .ˆ
.   expression, 

 

 
 

  xıxı errer
t

tt 



 ..ˆ..ˆ .21. 
 

 

 

xıxe xı  .sin.̂.cos..ˆ   

xıxe xı  .sin.̂.cos..ˆ 
 

=> xee xıxı  .cos.2..ˆ..ˆ  
 

 

=>      xıxı eerr  ..ˆ..ˆ.21  
 

 

=>      xrr .cos.2.21   
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If we arrange, 

 
  







 




2

.cos1
41

x
r

t

tt 




  and  

2

.
sin

2

.cos1 2 xx 



 

 

=>   
2

.
sin.41 2 x

r


  

 

For stability, the value of  t  should be limited as x  and t  go to 0. 

 

 
 

1


t

tt




  =>  1

2

.
sin.41 2 

x
r


 

 

( 1
2

.
sin 2 

x
), maximum value it can take 

 

141  r  in other words  1.411  r  

 

=>  r0    and 
2

1
r  has a range. 

 

 2x

t
r




   Explicit method is therefore not used. 

This approach is called the Von Neumann approach. 

 

 The term with  t  should not go to   and take a limited value.   
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7.6. Formulation of Two-Dimensional Unsteady (Time-Dependent) Heat Transfer 

Problems in Cartesian Coordinates 

 

2

2

2

2

y

u

x

u

t

u














 

 

  A

nmutyxu ,,,   

 

 tfA  ,  xfm  ,  yfn   

 

   2
1,,1,

2

,1,,1,

1

, .2.2

y

uuu

x

uuu

t

uu A

nm

A

nm

A

nm

A

nm

A

nm

A

nm

A

nm

A

nm





 






 (Explicit) 

 

 2
1

x

t
r




   

 2
2

y

t
r




   

4

1
, 21 rr  

If a fully implicit solution is desired, the A 's on the right side of the equation become 

 1A . 

 

7.7. Formulation of Unsteady (Time Dependent) Heat Transfer Problems in 

Cylindrical Coordinates 

 

u
t

u 2



 

2

2

2

2

22

2 11

z

uu

rr

u

rr

u

t

u


























    A

knmutzru ,,,,,   

 

 tfA  ,  rfm   ,  fn   ,  zfk   

 

 








 



r

uu

rr

uuu

t

uu A

knm

A

knm

m

A

knm

A

knm

A

knm

A

knm

A

knm

 .2

1.2 ,,1,,1

2

,,1,,,,1,,

1

,,
 



MM597 ADVANCED NUMERICAL METHODS IN ENGINEERS / PROF.DR. NURİ YÜCEL 

124/141 

   2

1,,,,1,,

2

,1,,,,1,

2

.2.21

z

uuuuuu

r

A

knm

A

knm

A

knm

A

knm

A

knm

A

knm

m 

 



  (Explicit) 

 rmrm .  

If a fully implicit solution is desired, the A 's on the right side of the equation become 

 1A . 

 

 

 

Here ortu  is the weighted average of the temperatures at the lattice points surrounding 

0r . (Because at 0r the equation is unsolvable) 

 

ux
x

u

x

u
x

t

u
..2 2

2

2
2 














 

 

=> 
 

jii

jijijijiji

i

jiji
ux

x

uu

x

uuu
x

t

uu
,

2,1,1

2

,1,,12,1,
.

.2

.2
.2 







 


 (Explicit) 

 

If a fully implicit solution is desired, the A 's on the right side of the equation become 

 1A . 

 

8. HYPERBOLIC EQUATIONS 
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8.1. Explicit Method and Courant-Friedrichs-Lewy Condition 

 

The wave equation is a hyperbolic equation. 

2

2

2

2

x

u

t

u









    

 

  jiutxu ,,    and  xi  , tj  

 

   xfxu 0,  

    Initial conditions  for 0t   

 
 xg

t

xu




 0,
 

 

  0,0 tu  

      It is homogenous, If it is “ a ” and “b ”, 

  0,1 tu  

 

When an analytical solution is desired, we can write      xbaatxutxv .,,   

 

   2

,1,,1

2

1,,1, .2.2

x

uuu

t

uuu jijijijijiji



 



 

 

if arranged, 

 

  1,,1

2

,

2

,1

2

1, ..1.2.   jijijijiji uurururu       (1) 

 

x

t
r




  

 

  1,0,1

2

0,

2

0,1

2

1, ..1.2.   iiiii uurururu       (2)
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Initial conditions, 

 

   xfxu 0,   =>  ii fu 0,  

 

 
 xg

t

xu




 0,
 =>  i

ii
g

t

uu


 

.2

1,1,
 

 

   =>  iii gtuu ..21,1,   

 

If we substitute it in equation (2), 

 

   iiiiii gtuurururu ..2..1.2. 1,0,1

2

0,

2

0,1

2

1,    

 

  iiiii gturururu ..2..1.2.
2

1
0,1

2

0,

2

0,1

2

1,        (3) 

 

Analytical solution of the wave equation by D'Alembert is that 

 

       








 




tx

tx

dgtxftxftxu  .
2

1
,   
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If the wave equation is solved numerically with the help of equations (1) and (3), jiu , value 

at the P  point will depend on the value of the remaining lattice points within the ABP . 

Suppose the initial conditions in DA  and BE  are changed. Although the change made in 

these initial conditions changes the analytical solution result in P , the numerical solution 

value at the point P  found with the help of equations (1) and (3) will not change. In this 

case, the numerical solution will not converge to the analytical solution. Then the value of 

x

t
r




  should be chosen such that while there is a numerical solution at the point P , the 

initial conditions between DE  should also reflect the solution. 

This condition, known as the Courant-Frendrich-Lewy condition, is 
x

t
r




 . Usually 1r is 

taken. 

 

 

Example: Solve the 
2

2

2

2

x

u

t

u









 equation. 

 

   xfxxu  .sin
8

1
0,   

     Initial conditions ( 0t ) 

 
 xg

t

xu





0

0,
 

 

 

 

  0,0 tu  

      Boundary conditions ( 0t ) 

  0,1 tu  

 

1.0
10

01



x  (divided into 10 parts) 1

x

t
r




 => 1.0t  becomes 
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1,,1,11,   jijijiji uuuu          (1) 

 

 0,0,10,11, ..2
2

1
iiii gtuuu    00, ig       (2) 

 

 0,10,11,
2

1
  iii uuu           (3) 

 

iii xfu .sin
8

1
0,    =>   iui **1.0sin

8

1
0,   

xixxi .0     =>  ixi *1.0  

 

00,0 u  

  03863.0*1.0sin
8

1
0,1  u  

  07347.0*2.0sin
8

1
0,2  u  

10113.00,3 u  

1189.00,4 u  

125.00,5 u  

1189.00,6 u  

10113.00,7 u  (Since there is symmetry in the values, it will be sufficient to solve 

for half of the wire.) 

 

 
0i  

0x  

1i  

1.0x  

2i  

2.0x  

3i  

3.0x  

4i  

4.0x  

5i  

5.0x  
…… 

10i  

0.1x  

 

0.0t  0.0 0.03863 0.07347 0.1013 0.1189 0.125 …… 0.0 
İnitial 

condition 

1.0t  0.0 0.0367 0.0699 0.0962 0.1131 0.1189 …… 0.0 
From Eq. 

(3) 
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2.0t  0.0 0.0312 0.0594 0.0818 0.0962 0.1011 …… 0.0 

From Eq. 

(1) 

3.0t  0.0 0.0227 0.0432 0.0594 0.0699 0.0735 …… 0.0 

4.0t  0.0 0.0119 0.0227 0.0312 0.0368 0.0386 …… 0.0 

5.0t  0.0 0.0 0.0 0.0 0.0 0.0 …… 0.0 

6.0t  0.0 -.0119 -.0227 -.0312 -.0368 -.0386 …… 0.0  

Analytical 

Solution 

3.0t  

0.0 0.0227 0.0432 0.0594 0.0699 0.0735 …… 0.0  

 

Analytical Solution: txu .cos*.sin
8

1
  

 

In the first step, we use equation (3). Then we find the solution using other equations.
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9. ELLIPTICAL EQUATIONS 

 

9.1. Formulation and Solution of Heat Conduction Equation in Steady State in 

Cartesian Coordinates 
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9.2. Boundary Conditions 

 

We have obtained the finite difference equation for the two-dimensional system. This 

equation is valid for every node of the lattice inside the rigid body. The boundary conditions 

must be known to calculate the boundary temperatures as they approach the boundary. 

Let us now examine how the boundary conditions are written in terms of finite differences. 

9.2.1. The Boundary Condition for Given Fluid Temperature and Film Coefficient 
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Thickness of Solid   : b  

Fourier's Law of Heat Conduction : 
dn

dT
AkQ ..  

Newton's Law of Cooling :   TTAhQ ..  
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If yx   , 

 

  02
..

.2
2

1
,1,1,,1 








 

k

xh
TT

k

xh
TTT nmnmnmnm


 

 

If the boundary consists of a corner, as shown in the figure below, the heat conduction 

law, together with the Fourier and Newton rules, can be applied to the system shown in 

the figure, 
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If the variable expressing the thickness of the solid body is eliminated on both sides of the 

equation, the system of equations takes its final form. 
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9.2.2. Given Boundary Temperature 

 

This is used exactly as the temperatures are given at the boundary. 

 

9.2.3. Isolated border 

 

It is assumed that there is no heat transfer from the boundary. 
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In systems with isolated boundary conditions, the solution can be made by taking the 

symmetry of the system. as well as the expression found in  “The Boundary Condition for 

Given Fluid Temperature and Film Coefficient” case, the film coefficient “ h ” can be set to 

“0 ”, the equation is obtained. 
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In this case, the general heat conduction equation becomes: 
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9.2.4. Given Boundary Heat Flux 

If the heat flux is given at the boundary, the expression byqw ..  is put in place of the last 

term in the expression obtained for the boundary where the film coefficient is given. Here, 

wq  is the heat flux from the system to outer space. 

 

 

 

Example: 
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If the variables k and b  are eliminated and the equality divided by yx .  , 
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9.3. Curved Borders 

 

The main benefit of the finite difference method is that it can also be used for complex 

boundaries. If the boundaries of a solid body are not parallel to the coordinate axis, 

 

 

Dimensions of the system,    
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If yx   , 
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If 1 and 1 , 
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10. GAUSS-SEIDEL POINT BY POINT ITERATION METHOD 

 

It is the simplest of the iteration methods, and the calculation is made by considering the 

variable values at each grid point. If the finite difference equation for the grid point “ P ” is 

given as follows, 

  

bTaTa nbnbpp  ..  

 

Here, the index nb  denotes neighboring points. 

 

KTTTTT nmnmnmnmnm   1,1,,1,1, 3.8.2.3.4  (Example) 

 

p

nbnb

p
a

bTa
T

 


*.
 

 

*

nbT , are the values of neighboring points before iteration or the first estimated values. For 

each lattice point, new values can be found with the above equation. Iteration is continued 

until the difference between the iterations is less than a certain .  

 

 

 

 

 

Example:  2.0*4.0 21  TT  

0.112 TT  , Find the 1T  and 2T  values using the Gauss-Seidel 

iteration method.  

 

Iteration 

No 
0 1 2 3 4 5 …   

1T  
0 (initial 

prediction) 
0.2 0.68 0.872 0.949 0.98 … 1 
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2T  
0 (initial 

prediction) 
1.2 1.68 1.872 1.949 1.98 … 2 

 

As the iteration continues, the last values that emerged in the iteration are used. 

 

Example: Find the temperature distribution in the solid body under the boundary 

conditions given in the figure, using the Gauss-Seidel iteration method. ( yx   ) 
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TT
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Iteration 

No 

0 

(initial 

prediction) 

1 2 3 …   

1T  300 275 257,33 252,25 … 250 

2T  300 268,75 256,13 251,61 … 250 

3T  200 167,19 154,17 151,12 … 150 

4T  200 160,55 152,88 150,84 … 150 
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The Gauss-Seidel method does not always converge, it is sufficient to meet the 

Scarborough criterion for convergence. 

 

        1  for all equations 

Scarborough criterion ; 

p

nb

a

a
 

        1  for at least one equation 

 

For example, 
1

4.0
2.0*4.0 21  TT  and 

0.1

0.1
0.112 TT  satisfies Scarborough 

criterion 

 

But if we change the order of equations, 

 

0.1

0.1
0.121 TT  and 5.2

0.1

5.2
5.0*5.2 12  TT  does not satisfy Scarborough 

criterion. 

 

Iteration No 0 1 2 3 

1T  0 -1 -4 -11.5 

2T  0 -3 -10.5 … 

 

 

 


