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STABILITY

= In general terms, power system stability refers to that property of the
power system which enables the system to maintain an equilibrium
operating point under normal conditions and to attain a state of
equilibrium after being subjected to a disturbance.

= As primarily synchronous generators are used for generating power
In grid, power system stability is generally implied by the ability of
the synchronous generators to remain in ‘'synchronism’ or ’in step’.

= On the other hand, if the synchronous generators loose synchronism
after a disturbance, then the system is called unstable.
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LOSS OF SYNCHRONISM

In the normal equilibrium condition, all the synchronous generators
run at a constant speed and the difference between the rotor angles
of any two generators is constant.

Under any disturbance, small or large, the speed of the machines
will deviate from the steady state values due to mismatch between
mechanical and electrical powers (torque) and therefore, the
difference of the rotor angles would also change.

If these rotor angle differences (between any pair of generators)
attain steady state values (not necessarily the same as in the pre-
disturbance condition) after some finite time, then the synchronous
generators are said to be in ’'synchronism’.

On the other hand, if the rotor angle differences keep on increasing
Indefinitely, then the machines are considered to have lost
’'synchronism’.

Under this 'out of step’ condition, the output power, voltage etc. of
the generator continuously drift away from the corresponding pre-
disturbance values until the protection system trips the machine.
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SMALL-SIGNAL STABILITY

= In this case, the disturbance occurring in the system is small. Such
kind of small disturbances always take place in the system due to
random variations of the loads and the generation.

= Under small perturbation (or disturbance), the change in the
electrical torque of a synchronous generator can be resolved into
two components, namely,
o synchronizing torque (T,) - which is proportional to the change in the rotor angle
o damping orque (T), which is proportional to the change in the speed

AT, = AT, AS + ATp Aw

m As a result, depending on the amounts of synchronizing and
damping torques, small signal instability can manifest itself in two
forms.

= When there is insufficient amount of synchronizing torque, the rotor
angle increases steadily. On the other hand, for inadequate amount
of damping torque, the rotor angle undergoes oscillations with

iIncreasing amplitude.
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SMALL-SIGNAL STABILITY
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TYPES OF SMALL-SIGNAL INSTABILITY

m Local mode: In this type, the units within a generating station
oscillate with respect to the rest of the system. The term ’local’ is
used because the oscillations are localized in a particular generating
station.

m Inter-area mode: In this case, the generators in one part of the
system oscillate with respect to the machines in another part of the
system.

= Control mode: This type of instability is excited due to poorly
damped control systems such as exciter, speed governor, static var
compensators, HVDC converters etc.

m Torsional mode: This type is associated with the rotating turbine-
governor shaft. This type is more prominent in a series
compensated transmission system in which the mechanical system
resonates with the electrical system.
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5.03.2024

STABILITY

The ability of the power system to remain in synchronism
and maintain the state of equilibrium following a
disturbing force

Steady-state stability: analysis of small and slow disturbances
m gradual power changes

Transient stability: analysis of large and sudden disturbances
m faults, outage of a line, sudden application or removal of load
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GENERATOR DYNAMIC MODEL

« Under normal conditions, the relative position of the rotor
axis and the stator magnetic field axis is fixed

the angle between the two is the power angle or torque angle, 6

during a disturbance, the rotor will accelerate or decelerate w.r.t.
the rotating stator field

acceleration or deceleration causes a change in the power angle

:Z; — ]DE _ j:i? Rﬁ _ Zﬂ
{UE 2 4 (6 OHZ ) (Ummr
accelation AT — I;H _ Te
2
J ! Eim =AT=1,-1, 0,=w,1+0, Dyorer _ POlES
dt " 5

ms

where 0, is the angular displacement of the rotor with respect to the stationary
reference axis on the stator. Since we are interested in the rotor speed relative to
synchronous speed, the angular reference is chosen relative to a synchronously
rotating reference frame moving with constant angular velocity wsyy,, that is
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GENERATOR DYNAMIC MODEL

do, do a6 d°s,
l‘Mr’n — - a’}ms + . &,m — 5 2
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Jd i?}m :Jd fzm T -T
dit” dt
Jw, d’s, o 1 —w 1 =P —P
dr’
We=1Jo. = Mo, M =2k =Jo,

)

M
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GENERATOR DYNAMIC MODEL

2W,, d°5
o, Sy d* "

W, _ kinetic energy in MJ at rated speed _

P

e(pu)

H

S, machine power rating in MVA
2H d*S B
- dfz _ ml[pnjl_ e( pu)
H d°o
> =L,y — Loy (radians)
. f d.f m( pu el pu
H d°6
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SYNCHRONNOUS MACHINE MODEL

PE
P]_'I.IEIE
P Pe{}
Round £’ = ‘E’Mé‘
Rotor , .
Machine Vs =|V6|£0 5
Model B = % , 0 O /2 T
Xd power angle curve
i 1 EWs . .
P, =|E'|V,|Blecos(s —90°)=—Lsins = P sino
P omrarme B smbnn e | d

Derive this equation on the board
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SWING EQUATION

2
H d 25 =P - P Dynamic Generator Model
w f, dt
P =P_sind Synchronous Machine Model
H d*o

— P —P _smmo Forming the Swing Equation
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SMALL-SIGNAL STABILITY

¢ The ability of the power system to remain in synchronism
when subject to small disturbances

o Stability is assured if the system returns to its original
operating state (voltage magnitude and angle profile)

e The behavior can be determined with a linear system
model

e Assumption:

the automatic controls are not active
the power shift is not large
the voltage angles changes are small
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SMALL-SIGNAL STABILITY

e Swing Equation

HT_ d-(i}i - ‘F;;'n' o Rﬁm‘ SlIl (5‘
7 f, dr’

o« Small disturbance modeling

O =0,+ A0 Consider a small deviation
H d*(5,+Ad e s
4 (% i )P P sin(5, + A)
7T fo dt |

H d°6, H d°As . : e
_Z Zoy “-p_-pP [sin 5, cos AS +cos 5, sin AJ |
Tf, d~ nmf, dt’
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SMALL-SIGNAL STABILITY

Simplification of the swing equation
H dzﬁﬂ H d*AS

2 T 2
7 f, dt T f, dt
Substitute the following approximations
AO << O cosAo =1 sin Ao ~ Ao
H dzf‘?ﬂ H d°AS
2 T 2
7 f, dt 7 f, dt

=P —-P [sin 0, €0s Ao + cos 0, sin Ar_‘i']

max

=P —P sino,—P, __coso, Ao

max FrRax

Group steady state and transient terms
H dzﬁﬂ H d*AS

——PFP +P sino,=-— ——F, .c0s0, Ao
7T f, dt | 7T f, dt |
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SMALL-SIGNAL STABILITY

« Simplification of the swing equation
H d’o, H d°AS

—P +P sino,=— — P _coso,-Ao

T t fﬂ d rg max T b fD d t 2 max

H d’A6S . .
0= f + P €0s0, Ao

T f, dt”
Steady state term is equal to zero
dP d o .
f — ~ R’.rmx S "r) — R’.rmr COS(}() — PS‘

do 5, do 5o |

H d’Aé . .
1 ; + P A0 =0 Second order equation.

7 fo di The solution depends on the roots of the
characteristic equation
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SMALL-SIGNAL STABILITY

o Stability Assessment

+ When P_is negative, one root is in the right-half s-plane, and the
response is exponentially increasing and stability is lost

+ When P_is positive, both roots are on the jo axis, and the motion
is oscillatory and undamped, the natural frequency is:

SE:_aniJPS I
H
wﬁ:\/ﬁ Jo P,
H e

o
Root locus

S-plane
I j
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DAMPING TORQUE

P, = Di:}) Damping force 1s due to air-gap interaction
[
H d*As _ dAS !
4D 4 PAS=0
T f, dt dt
d*AS dAS !
0 A Jo p A0 T Jo p s =0
dt H dt H
d*AS dAS !
20w, 0 AS =0
dt dt
._D |7 f
- 2\ HP
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CHARACTERISTIC EQUATION

2 2
S™+ 2@'::0”.9 +w. =0

- T fﬁ ] | L
— or normal operation conditions
H P

_ - ;L 2 . ,
S;,8, =—Cw, T jo, .\Xl - complex roots

W, =, \x ] — é’ ’ the damped frequency of oscillation
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LAPALACE TRANSFORM ANALYSIS

. dAoO
X, = ﬁ()., X, = d—
t

X, 0 1 X, _
.| T ) . =X = AX
X, -, —20m, || X,

1% = Ax| — sX(s) — x(0) = AX(s)
X(s5)=(sI-A) " x(0)

S —1
w, s+2lo,

s+20mw, 1
—w; s
2

(sT-A)

X(5) = x(0)

3

5T +20w s+ o)
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LAPALACE TRANSFORM ANALYSIS

Power Systems |

5.03.2024

(S +2¢w, )Acﬁ'ﬂ

Ao(s)=— ?
*) ST +20m 5+ @]
Ao(s) = =A%
s +2é’m S+,
AO
AO(1) = * e sin(w,t+60), O=cos ¢
i—l—cj‘
AOy,  or .
Aw(f) =— Dn2%_ g-con sm(mdr)

1

o(f)y=0,+Ao(t), o)=wn,+Awn()

Derive this equation on the board
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EXAMPLE 1

o A 60 Hz synchronous generator having inertia constant H =
9.94 MJ/MVA and a transient reactance X';=0.3 puis
connected to an infinite bus through the following network.
The generator is delivering 0.6 pu real power at 0.8 power
factor lagging to the infinite bus at a voltage of 1 pu.
Assume the damping power coefficient is
D = 0.138 pu. Consider a small disturbance of 10° or 0.1745
radians. Obtain equations of rotor angle and generator

frequency motion.

12

A
|-I- -H-\'l'.- . -\l

_@

X, =02 X,,=0.3

Sayasun
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Solution

The transfer reactance between the generated voltage and the infinite bus is

X=O.3+0.2+9;§=0.65

2
The per unit apparent power is
0.6 1 o
S = ﬁécos 0.8 = 0.75/36.87

The current is

S*  0.75/—36.87°

e e = 0.75/—36.87

I =

The excitation voltage is

E' =V +jXI =10/0° + (j0.65)(0.75/—36.87°) = 1.35/16.79°

5.03.2024 Sayasun
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Solution

Thus, the initial operating power angle is 16.79° = 0.2931 radian. The synchro-
nizing power coefficient given by (11.39) is

P, = Pz cosdy = (13?5(1) cos 16.79° = 1.9884

The undamped angular frequency of oscillation and damping ratio are

_I7fo ()(60)
wn =\l 7 Fs = 904 ~———21.9884 = 6 1405 rad/sec

D [7fo 0138 (7)(60)
$=73 HP, 2 \/(9.94)(1.9884) = 02131
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Solution

The linearized force-free equation which determines the mode of oscillation given
by (11.46) with § in radian is

P AS dA§
G T 20 +ITTAI=0

From (11.50), the damped angular frequency of oscillation is

wa = wnyJ1~ (2 = 6.1405,/1 — (0.2131)2 = 6.0 rad/scc

corresponding to a damped oscillation frequency of

fa= 6—0 = 0.9549 Hz
27
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Solution

6 = 16.79° 4 10.234e~ 1% sin (6.0t + 77.6966°)

6.0t

11

60 — 0.1746¢~ 13 gj

fz

30

T T T
1 1 1
1 1 i
1 1 1
1 1 1
1 1 1
1 1 1
| | |
1 1 1
| | |
1 1 1
———-—=l-———— +--—-1T-F————-
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
| | |
1 1 1
1 1 1
——— = =l ———— - ————— ————
1 1 1 1
1 1 v
1 1 [} 1
1 1 i
1 1 ol
1 1 Y
| | W1
1 1 il
1 1 a
1 1 i
I 1____I [ER—
1 [ I
] ] )
1 1 fo
1 1 Ao
1 [
| |- |
1 1 1
I 1y I
1 1] 1
1 [ 1
1 1 1
L TIT T T T T T
1 1 1
] [ ]
1 1 1
| | ./..f/f_“,
1 1
| | %
1 1 [
1 1 1 5,
1 1 1 h
1 1 1
F—--=-t-———= t----- F——=—
1 1 1 o~
1 1 1
1 1 -
1 1 .~.~.+
I [
1 A 1
1 ] 1
1 1 1
\.._. 1 1
£ 1 1
L 1 1 1
Ul = Tl o=
[ = — —
aarFap “eyaq

0.5

5€C
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T T T T
| I | 1
1 1 1 1
| | | 1
1 1 1 1
| il | 1
| I | 1
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| | | 1
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I I I 1
| 14 | 1
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IIIILIIII..V —-—=d- iy Ep——
1 R 1 I
| [ 1
1 [ 1
| | Yool 1
| | | 1
| | | 1
| | Pl 1
| [ 1
1 [ 1 1
| 1 | 1
| | 1
||||Jldﬂkﬁ|||Jllll1||||
1 1 1 1
v 1 1 1
A | | 1
Al I I 1
| | | 1
wo | | | 1
En] 1 1 1
// 1 1 1
[ 1 1 1
| - | 1
F-——dA———=F=-—d4————F----
1 1 e 1
I I TE; 1
| | | -
| | | .“./
| | | 1
| | | 1
1 1 1 1
1 1 1 L
| | [
1 1 = 1
I L") 1
L = LA (=1 L
= = =1 on ==
=] =11 il =
L =) Ly Ly

e

0.5

i, sec
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MATLAB M-File

E=1.35; V=1.0; H=9.94; X=0.65; Pm=0.6; D= 0.138; f0 = 60;

Pmax = ExV/X, d0 = asin(Pm/Pmax) % Max. power
Ps = Pmax*cos(d0) % Synchronizing power coefficient
wn = sqrt(pi*60/H*Ps)), Undamped frequency of oscillation
z = D/2*sqrt (pi*60/ (H*Ps)) % Damping ratio
wd=wn*sqrt(1-z"2), fd=wd/(2+pi) %Damped frequency oscill.
tau = 1/(z*wn) %» Time constant
th = acos(z) /» Phase angle theta
DdO = 10*pi/180; 4 Initial angle in radian
t = 0:.01:3;

Dd = Dd0/sqrt(1-z"2)*exp(-z*wn*t) .*sin(wd*t + th):

d = (d0+Dd)*180/pi; 4% Power angle in degree
Dw = -wn*Dd0/sqrt (1-z"2)*exp(-z*wn*t) . *sin (wd*t) ;

f = £0 + Dw/(2*pi); % Frequency in Hz

subplot(2,1,1), plot(t, d), grid
xlabel ('t sec’), ylabel(’Delta degree’)
subplot(2,1,2), plot(t,f), grid
xlabel(’t sec’), ylabel(’Frequency Hz’)
subylot(lil)

5.03.202
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MATLAB initial Command

x(t) = AX(t) + Bu(t) | -[y, x] = initial(A, B, C, D, xp, t)
y = Cx(t) + Du(t)

5.03.2024

£ ] 0 1
2y | | —37.705 —2.617

v=[o 3][2]

A=1[0 1; -37.705 -2.617];

B = [0; 0]; % Column B zero-input
C=[1 0; 0 1];%Unity matrix defining output y as x1 and x?2
D = [0; 0]; |

Dx0 = [0.1745; 0]; % Initial conditions
[y, x] = initial(A, B, C, D, Dx0, t);

Dd = x(:, 1); Dw = x(:, 2); % State variables x1 and x?2
d = (d0 + Dd)*180/pi; % Power angle in degree
f = £0 + Dw/(2*pi); 4 Frequency in Hz

subplot(2,1,1), plot(t, d), grid
xlabel(’t sec’), ylabel(’Delta Degree’)
subplot(2,1,2), plot(t, f), grid

xlabel(’t sec’), ylabel (’Frgquency Hz’) ,subplot(111)

I
T2

|
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Small Disturbance in Input Power

Assume that the input power is increased by a small amount
The linearized swing equation
H d’As dAS

nfo diz VP g T PAd=AP

or

PAS  nfy dAS  wf,
@ T 'l T

or in terms of the standard second-order differential equation, we have

P,AS = %AP

P2AS A
M— Ad=A
gz T Hwng ton ¢

where

Au = ZT-—J-C-QAP
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Small Disturbance in Input Power

1 =Ad and z9 = Aw =A.5 then

£1 =29 and xo= ——-wﬁxl — 2Cwn T2

Writing the above equations in matrix, we have
351 _ 0 1 I1 0 ] A
[1’2]_[*%«% —QCwn}[$2]+[1 *

x(t) = Ax(t) + BAu(t)

or

5.03.2024 Sayasun
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Small Disturbance in Input Power:
Laplace Transform

J Take Laplace transform

sX(s) = AX(s) + BAU(s) AU(s) = Au
X(s) = (sI— A)"'BAU(s) 5
 The state will be

EIHE

—ws 8
X)) = "1 2w + 2
Au Au
AS(s) = _
R o R orr

5.03.2024 Sayasun
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Small Disturbance in Input Power:
Laplace Transform

J Take inverse Laplace transform

4 Substituting Au we obtain angle (in radian) and angular frequency

7rf0 AP 1 —lw .
Hu2 [1- 05 Cge $wnt sin(wgqt + 0)]

mjo AP 'f_’._c““""t sin wgt
Huwn/T -2 d

5.03.2024 yasun 32
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Example 2

The generator of Example 11.2 is operating in the steady state at 6y = 16.79° when
the input power is increased by a small amount AP = 0.2 per unit. The generator
excitation and the infinite bus bar voltage are the same as before, i.e., E' = 1.35
per unit and V = 1.0 per unit.

(a) Using (11.75) and (11.76), obtain the step response for the rotor angle and the
generator frequency.

(b) Obtain the response using the MATLAB step function.

(c) Obtain a SIMULINK block diagram representation of the state-space model and
simulate to obtain the response.
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Solution

Substituting for H, dg, ¢, and w,

(180)(60)(0.2) [ 1
(9.94)(6.1405)2" | /T— (0.2131)2

0 = 16.79° 4

e~ 13 sin(6t + 77.6966°)]

6 =16.79° + 5.7631[1 — 1. 023513t sin(6t + 77.6966°)]

f — 60 + (60) (02) 8—1.3t sin 6t

2(9.94)(6.1405)/1 — (0.2131)2

f =60+ 0.10e1 sm6t
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60

Hz

Solution

30.0

25.0F

200t

15.0

10.0

3.0

60.1

60.11

39.9

60.0 /\/\/f

59.8

0.5

1.0

1.5
SabaS&C

2.0

2.5

3.0
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x(t) = AX(t) + Bu(t)
y = Cx(t) + Du(t)

5=

5.03.2024

—37.705 —-2.617

=[0 3]

= [0 1; -37.705 -2.6171;
p=20.2; Du = 3.79; % Small step change in power input

(=l v e Bl
t— i

MATLAB step Command

‘ [ya X] — Step(Aa B, C, D, lu) t)
] [ z; ] * [ (1] ] e Au = (607/9.94)(0.2) = 3.79
o]

[0; 1])*Du;

1 0; 0 1];%Unity matrix defining output y as x1 and x2

[0; 0];

[y, x] = step(A, B, C, D, 1, t);

Dd = x(:, 1); Dw = x(:, 2); % State variables x1 and x2
d = (d0 + Dd)*180/pi; % Power angle in degree
f = £0 + Dw/(2*pi); % Frequency in Hz
subplot(2,1,1), plot(t, d), grid

xlabel(’t sec’), ylabel(’Delta degree’)
subplot(2,1,2), plot(t, £), grid

xlabel(’t sec’), ylabel(’Frequency Hz’) ,subplot(111)
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Simulink Model

Au = 3.79

— | | X =AX+Bu Dermux
— Y =CX+Du
Step State-Space

5.03.2024
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do
180/pi
1/(2*pi)
60 >
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Homework 1 (20 points)

A two-pole, 60-Hz synchronous generator has a rating of 250 MVA, 0.8

power factor lagging. The kinetic energy of the machine at synchronous speed

Is 1080 MJ. The machine is running steadily at synchronous speed and

delivering 60 MW to a load at a power angle of 8 electrical degrees. The load is

suddenly removed.

a) Determine the acceleration of the rotor.

b) If the acceleration computed for the generator is constant for a period of 12
cycles, determine the value of the power angle and the rpm at the end of
this time.

5.03.2024 Sayasun
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Homework 2 (20 points)

The swing equations of two interconnected synchronous machines are written
as.

Hq d?6q P
— 1 — Lel

mfo dt? "

Ho d?59

Ffﬂﬁ :Pm?_PEB

Denote the relative power angle between the two machines by 06 = d; — d2. Obtain
a swing equation equivalent to that of a single machine 1n terms of 0, and show that

H d25
PP
Tfodt2 M e
where
- HyHy
Hy+ Ho
HoPp1 — H1Po HoPpy — H1Pea
P — C d P —
" Hy + H» " ‘ Hi + H»

5.03.2024 Sayasun
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Homework 3 (60 points)

A 60-Hz synchronous generator has a transient reactance of 0.2 per unit and

an inertia constant of 5.66 MJ/MVA. The generator is connected to an infinite
bus through a transformer and a double circuit transmission line, as shown
below. Resistances are neglected and reactances are expressed on a
common MVA base and are marked on the diagram. The generator is
delivering a real power of 0.77 per unit to bus bar 1. Voltage magnitude at
bus 1is V;|=1.1pu pu. The infinite bus voltage V, =1.020° pu pu.

1

i

_ 0158 X71=0.8
g =018 L v=1.020
Xh=0.2 Sn A12=08 [+

5.03.2024 Sayasun
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Homework 3 (cont’nd)

a) Determine the generator excitation voltage and the swing

equation

b) The machine has a pu damping coefficientof D = 0.15. The

generator excitation voltage is E' = 1.25 pu and the generator is
delivering a real power of 0.77 pu to the infinite bus at a voltage of
V = 1.0 pu. Write the linearized swing equation for this power
system annd to find the equations describing the motion of the
rotor angle and the generator frequency for a small disturbance
ofA§ = 15°. Use MATLAB to obtain the plots of rotor angle and

frequency.
Write the linearized swing equation found in part b) in state
variable form. Use [y.z] =initial(A, B, C, D, x¢.t) and Simulink

commands to obtain the zero-input response for the initial
conditions 69 = 27.835°
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Homework 3 (cont’nd)

d) The generator is operating in the steady state at when the input power is
increased by a small amount AZF =0.15 pu. The generator excitation and
the infinite bus voltage are the same as before. Find the equations
describing the motion of the rotor angle and the generator frequency for a
small disturbance of AP = 0.15pu. Use MATLAB to obtain the plots o rotor
angle and frequency.

e) Determine the linearized state-space equation for the case in part d). Use

., x| =step(A, B,C, D, 1,t) or Simulink to to obtain the zero-state response
when the input power is increased by a small amount AP =0.15
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