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TUNNEL-DIODE CIRCUIT

PREY-PREDATOR MODEL
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EXAMPLE 1: LINEARIZATION

EXAMPLE 1: LINEARIZATION
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EXAMPLE 1: LINEARIZATION

EXAMPLE 1: LINEARIZATION
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EXAMPLE 2: LINEARIZATION

EXAMPLE 2: LINEARIZATION
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EXAMPLE 3: LINEARIZATION TUNNEL-DIODE 

CIRCUIT

EXAMPLE 3: LINEARIZATION TUNNEL-DIODE 

CIRCUIT
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MODELING

 This lecture we will concentrate on how to do system

modeling based on two commonly used techniques

 In frequency domain using Transfer Function (TF)

representation

 In time domain via using State Space representation

 Transition between the TF to SS and SS to TF will also be

discussed

TRANSFER FUNCTION REPRESENTATION



16

Transfer Function (TF)

EXAMPLE:TRANSFER FUNCTION

3 2

3
( )

11 38 40

s
T s

s s s




  

Zeros: s=-3

Poles: s=-2,-4,-5

>> num=[1 3];

>> denum=[1 11 38 40];

>> roots(denum)

ans =

-5.0000

-4.0000

-2.0000

>> [Z,P,K] = tf2zp(num,denum)

Z =

-3

P =

-5.0000

-4.0000

-2.0000

K =

1
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TF MODELS OF PHYSICAL SYSTEMS

ELECTRICAL SYSTEMS
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2-LOOP ELECTRICAL SYSTEM

2-LOOP ELECTRICAL SYSTEM
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TRANSLATIONAL MOTION

 The cornerstone for obtaining a mathematical model, or the

dynamic equations for any mechanical system is Newton’s

law

F = the vector sum of all forces applied to each body in a

system, newtons (N),

a = the vector acceleration of each body with respect to an

inertial reference frame (that is, one that is neither

accelerating nor rotating); often called inertial acceleration,

m/sec2,

m = mass of the body, kg.

TRANSLATIONAL MOTION
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EXAMPLE: TRANSLATIONAL MECHANICAL 

SYSTEM

EXAMPLE: A SIMPLE SYSTEM-CRUISE CONTROL 

MODEL
Write the equations of motion for the speed and forward motion of the 
car shown below, assuming that the engine imparts a force u, and 
results the car velocity v, as shown.

Using the Laplace Transform, find the transfer function between the 
input u and the output v.

u 
(Force)

x (Position)

v (Velocity)
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A Simple System: Cruise Control Model

Applying the Newton’s Law for translational motion yields:

u bv ma 

u bx mx 

b u
v v

m m
 

u bv mv 

( )V s b m U m 

( ) 1

( )

V s m

U s s b m




A Simple System: Cruise Control Model

With the parameters:

1000 kg
50 Ns/m
500 N

m
b
u





In MATLAB windows:

Response of the car velocity v
to a step-shaped force u:

( ) 1

( )

V s m

U s s b m



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Rotational Motion

 Application of Newton’s law to one-dimensional rotational 

systems requires

M = the sum of all external moments about the center of mass 

of a body, N · m,

I = the body’s mass moment of inertia about its center of 

mass, kg·m2,

α = the angular acceleration of the body, rad/sec2

Rotational Motion
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Example: DC motor

 In addition to housing and bearings, the

nonturning part (stator) has magnets, which

establish a field across the rotor.

 The magnets may be electromagnets or, for

small motors, permanent magnets.

 The brushes contact the rotating

commutator, which causes the current

always to be in the proper conductor

windings so as to produce maximum torque.

If the direction of the current is reversed, the

direction of the torque is reversed.

Example: DC motor (cont’d)

Torque and  back emf voltages:

Newton’s laws:

Electrical equation:

Transfer function:

Show how to obtain transfer function on the board…
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Example: DC motor (cont’d)

Simplified transfer function (neglecting the inductance):

Transfer function between the motor input and the output speed 

(ω):

Example: DC motor (cont’d)
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State-Space Equations

State variables?  

 i and v

 

+ + 

- - - 
u(t) R C 

L 

+ 
y 

i

v

• How to describe the evolution of the state variables?

vu
dt

di
L 

R

v
i

dt

dv
C 

RC

v
i

C

1

dt

dv

u
L

1
v

L

1

dt

di



 State Equation: Two first-

order differential equations in

terms of state variables and

input

Output 

equation:

u

0
L

1

v

i

RC

1

C

1
L

1
0

dt

dv
dt

di





























































In matrix form:

y = v   u0
v

i
10 










Example 1: Electrical Circuits
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 Steps to obtain state and output equations:

Step 1: Pick {iL, vC} as state variables

Step 2: 

C
C

L
L

i
dt

dv
C

v
dt

di
L




Express vL and iC in terms of 

state variables and input using 

KVL and KCL

Step 3:

)elsenothing,input,iablesvarstate(i
C

1

dt

dv

)elsenothing,input,iablesvarstate(v
L

1

dt

di

L
C

L
L





Step 4: Put the above in matrix form

Step 5: Do the same thing for y in terms of state variables 

and input, and put in matrix form

Electrical Circuits: Steps Involved

 State variables?  

 i1, i2, and v, 

viRu
dt

di
L 11

1
1 

21 ii
dt

dv
C  21

2
2

2

22

11
1

1

11

i
C

v
i

C

1

dt

dv

v
L

1
i

L

R

dt

di

u
L

1
v

L

1
i

L

R

dt

di







u

0

0

L

1

v

i

i

0
C

1

C

1

L

1

L

R
0

L

1
0

L

R

dt

dv
dt

di
dt

di

1

2

1

22

2

11

1

2

1



























































































22
2

2 iRv
dt

di
L 

 



















v

i

i

0R0iRy 2

1

222

Example 2 
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Mechanical Systems

Mechanical Systems (cont’d)
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Mechanical Systems: Steps Involved

• Steps to obtain state and output equations:

Step 1: Determine ALL junctions (where 2 or more elements are 
connected), and label the motion of each one

Step 2: Draw a free body diagram for each junction to obtain the net force 
of that junction

Step 3: Apply Newton's law of motion to each diagram 

Step 4: Select appropriate variables as state variables, and write the state 
and output equations in matrix form

• For rotational systems:  = J

• : Torque = Tangential forcedistance

• J: Moment of inertia = r2dm        

 : Angular acceleration

– There are also angular spring/damper

Obtaining Transfer Function from SSE



29

Obtaining Transfer Function from SSE

Example 2: Obtaining Transfer Function from SSE
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Example 3:Obtaining Transfer Function from SSE

Creating Continuous-Time Models

• Transfer function (TF) models

• Zero-pole-gain (ZPK) models

• State-space (SS) models

MATLAB is quite useful to transform the system model from transfer

function to state space, and vice versa
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Transfer Function (TF) Model

 SYS = tf(NUM,DEN) creates a continuous-time transfer 

function SYS with numerator NUM and denominator 

DEN. SYS is an object of type tf when NUM,DEN are 

numeric arrays

num = [ 1 0 ]; % Numerator: s

den = [ 1 2 10 ]; % Denominator: s^2 + 2 s + 10

H = tf(num,den)

H =

s

--------------

s^2 + 2 s + 10

Continuous-time transfer function.

Transfer Function (TF) Model

 Alternatively, you can specify this model as a rational expression of the 

Laplace variable s:

s = tf('s'); % Create Laplace variable

H = s / (s^2 + 2*s + 10)

H =

s

--------------

s^2 + 2 s + 10
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Zero-pole-gain (ZPK) Model

 SYS = zpk(Z,P,K) creates a continuous-time zero pole-

gain (zpk) model SYS with zeros Z, poles P, and gains K.

z = 0; % Zeros

p = [ 2 1+i 1-i ]; % Poles

k = -2; % Gain

H = zpk(z,p,k)

H =

-2 s

--------------------

(s-2) (s^2 - 2s + 2)

s = zpk('s');

H = -2*s / (s - 2) / (s^2 - 2*s + 2)

H =

-2 s

--------------------

(s-2) (s^2 - 2s + 2)

Creating State-Space Model

 SYS = ss(A,B,C,D) creates an object SYS representing 

the continuous-time state-space model

A = [ 0 1 ; -5 -2 ];

B = [ 0 ; 3 ];

C = [ 1 0 ];

D = 0;

H = ss(A,B,C,D)
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From State-Space Model to Transfer Function Model

 ss2tf  State-space to transfer function conversion.

[NUM,DEN] = ss2tf(A,B,C,D,iu)  calculates the transfer function:

NUM(s)         -1

H(s) = -------- = C(sI-A) B + D

DEN(s)

of the system:

.

x = Ax + Bu

y = Cx + Du

from the iu'th input.  Vector DEN contains the coefficients of the

denominator in descending powers of s.  The numerator 
coefficients

are returned in matrix NUM with as many rows as there are 

outputs y

From State-Space Model to Transfer Function Model: Example
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From Transfer Function Model to State-Space Model

 tf2ss  Transfer function to state-space conversion.

[A,B,C,D] = tf2ss(NUM,DEN)  calculates the state-space representation:

.

x = Ax + Bu

y = Cx + Du

of the system:

NUM(s) 

H(s) = --------

DEN(s)

from a single input.  Vector DEN must contain the coefficients of the denominator 

in descending powers of s.  Matrix NUM must contain the numerator coefficients 

with as many rows as there are outputs y.  The A,B,C,D matrices are returned in 

controller canonical form.

From Transfer Function Model to State-Space Model-Example
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Stability Definitions

Stability
Consider the linear time-invariant system (LTI system). For those 

systems, the following condition for stability applies:

A linear time-invariant system is said to be stable if all the 
roots of the transfer function denominator polynomial have 
negative real parts (i.e., they are all in the left half of s-
plane) and is unstable otherwise.

s < 0 s  0 s > 0

A system is stable if its impulse response 
decays to zero, and unstable if diverge.

“

”
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Stability of Linear Time-Invariant Systems

1 2

1 2 1 0n n n

n ns a s a s a s a 

     

Consider the linear time-invariant system whose transfer function 
denominator polynomial (or characteristic equation) is given by

Assume that the roots {pi} of the characteristic equation are real or 
complex, but are distinct; so that the transfer function can be given as:

1 2

0 1 2 1

1 2

1 2 1

( )
( )

( )

m m m

m m

n n n

n n

b s b s b s b s bY s
T s

R s s a s a s a s a

 



 



    
 

    

1

1

( )
,

( )

m

ii

n

ii

K s z

s p













m n

Stability of Linear Time-Invariant Systems

 The solution of the system response, found using partial fraction 
expansion, may be written as:

1

( ) i

n
p t

i

i

y t K e




 The system is stable if and only if (necessary and sufficient condition) 
every term in the equation above goes to zero as 
t  .

 This situation will happen if all the poles of the system are strictly in 
the LHP.

0ip t
e  for all pi

 Re 0ip 
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Stability of Linear Time-Invariant Systems

 If any LHP poles are repeated, the response will change because a 
polynomial in t must be included in place of Ki. However, the 
conclusion is the same: as t  , y(t)  0.

1
lim 0

!

n at

t
t e

n






 Thus, the stability of a system can be determined by computing the 
location of the roots of the characteristic equation and determining 
whether they are all in the LHP. This is called internal stability.

 If a system has any poles in the RHP, it is unstable.

 If a system has non-repeated jω-axis poles, then it is said to be 
neutrally stable.

 If the system has repeated jω-axis poles, then it is unstable, as it 
results in tne±jωt in the solution equation

for any n ≥ 0

Exponential Series, Power Series

2 3 4( ) ( ) ( )
1 ...

2! 3! 4!

t t t t
e t   

     

Using Taylor series approximation, we can see that exponential series 
eλt increases faster than power series of tk.

t ne t n  for any value of 

 Therefore, e–at decreases faster than the increase of tn.

1
lim 0

!

n at

t
t e

n




 for any n ≥ 1

Also, since thencos sin    j te t j t lim 0n j t

t
t e 




Repeated jω-axis poles will make the system unstable.
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Routh’s Stability Criterion
 The roots of the characteristic equation determine whether the system

is stable or unstable.

Routh’s stability criterion is also useful for determining the
ranges of coefficients of polynomials for stability, especially
when the coefficients are in symbolic (non-numerical) form.

1 2

1 2 1( ) n n n

n na s s a s a s a s a 

     

Consider the characteristic equation

Routh’s stability criterion allows us to make certain statements
about the stability of the system without actually solving for the
roots of the polynomial.

Routh-Hurwitz Criterion: A Bit of History
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Routh-Hurwitz Criterion: A Bit of History

Routh’s Stability Criterion
A necessary condition for stability of the system is that all of the roots 

of its characteristic equation have negative real parts, which in turn 
requires that all the coefficients {ai} be positive.

A necessary (but not sufficient) condition for stability is 
that all the coefficients of the characteristic polynomial be 

positive.

If a system is stable, then all the coefficients of the 
characteristic polynomial are positive.

“
”≡(identical to)

“
”
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Routh’s Stability Criterion
Once the elementary necessary conditions have been satisfied, a

more powerful test is needed.

Routh in 1874 proposed a test that requires the computation of a
triangular array that is a function of the coefficients of the
characteristic equation.

A system is stable if and only if all the elements in the first 
column of the Routh array are positive.“

”
If a system is stable then all the elements in the first 

column of the Routh array are positive, and vice versa.

≡(identical to)

“
”

Routh’s Stability Criterion

1 2

1 2 1( ) n n n

n na s s a s a s a s a 

     

Consider the characteristic equation

 First, arrange the coefficients of the characteristic polynomial in two 
rows, beginning with the first and second coefficients and followed by 
the even-numbered and odd-numbered coefficients: 

2 4

1

1 3 5

: 1

:

n

n

s a a

s a a a
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Routh’s Stability Criterion

2 4

1

1 3 5

2

1 2 3

3

1 2 3

2

1

0

: 1

:

:

:

: * *

: *

: *

n

n

n

n

s a a

s a a a

s b b b

s c c c

s

s

s







1

2

3

              

2

1

0

n

n

n

n







Row

Row

Row

Row

Row

Row

Row

 

 

 

 

 

 

 

 Then add subsequent rows to complete the Routh array:

1 2 3
1

1

1 4 5
2

1

1 6 7
3

1

1
,

1
,

1
,










a a a
b

a

a a a
b

a

a a a
b

a

1 3 2 1
1

1

1 5 3 1
2

1

1 7 4 1
3

1

,

,

,

b a b a
c

b

b a b a
c

b

b a b a
c

b










First column of 
Routh’s array

 If the elements of the first column 
are all positive, then all the roots 
are in the LHP.

 If the elements are not all 
positive, then the number of roots 
in the RHP equals the number of 
sign changes in the column.

Example 1
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Example 2

Example 3: Routh’s Test
All the coefficients of the characteristic equation

6 5 4 3 2( ) 4 3 2 1 4 4a s s s s s s s      
are positive. This means that ...

 the system maybe stable or maybe not.

We have to determine whether all of the roots are in the LHP

6

5

4

3

2

1

0

: 1 3 1 4

: 4 2 4 0

: ? ? ?

: ? ?

: ? ?

: ?

: ?

s

s

s

s

s

s

s
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Example 3: Routh’s Test

6

5

4

3

2

1

0

: 1 3 1 4

: 4 2 4 0

: ? ? ?

: ? ?

: ? ?

: ?

: ?

s

s

s

s

s

s

s

1

4 3 2
2.5

4
b

 
 

2

4 1 4
0

4
b

 
 

3

4 4 0
4

4
b

 
 

2.5 0 4

6

5

4

3

2

1

0

: 1 3 1 4

: 4 2 4 0

: 2.5 0 4

: ? ?

: ? ?

: ?

: ?

s

s

s

s

s

s

s

4

Example 3: Routh’s Test

1

2.5 2 0 4
2

2.5
c

  
 

2

2.5 4 4 4
2.4

2.5
c

  
  

2 –2.4

 
1

2 0 2.4 2.5
3

2
d

  
 

2

2 4 0 2.5
4

2
d

  
 

3
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6

5

4

3

2

1

0

: 1 3 1 4

: 4 2 4 0

: 2.5 0 4

: 2 2.4

: 3 4

: 5.067

: 4

s

s

s

s

s

s

s





Example 3: Routh’s Test

 
1

3 2.4 4.2
5.067

3
e

  
  

1

5.067 4 0.3
4

5.067
f

  
 



• The elements of the first column are not all positive 
 The characteristic equation has at least one RHP root
 The system is unstable

• There are two sign changes ( to – and – to ) 
 There are two poles in the RHP

Example 3: Routh’s Test
Roots of polynomials can also be found by using MATLAB:

• Roots in the RHP, i.e.,
roots with positive real parts

• There are two roots of characteristic 
equation in the RHP

• There are two unstable poles
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Example 4: Low-Order Polynomials

Example 5: Routh’s Test

6 5 4 3 2( ) 4 4 6 8 1 1a s s s s s s s      

Given the characteristic equation:

Is the system described by this characteristic equation stable?

If a system is stable, then all the coefficients of the characteristic 
polynomial are positive.“

”

 p  q   ~q  ~p

If not all the coefficients of the characteristic 
polynomial are positive, then 

a system is not stable.

“
”

≡(identical to)
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Example 5: Routh’s Test

6 5 4 3 2( ) 4 4 6 8 1 1a s s s s s s s      
• There is a negative coefficient
 The system is not stable

• Necessary condition for stability is not 
even fulfilled
 No need to continue to Routh’s 
Test

• Roots in the RHP, i.e.,
roots with positive real parts

Example 6: Stability Versus Parameter Range

Consider the system shown below. The stability properties of the system 
are a function of the proportional feedback gain K.
Determine the range of K over which the system is stable. 

( 1)

( ) ( 1)( 6)

( 1)( )
1

( 1)( 6)

s
K

Y s s s s

sR s
K

s s s



 





 

( 1)

( 1)( 6) ( 1)

K s

s s s K s




   

( )

( )

b s

a s


• The characteristic equation
• Which is the denominator of the transfer 

function
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Example 6: Stability Versus Parameter Range

3 2( ) 5 ( 6)a s s s K s K    

3

2

1

1 2

0

1 2

: 1 ( 6)

: 5

:

:

s K

s K

s b b

s c c


1

5 ( 6) 4 30

5 5

K K K
b

   
 

2 0b 

1 2
1

1

5b K b
c K

b

  
 

2 0c 

The system is stable if and only if b1 and c1 are positive.  

4 30 0 7.5K K   

0K 
7.5K


 


3 2

( )

( ) 5 ( 6)

Y s Ks K

R s s s K s K




   

Example 6: Stability Versus Parameter Range

Generating the step responses of the transfer function in MATLAB, for 3 
different values of K: 

Time (sec)

A
m

p
lit

u
d

e

0 5 10
-15

-10

-5

0

5

10

K=5

K=7.5

K=10
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Special Cases

Special Case 1
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Example 1: Special Case 1

Example 1: Special Case 1
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Example 1: Special Case 1

Example 1: Special Case 1
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Example 2: Special Case 1
 If the sign of the coefficient above the zero (ε) is opposite that below 

it, it indicates that there is one sign change.

5 4 3 2( ) 3 2 6 6 9a s s s s s s     

 

5

4

3

2

1

0

6 9

6 9

6 9

: 1 2 6

: 3 6 9

: 0 3

: 9

3 9
:

: 9

s

s

s

s

s

s





















 













The opposite signs above and below ε
 There is one sign change
 The 1st root in the RHP

1st

2nd
Another sign change between s2 and s1

 The 2nd root in the RHP

1

2,3

4,5

2.9043          

0.6567 1.2881

0.7046 0.9929

s

s j

s j

 

 

  

Special Case 2
 If all the coefficients in any derived row are zero, it indicates that there 

are roots of equal magnitude lying radially opposite in the s-plane, that 
is, two real roots with equal magnitudes and opposite signs and/or two 
conjugate imaginary roots.

 In such a case, the evaluation of the rest of the array can be 
continued by forming an auxiliary polynomial from the last nonzero 
row, and then using the coefficients of the derivative of this auxiliary 
polynomial to replace the zero row.
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Example 1: Special Case 2

Example 1: Special Case 2
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Example 2: Special Case 2

5 4 3 2( ) 5 11 23 28 12a s s s s s s     
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Zero row

Auxiliary polynomial from the 
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polynomial
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s
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• One zero row
 Radially opposite roots

• No sign change
 No root in the RHP 
 Means, mirrored by real axis

Example 3: Special Case 2

5 4 3 2( ) 2 24 48 25 50a s s s s s s     
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Auxiliary polynomial from the 
last nonzero row

31( )
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polynomial
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1
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s

s

s

 
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• One zero row
 Radially opposite roots

• One sign change
 One root in the RHP
 Means, mirrored by imaginary axis
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ENERGY CONCEPT
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THE DIRECT METHOD
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EIGENVALUES
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MODAL MATRICES
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FREE MOTION OF DYNAMIC SYSTEM
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EIGENVALUE AND STABILITY
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EIGENVALUE AND STABILITY
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EIGENVALUE AND STABILITY
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EXAMPLE
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EXAMPLE
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