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STABILITY CONCEPT

Small perturbation

o A and F are unstable equilibrium points
o E and G are stable equilibrium points

[m]

C is a stable equilibrium point
o B—D are neutrally stable equilibrium point
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STABILITY DEFINITIONS

Let an equilibrium point be transferred to the origin
Definition 1: The origin is a stable equilibrium point if for
any given value £>0 3 anumber d(e.7,)>0 s.tif

”x(ro)” < &, then the resultant motion x(7) satisfies

[x(r)| <z for ¥i>1,

(stability in the sense of Lyapunov:i.s.L.)

Definition 2: The origin is an asymptotically stable
equilibrium point if it is stable and 3 a number () >0
s.t. whenever |x(7,)| <& the resultant motion satisfies

Iim x(f)” =0

f—w

28.02.2024 Sayasun

STABILITY DEFINITIONS

X, Asymptotically stable trajectory

t Cylinder of radius e

Stable i.s.L.
Disk of radius 8
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NONLINEAR SYSTEMS

State-space representation
X,= [0, X XU U5 i=12,...n
where n is the order of the system

r is the number of inputs
Vector-matrix notation

/Nonautonomous

Where
X, u, a
X, i,
X = u= __ f — ‘]2
X” ?/IJ' fl.‘]
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AUTONOMOUS SYSTEMS

x=f(x,u), y=g(x.,u)
T T
2 where ¥y=[» » - »] g=lg & - &]
States:

2 minimum amount of information about the system at
any instant in time that its future behavior can be
determined

a Any set of n linearly independent system variables
may be used to describe the system behavior

o The choice of states is not unique. If we define too
many states, not all of them will be independent

2 When the system is not at equilibria, the system will
change with time
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EQUILIBRIUM POINTS

The system is at rest (all variables are constant and
unvarying with time)
All derivatives are simultaneously zero

f(x,)=0
o Where x,, is the state vector x at the equilibrium points
Conclusions on the system stability can be drawn
from equilibrium points
Recall

o Linear systems: the stability is entirely independent of
the input and the stable state with zero input will
always return to the origin

2 Nonlinear systems: the stability depends on type and
magnitude of input and the initial state
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STABILITY OF NONLINEAR SYSTEMS

Local stability

a The system is said to be Jocally stable about an
equilibrium point if when subjected to small perturbation,
it remains within a small region surrounding the
equilibrium point

o The system is said to be asymptotically stable if the
system returns to the original state

Finite stability

o If the state of a system remains within a finite region R, it
is said to be stable within R

Global stability

a The system is said to be globally stable if R includes the
entire finite space
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PENDULUM

Pendulum without friction:

i] = I3

. g .
To = 775111:1:1

Pendulum with torque input:

1 = @3
1

ml?2

. g . k
Ty = — =sinx; — —x9 + T
l m

SYNCHRONNOUS MACHINE MODEL

Pe
Xd’ 1\ Pma‘{
Vr
\L P PEG
Round E'= ‘E' Zo
Rotor . o
Machine Ve =|Vs|£0 5
Model - )
B = y r 0 bO JT;"‘2 T
X, power angle curve
s . \E' VG\ L o
P = ‘E Ve B‘cos(é ~90°) = Tsm o=2P_ smo

Dawar Quetame | d




SWING EQUATION

R
i d i’ =P -P Dynamic Generator Model
7T f, dt '
P =P _sind Synchronous Machine Model
H d*o e
————=F,— [, smo Forming the Swing Equation
7 f, dt

Plll

TUNNEL-DIODE CIRCUIT

imA

i=h(v)

B 05 'Y
(b)
dig,
v = L_dt
u=F




TUNNEL-DIODE CIRCUIT

ic+ir—i =0 = ic=—h(z1)+ 2
ve — FE+Rip +vp =0 = v =—x1 — Rxs+u

i 1[ h(x1) + 2]

1 = —|[—h(x xT

1 C 1 2

i 1[ Ry + u]

Ty = —[—x1 — Rx u

2 I 1 2

PREY-PREDATOR MODEL

i =ar — bry
= cry —dy w"-f




LINEARIZATION

To investigate the small-signal performance
x, =f(x,.,u,)=0

o Let's perturb the system
X =X, +Ax u=u,+Au

o Hence
X=X, + AX = f[(x, + Ax), (u, + Au)]

a Taylor's series expansion

X, =X, + A, = £,[ (%, + AX). (u, + Au)]

"f
—f(xo,u0)+—'Ax ot =AY
('/,\‘”
cf of,
=Au, +...+——Au,
O, O,
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LINEARIZATION: LINEAR STATE-
SPACE EQUATION (SSE) MODEL

i - f f .}f f
We obtain  A¥, = —Ax, +...+—- A, = Au + A,
CAI CJ Oii’1 OH}

The linearized system is

Ax = AAX +BAu
Ay = CAx+ DAu

where

% 4 L/ %, 2, 2T 1Y

ox, ox, Ou, Cu éx, ax, Ou cu
A= ¢ B= c=| : D= :

g 9 & 9, g, g, %, . %8,

ox, ox, G, ou, éx, ox ou, cu
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BLOCK DIAGRAM OF SSE MODEL

L

-
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LINEARIZATION: SECOND-ORDER
SYSTEMS

’7Let p = (p1,p2) be an equilibrium point of the system
&y = fi(z1,x2), E2 = fa(w1,T2)

where f; and f5 are continuously differentiable
Expand f; and fy in Taylor series about (p1, ps)

1 = fi(p1,p2) + ai1(x1 — p1) + arz2(x2 — p2) + H.O.T.
2 = fo(p1,p2) + a21(x1 — p1) + a22(x2 — p2) + H.O.T.

gy — Of1(xz1,z2) gy — Of1(x1,x2)
3:;81 a::p’ 3:132 z=p
oy — Ofz(z1,z2) oy — Ofa(x1,x2)
L 3:)61 a::p, 8:122 z=p




PHASE PLANE ANALYSIS

Concept of Phase Plane Analysis:
O Phase plane method is applied to Autonomous Second Order System
X1 = fi(x1,x2) Xz = fo(x1,%2)
O System response X (t) = (x4 (t), x,(t)) to initial condition X, = (xl(O), xz((]))
is a mapping from R(Time) to R? (x4, x3)
QO The solution can be plotted in the x; — x; plane called State Plane or
Phase Plane
O The locus in the X1 — X3 plane is a curved named Tra!'ecmfz that pass through
point X,
O The family of the phase plane trajectories corresponding to various initial
conditions is called Phase portrait of the system.

O For a single DOF mechanical system, the phase plane is in fact 1s (x, ) plane
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SECOND-ORDER SYSTEMS
1 = fi(z1,z2) = fi(x)

£y = fa(x1,m2) = fo(x)

Let x(t) = (x1(%), xz2(t)) be a solution that starts at initial
state xo = (x10,®20). The locus in the x1—x2 plane of the
solution x(t) for all t > 0 is a curve that passes through the
point xg. This curve is called a trajectory or orbit

The x1—x2 plane is called the state plane or phase plane
The family of all trajectories is called the phase portrait

The vector field f(x) = (f1(x), f2(x)) is tangent to the
trajectory at point  because

dzy _ f2(@)
dz1  fi(x)
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EXAMPLE 1: LINEARIZATION

1. In an ecological system, sheep and rabbit are in the same food chain and are
competing each other. The population dynamics of these two species are defined by

the following non-linear state-space equations:

& =x0G-x-2x)

X =%02-x-x)

x,(f): The population of rabbits at any time ¢
X, (t): The population of sheep at any time ¢

population (10 p.)

a) Find all equilibrium points and make some comment on these in terms of their

b) For each equilibrium point, find a linear model valid around the corresponding
equilibrium point and determine their types (10 p.)
c) Plot the phase portrait of the non-linear system using pplane program (5 p.)

EXAMPLE 1: LINEARIZATION

A}
@%@ye /}fi?ia /Qr/:
X,=0 ve X,=C
X,=0 > X (3-%1~ - 2%)=
X _0-y Xg (3=X1-X2)=0

7 = o veyo 3-X1-2%=0
3 X220 Ve 2%-X2 =0|

Do/o 51 e (0,0) bir )
denge /)C/é7ZOJ/o///
DN (X X2)= (0,0)

X,=0 ve Q—)u—Xz:o

[ k/em/tmnm 402umu/}—
Q:rr; Jkinci den/oe nottasi

bulunu . Xe2=2

v (0:2) ]

P

J;a;;er fa’ [Tl X220 V&
3 X 2% =0 o denklemin-
Sen e nﬁu CJ@,?G nekfast
ba/anur

3 X J@r —'—) X!"B

Son o/ou'a!c
3-X1= 2% =0
- X1 —¥%2 =0

L Jem /Pi/nc/é’/’! dérdintu
C\Zigje(/)ol/‘OJ/ bolonur- ) Hé’f’ ki for yoé ct"ufr

"

X1 +2X9 :@ L (0 PN Tavsan -/UW j’ "
TXIT Xz =F n 455

on3 (300 ) ’/“,‘“V’b S birlkte
Mf/“ P (irf)
xgrf‘/:ﬂ ver 0%’” S

Xi =iges
vy i (1)
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EXAMPLE 1: LINEARIZATION

iy 8 o Tt

) XI’BX/”XI 2Xl><1 5

= 2%2 L AE Xy =12
2h?

XJ 9 DNI 319213 i
j()(): 69;; é{_z, /{3 0)___ .
3},_ X2 J3 o J
Todit-ang —H ééc/eae/lw]‘_,:-/zm~ "
j[)o = X 9-X1—2X karorl J&f“m ne
~-8X2
DN 4 (1’;0 B
Her bir /«n & nole Haoin oA —j—”)":'_ - -2
JiX) mat hwofbm/ Tl )= et
fj/bf [C 92-3 (o] ﬂ[})-j@f[)l 9)—()
= o B0 = /m z =g
o er ,:Q; )\)* ; 7\)
iicjzrifi cfujum‘ nobfedi y ] —:w !
ovaler) iy = n
J[D!Z) =[_9 - ]
=13 )2*—2

c&w’i}ogr/&" N

Lordrit rJUFUm nck-{aji

EXAMPLE 1: LINEARIZATION




EXAMPLE 2: LINEARIZATION

= 2K, 2-4x2_— ‘‘‘‘‘
T ] ) O [ T T e A o e |
a) Denje noktalon O i ')”Z
x/ 0 5 X, Xz-¢x2-8=0 4 x,"/ -
szo - —H/‘Lré)( -0 — )( = —?5\) ),7:—7
T —
Az = 7” - 7)—9[%’)-3~0 —)X;—Qx/‘g—O

€ —ox =49 “/T):O

Xr=tp——>Xp =
Xl=+¢ — Xz:—l—}:-z POV ¢ /‘“’/7->@

e -?z__ =R puin /‘9/-’)
e (e (2)=0
T
_;(f 2x-8=0 —X-2x,+8 =0
= Reel ko“L/uidok/uf.) )
Y ,,,&-7/ "7 D/mal Jzue it c/m(j;c /7CZ/O¢/

EXAMPLE 2: LINEARIZATION

a qdese/h D/ nees m2a Jelfer, /2@

X4

[Im,’)fO/)V /)OJ&)
A ")'[‘/ *9] 5
07’ ’-2 = OX
G-/ -sfzm
a2
D)= et (A I- A)_ = m

i rok
>u7.-"‘5-—+(7‘/_3; 6::”0.'/‘ SpIr

N=/12 ve Xp=% kazgr/(/% du?f“” ‘9/’”0‘0""7 d“ﬁv,.,

— Alo +9F
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EXAMPLE 3: LINEARIZATION TUNNEL-DIODE
CIRCUIT

Example 2.2 The state model of a tunnel-diode circuit is given by

. 1
T = E[—h(m) + 2],

1
.’bg = Z[—wl - R.’E2 + 'Lt,]

Assume that the circuit parameters are” u = 1.2 V, R = 1.5 ¥Q = 1.5 x 10° Q,
C=2pF=2x10""2 F and L =5 puH = 5 x 107% H. Measuring time in
nanoseconds and the currents z; and h(z;) in mA, the state model is given by

T

0.5[—h(z1) + 7o) ' fi(z)

def

g = 0.2(—z;— 15z +1.2) = fo(x)

Suppose h(-) is given by

h(zy) = 17.76z; — 103.79z% + 229.62z% — 226.31z% + 83.722%

EXAMPLE 3: LINEARIZATION TUNNEL-DIODE
CIRCUIT

-

of _ {—0.5&'(;1:.) 0.5 ]

dx —0.2 —0.3
—3.508 0.5
Ay = 3.5 0.5 . Eigenvalues : — 3.57, —0.33
—0.2 —0.3 -
1.82 0.5
Ag = ? . Eigenvalues : 1.77, —0.25
—0.2 =03
—1.427 0.5
Ag = |, Eigenvalues: —1.33, —0.4
—0.2 —03

3
16|
14 ¢
1.2

1

8 2\ @

0.6

0.4

0.2 ——=> Q3
o .

-0.2 ’—

%303 o o0z 04 06 08 1 12 14 16
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MODELING

m This lecture we will concentrate on how to do system
modeling based on two commonly used techniques

o In frequency domain using Transfer Function (TF)
representation

o In time domain via using State Space representation

Transition between the TF to SS and SS to TF will also be

discussed

TRANSFER FUNCTION REPRESENTATION

Transfer functions is an Input/Output approach for system
modelling

5 utput
nput System gutpu
r(t) y(t)
In Laplace Domain this becomes
R(s Y(s
(5) o (5)
where
H( ) iy Y(S) Relating the output to the input is called
= R( 8) the transfer function of the system

15



Transfer Function (TF)

For the differential equation of the form
anty™ + an_1y" Y + L+ a1y + ag

= bn_lu(n_” +...+ bl-u.(” + bou
the transfer function H (s) is
- Y(s) bp_18" 1+ ...+ bis+ by
T U(s)  s"4ap_15" 1+ ... +ais+ap

Note that transfer function is obtained by assuming that all the
initial conditions are zero

H(s)

Roots of the numerator of H (s)are the zeros of H(s)
Roots of the denominator of H (s)are the poles of H(s)

EXAMPLE: TRANSFER FUNCTION

S+3 Zeros: s=-3

T(s)= sz 4.
s3 41152 + 385+ 40 ' O1ES ST2AD

>>num=[1 3];
>>denum=[1 11 38 40];
>>roots(denum)

>> [Z,PK] = tf2zp(num,denum)
Z=

3
ans = -
-5.0000
-5.0000 fgmne
-4.0000 i
-2.0000 )

16



TF MODELS OF PHYSICAL SYSTEMS

Electrical Systems

" " o By i) 1 1 )
_|& vit) ?J“ i) dr i) = C o w(f) qu & Cs
Capacitor
-"\fv'\v vif) = Rilr) ilr) %1'(-’} Wiy R(—ﬁ":] R ;T Iei
Resistor I
dit 1t Lain) |
— WU i = f-”L" iy =g | wodr v = L :,i[ ! Ls T
Inductor ¢ Lo F r

ymbols and units is used throughout this book: W) = V{volis), ) = A (amps),

Note: The following set of s
glt) = Qleoulombs), € = F (farads), R = £} {ohms), & = UF (mhes), L = H (henries).

ELECTRICAL SYSTEMS

Back to the basic example of RLC circuit
Laplace Domain

Time Domain

L Vels) g
Ho) =V “aTRT I

After some mathematical manipulatons
1
H(s)= —X&
24 B4 1
$°+ s+ 1

That is

¥i) ic

17



2-LOOP ELECTRICAL SYSTEM

Find the relation between the input voltage and the voltage
across the capacitor

Kl Rg
M M
A \
V(i) () . L Yo =< veld
i1 4—7/ is(f) 4—//

System in Laplace domain

TN N
H(s) Ls :a oy
[(s) f«(\'h-—//
R+ Ls —Ls i | | V(s)
—Ls Ry+Ls+ g ia | — 0 @)
{1
Vel(s) = a’&g @)

2-LOOP ELECTRICAL SYSTEM

Solve for 22 with respect to V(s) from the mesh equation (1)
and replace it in the output equation (2)

CLs?

2= R T )OI T Ly R s’

H(s) LCs? I(s)
E—
(Ry+ Ry)LCs2 +(RIR,C+ L)s + R,

1 CLs?
Vi) = —
(s) Cs (Ri ¥ R2)CLs® + (L ¥ OR 1 Ra) s + Ry

Ls V (s)
(B1+ R2)CLs2 + (L+ CR1R3) s+ R, '

Transfer function is then

H(Q) - V(_:(S) i Ls
T Vi(s) (Ri+ R2)CLs?2+ (L+CR1Ry)s+ Ry

V (s)
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TRANSLATIONAL MOTION

m The cornerstone for obtaining a mathematical model, or the
dynamic equations for any mechanical system is Newton’s
law

F = ma.

F = the vector sum of all forces applied to each body in a
system, newtons (N),

a = the vector acceleration of each body with respect to an
inertial reference frame (that is, one that is neither
accelerating nor rotating); often called inertial acceleration,
m/sec?,

m = mass of the body, kg.

TRANSLATIONAL MOTION

Force- Force- Impedance
Component velocity displacement Zu(s) = F(s) X(s)
Spring
—n — (i} Ly
::!—0—0—0—0—1__ fln = K| vir)dr flry = Kx(r) K
T Jiry Jo
— K

Wiscous damper

Tr - () llltr]
= 7 = fivii) 7 = HE fus
- fir) et
I
T

- 1.

Mass

x(r

-

Mote: The following set of symbols and units is used throughout this book: J{r) = N
(newtons), x(r) m (meters), wir) m, s (meters;/ second), K M/ m (newtons, meter), [,
N-s/m (newton-seconds, meter), M = kg (kilograms = newton-seconds® 'meter).

dvit) . d?x(r)
M
dr S / dir?

M = M M2

19



SYSTEM

Kx(r) -

dx
g =]

d*x(t

dx(
dt

M0 e O L) = Fr)

dr?

EXAMPLE: TRANSLATIONAL MECHANICAL

KXi(s) -
f5X(s) -

Ms2X(s) =i

Ms*X(s)+ fo.sX(s)+ KX (s) = F(s)

(Ms*> + f,5 + K)X(s) = F(s)

EXAMPLE: A SIMPLE SYSTEM-CRUISE CONTROL

MODEL

Write the equations of motion for the speed and forward motion of the
car shown below, assuming that the engine imparts a force u, and

results the car velocity v, as shown.

Using the Laplace Transform, find the transfer function between the

input u and the output v.

) \/ (Velocity)

friction by :
(Force) :
- X
= X (POSsition) B-y=x

20



A Simple System: Cruise Control Model

Applying the Newton’s Law for translational motion yields:

u—bv=ma
U—bx =mX
u—bv=mv
. b u
V+—V=—

m m

V(s+b/m)=U/m

V(s) IUm
U(s) s+b/m

A Simple System: Cruise Control Model

With the parameters: Response of the car velocity v

m =1000 kg to a step-shaped force u:
b =50 Ns/m
u=500 N

In MATLAB windows:

4\ MATLAB R2016b - [m}

(== 8 » C » Program Files » MATLAB » R2016b » bin »
| >> NUM = [1/1000];

>> DEN = [1 50/1000];

>> step (500*NUM, DEN) ;

S>> |

Velocity (m/sec)

0 10 20 30 40 50 60 70 80 90 100
Time (sec)

V(s) ]/m
U(s)_s+b/m

21



Rotational Motion

= Application of Newton’s law to one-dimensional rotational
systems requires

M=«

M = the sum of all external moments about the center of mass
of a body, N - m,

| = the body’s mass moment of inertia about its center of
mass, kg-m?,

a = the angular acceleration of the body, rad/sec?

Rotational Motion

1
7 (Y

Torque- Torque-
angular angular Impedance
Component velocity displacement Zuls) = Ti(s) a(s)
Tiry BNy
_:_I Spring I,-"\ A | 1
|: | [ Tiry = K| eitidr () = Kir) K
T 1 ! Jo
= e Y
Viscous Fipy @y
] damper Ia" {'\* i
- AT dir)
| Ty = Daw(i) nn = 0D D
1 I
- D AN
i 8
Inertia /7y /7y . 2o
[ i = s9en T = 4280 Js2
dt dr*

Note: The following set of symbols and units is used throughout this book: 7{r) =N-m
(newton-meters), Gy =rad (radians), wi=rad/'s (radians’ second)., K=MN-m/rad (newton-

meters radian), f3=N-m-s/rad (newion-meters-seconds radian), J = kg-m?® (kilogram-meters®
= newton-meters-seconds® radian),

22



Example: DC motor

U In addition to housing and bearings, the

\/ *\ nonturning part (stator) has magnets, which
=l \__— Stator magnet

establish a field across the rotor.

The magnets may be electromagnets or, for
small motors, permanent magnets.

Sh;.f\ ‘\& i;//ﬁ/;msh U The brushes contact the rotating
commutator, which causes the current
always to be in the proper conductor
windings so as to produce maximum torque.
If the direction of the current is reversed, the
direction of the torque is reversed.

[TERY.

Example: DC motor (cont’d)

R, L y Torque and back emf voltages:

AAA rYLWﬁ fﬁm

J H iy f T =K ig,

~ N ' .

al ™) e=Kby, | )
( \n/ \ e =K, Op.
b, Electrical equation:

Newton’s laws: dig .

L{?E + Ralg = vg — Koy,
er'gm + bgm = K.I"flf.!-

Om(s) Ki

Transfer function: = .
Vals) S[(Jms + b)(Las + Ry) + KiK. ]

Show how to obtain transfer function on the board...

23



Example: DC motor (cont’d)

Simplified transfer function (neglecting the inductance):

K Kf

Om(s) _ = K — !
Va(s) J'msl + (b 4+ Xjrn_fr') s bRu + KIKE
K r—_ Ralm

T s@s+ 1) bR, + Ki K,

Transfer function between the motor input and the output speed

(w):

Qis)  Ous) K
Va(s) =9 Vus)  ts+1°

Example: DC motor (cont’d)

7,(s)
El i
o e N g | Mearic
Uk) AY T.s . fol
oD 1 Sk | 25— 1[0
+<7 L,;s+R, L= RS | Js+B
Induced electromotive
force effect
K, [
[ Ze |

24



State-Space Equations

I Ty

statexr= | : | e R" mput u=| : | e R™
T Uim
W
output y = | : | e RF y=Cx C— p x 1 matrix
Yp
T = Ar + Bu
y=Czr

Example: if we only care about (or can only measure) a1, then
I

i Iy
y=z1=(1 0 ... 0)| .

Iy

Example 1: Electrical Circuits
i — L

State variables? | +
u(t)%; C -_%v RZ Y

oiandv l

» How to describe the evolution of the state variables?
Ldi_ di 1.1

a—U—V a:‘E“E“ State Equation: Two first-
dv v —> v 1 order differential equations in
C—=i—— By on terms of state variables and
dt R dt C RC input
i
O y=v =[0 1][ }+0u
egquation: v
In matrix form:
j: 0 —% TNE
dv 7|1 1 M+ L4
— = = 0
C

dt




Electrical Circuits: Steps Involved

m Steps to obtain state and output equations:
Step 1: Pick {i., v} as state variables

Step 2: LA,
dt - Express v, and i¢ in terms of
cdve _, state variables and input using
FTER KVL and KCL
Step 3: ddlf[- = %VL(state var iables, input, nothing else)
d;/tc = é i|_(state variables, input, nothing else)

Step 4: Put the above in matrix form

Step 5: Do the same thing for y in terms of state variables
and input, and put in matrix form

Example 2

m State variables?
a iy, Iy, and v,

ay o= dip__Rp;
La e V=R d L, © Ly
dv . . av_1; v,
Cazll—lz dt C 1 C 2
diy —% 0 —Li 1
dt 1 Ui | |, ;
. 1 |
dﬁ = 0 Xy e ip[+| 0 |u . -1
dt L L y=Rai,=[0 R, 0]i,
avf 1 1 v] |0 y
al | ¢ ¢ O
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Mechanical Systems

ey » Elements: Spring, dashpot, and mass
un ~— Spring: y(1), position,

Il— M ’_> positive direction
-

— Dashpot: fs = Ky, opposite direction
~ Hooke’s law, K: Stiffness

>y, y'(t)
| l—‘
}7 fp = Dy', opposite direction }_’ y(©

‘ ~ D: Damping coefficient fn(t)

M ——

— Mass: M, Newton’s law of motion
My =fy ~ Net force

Mechanical Systems (cont’d)

K |—>y(t) * How to describe the system?
M u®  « Free body diagram: 1 junction
o 1 (where 2 or more elements connects)
D K 1
My=u-Ky-Dy  §+—y+—y=—
I_' v(0) y y y y M y M y M u
] iy u(t) ~ Input/Output description
Dy’ » Number of state variables? Which ones?
— 2 state variables: x, =y, X, =X,
) . . u—-Ky-Dy u-Kx;-Dx
S Y- == 1 :

M M

— 0 1 0
dt |_|-K -D [xl}+ 1 lu y=x; =[1 0][Xl}+0u
ol v w2l (M x2




Mechanical Systems: Steps Involved

Steps to obtain state and output equations:

Step 1: Determine ALL junctions (where 2 or more elements are
connected), and label the motion of each one

Step 2: Draw a free body diagram for each junction to obtain the net force
of that junction

Step 3: Apply Newton's law of motion to each diagram

Step 4: Select appropriate variables as state variables, and write the state
and output equations in matrix form

For rotational systems: T = Jo.

* 1: Torque = Tangential force-distance
* J: Moment of inertia = [r2dm
e o: Angular acceleration

— There are also angular spring/damper

Obtaining Transfer Function from SSE
Realisations

The realisation problem is the converse to obtaining G(s) from

A, B, C,D. That s, if is the problem of obtaining the system state
eqguations from its transfer matrix.

Transfer Matrix Computation

e h

G(s) (A,B,C,D)]

$

Realisation
A transfer matrix G(s) is said to be realisable if there exists a

finite-dimensional state equation, or simply a quadruple
[A,B, C, D} such that

G(s)=C(sI —A)" "B+ D.

The quadruple |A, B, C, D} is then called a redlisation of G(s).




Obtaining Transfer Function from SSE

X = AxX + Bu |—> Y(s) _ G(s)

y = Cx + Du U(s)

sX(s) — x(0) = AX(s5) + BU(s)
Y(s) = CX(s) + DU(s)

sX(s) — AX(s) = BU(s)

(sI — A)X(s) = BU(s)

X(s) = (s - A)'BU(s)
Y(s) = [C(s] — A)'B + DJU(s)

G(s) = C(sl — A)'B + D

Example 2: Obtaining Transfer Function from SSE

. . X = X
covzpreeee  my + by + ky = u Lo
| _ k b 1
EE h=——x——xn+—u
= I m m
!_ uif) 3

G(s)=C(sI —A)'"B+D

0 1 !
} s 0
=[1 0 - c
m m
m m
s -1 T o ;
=[1 0] i 5+£ L =mj!—bs+k
m m m

0 s+
140 Gy=01 o)——— " 0
- . bk k 1
S+ —s5+—| —— 5 || —
m m

29



Example 3:0btaining Transfer Function from SSE

Obtain the transfer function of the system defined by
.i"_ _1 ] [J Xy [J
I | = 0 -1 1 |+ 0 |u
_i'." 0 0 -2 Xy 1
ks
y=[1 0 0]| x
X3
Ms+1 -1 0 To
Gs)=[1 00| 0 s+1 -1 0
L0 0 s5+2 1

s+ 1 (:.'+]_‘J2 (s+]_‘;2(s+2]
0

1 1 0
=000 s+1 Grneeo ||
1

0 0

5+ 2

1 1
TG+ +2) S+af+5s+2

Creating Continuous-Time Models

MATLAB is quite useful to transform the system model from transfer
function to state space, and vice versa

* Transfer function (TF) models
* Zero-pole-gain (ZPK) models
» State-space (SS) models

Y{.\-} .IF)[].‘!'” + blﬁ'”_] + --- 4+ b“_].'f + .IF.J”
Uls) s"+oas" M+ -+ a,_s + a,

Y(s) numerator polynomial in s num
U(s) denominator polynomialins  den

30



Transfer Function (TF) Model

s SYS =tf(NUM,DEN) creates a continuous-time transfer
function SYS with numerator NUM and denominator
DEN. SYS is an object of type tf when NUM,DEN are
numeric arrays

num=[10]; % Numerator: s

den=[1210]; % Denominator: s"2+2s + 10
H =tf(hum,den)

H=

sh"2+2s+10
Continuous-time transfer function.

Transfer Function (TF) Model

= Alternatively, you can specify this model as a rational expression of the
Laplace variable s:

s = tf('s"); % Create Laplace variable
H=s/(s"2 +2*s + 10)
H=

s"2+2s+10

31



Zero-pole-gain (ZPK) Model

m SYS = zpk(Z,P,K) creates a continuous-time zero pole-
gain (zpk) model SYS with zeros Z, poles P, and gains K.

o (s—2zp) ... (8 —z,) Fo —2s
H(s)=k , —  His)=- = .
(§—py) o (5 — py) (s—2)(s"—254+2)
z=0; % Zeros
s = zpk('s');

p=[21+ 1-i ]; % Poles — o% A .

K = -2: % Gain E_Zs/(s 2)/ (sh2-2*s + 2)

H = 2pk(z,p k) P

28

(s-2) (s"2-2s +2)

(s-2) (s"2-2s +2)

Creating State-Space Model

s SYS =5ss(A,B,C,D) creates an object SYS representing
the continuous-time state-space model

4X _ Ax(e) + Bult)

vit) = Cxii) + Duli)

A=[01;-5-2];
B=[0;3];
C=[10];

D =0;
H=ss(A,B,C,D)
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From State-Space Model to Transfer Function Model

m ss2tf State-space to transfer function conversion.
[NUM,DEN] = ss2tf(A,B,C,D,iu) calculates the transfer function:

NUM(s) -1
H(s) = -------- =C(sl-A)B+D
DEN(s)
of the system:
X =Ax + Bu
y=Cx + Du

from the iu'th input. Vector DEN contains the coefficients of the

denominator in descending powers of s. The numerator
coefficients

are returned in matrix NUM with as many rows as there are
outputs y

From State-Space Model to Transfer Function Model: Example

A=[0 10, 00 1; -5 -25 -5]

B = [0; 25;-120]; ' X 0 I 0]l x 0
C=[10 o] Hl=] 0 0 1|lx|+] 25 |u
D=[0]; X5 -5 =25 =5 || x, —-120

[num,den] = ss2ti(A,B,C,D)

num = x
0 0.0000 25.0000 5.0000 y=[ 0 0)f x,

X,
den

1.0000 5.0000 25.0000 5.0000
% ***** The same result can be obtained by entering the following command:
[num,den] = ss2tf(A,B,C,D,1)
num =
0 0.0000 25.0000 5.0000 - —
den = U(s) s+ 5s

1.0000 5.0000 25.0000 5.0000
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From Transfer Function Model to State-Space Model

m tf2ss Transfer function to state-space conversion.
[A,B,C,D] = tf2ss(NUM,DEN) calculates the state-space representation:

X =AXx + Bu
y=Cx + Du
of the system:
NUM(s)

from a single input. Vector DEN must contain the coefficients of the denominator
in descending powers of s. Matrix NUM must contain the numerator coefficients
with as many rows as there are outputs y. The A,B,C,D matrices are returned in

controller canonical form.

From Transfer Function Model to State-Space Model-Example

num=[1 0]; Y(s) s
den=1[1 14 56 160]; U = 2
[A,B,C,D] = ti2ss(num,den) (8) (s 10)(s% + ds + lﬁ)
Ao . S —
s + 145 + 565 + 160
-14  -56 -160
1 Q ]
0 1 0
B= i —14 -36 —160 ][ x, 1
1 i | = 1 0 0 X, |+ 0 |u
0 Xy 0 1 0 X3 0
0
C=

0o 1 0 1
y=[0 1 0]f x, | +[0]u
D= X3
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Stability Definitions

u h y

One reasonable definition is as follows:

A linear time-invariant system is Bounded-Input,

Bounded-Output (BIBO) stable provided either one of the

following three equivalent conditions is satisfied:

1. If every bounded input u(t) results in a bounded output
y(t), regardless of initial conditions.

2. If the impulse response h(t) is absolutely integrable:
/ Ih(t)| dt < cc.

3. If all poles of the transfer function H(s) are strictly stable
(lie in open LHP).

Stability

B Consider the linear time-invariant system (LTI system). For those
systems, the following condition for stability applies:

A linear time-invariant system is said to be stable if all the
roots of the transfer function denominator polynomial have
negative real parts (i.e., they are all in the left half of s-
plane) and is unstable otherwise.

J)

I (AW S
prA R TAVATAN

o<0 c=0

[ A system is stable if its impulse response
decays to zero, and unstable if diverge.
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Stability of Linear Time-Invariant Systems

B Consider the linear time-invariant system whose transfer function
denominator polynomial (or characteristic equation) is given by

n n-1 n-2
s"+as +as “+...+a ,S+a =0

B Assume that the roots {p;} of the characteristic equation are real or

complex, but are distinct; so that the transfer function can be given as:

Y(s) bys"+bs"t+b,s"?+...+b, ;s+h,
R(s) s"+as" +as"*+...+a _s+a,
- K[1..6-2) . m<n

[1.6-p)

T(s)=

Stability of Linear Time-Invariant Systems

¥ The solution of the system response, found using partial fraction
expansion, may be written as:

YO =Y Ke"

B The system is stable if and only if (necessary and sufficient condition)
every term in the equation above goes to zero as
t > .

et 50 forallp,

B This situation will happen if all the poles of the system are strictly in
the LHP.

Re{p,} <0
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Stability of Linear Time-Invariant Systems

u If any LHP poles are repeated, the response will change because a
polynomial in t must be included in place of K;. However, the
conclusion is the same: as t — oo, y(t) —» 0.

» 7
lim lt"e‘at =0 foranyn=0 10 )

|
too nl {e—al n.
(s + (.',]nJr]

B Thus, the stability of a system can be determined by computing the
location of the roots of the characteristic equation and determining
whether they are all in the LHP. This is called internal stability.

B If a system has any poles in the RHP, it is unstable.

M If a system has non-repeated jw-axis poles, then it is said to be
neutrally stable.

H If the system has repeated jw-axis poles, then it is unstable, as it
results in t"e*/“! in the solution equation

Exponential Series, Power Series

B Using Taylor series approximation, we can see that exponential series
et increases faster than power series of t«.

2 3 4
P YO N 20 S ) M
2! 3! 41

e’ >>>t" for any value of n

B Therefore, e=2 decreases faster than the increase of t".

lim lt"e‘at =0 foranynz1
t—o nl

m Also, since  e"1* =cosat + jsinat then  limt"e* ™ =0

t—>ow

B Repeated jw-axis poles will make the system unstable.
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Routh’s Stability Criterion

¥ The roots of the characteristic equation determine whether the system
is stable or unstable.

B Consider the characteristic equation

a(s)=s"+as" +a,s"*+...+a_s+a,

B Routh’s stability criterion allows us to make certain statements
about the stability of the system without actually solving for the
roots of the polynomial.

¥ Routh’s stability criterion is also useful for determining the
ranges of coefficients of polynomials for stability, especially
when the coefficients are in symbolic (hon-numerical) form.

Routh-Hurwitz Criterion: A Bit of History

J.C. Maxwell, “On governors,” Proc. Royal
Society, no. 100, 1868

... [Stability of the governor| is mathematically
equivalent to the condition that all the possible
roots, and all the possible parts of the impossible
roots, of a certain equation shall be negative. ...
I have not been able completely to determine
these conditions for equations of a higher degree
than the third; but I hope that the subject will
obtain the attention of mathematicians.

In 1877, Maxwell was one of the judges for the Adams Prize, a
biennial competition for hest essay on a scientific topic. The
topic that year was stability of motion. The prize went to
Edward John Routh, who solved the problem posed by Maxwell
in 1868.

In 1893, Adolf Hurwitz solved the same problem, using a
different method, independently of Routh.
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Routh-Hurwitz Criterion: A Bit of History

Edward John Routh, 1831-1907 Adolf Hurwitz, 1859-1919

Routh’s Stability Criterion

B A necessary condition for stability of the system is that all of the roots
of its characteristic equation have negative real parts, which in turn
requires that all the coefficients {a;} be positive.

A necessary (but not sufficient) condition for stability is
that all the coefficients of the characteristic polynomial be
positive. ”

fm— (identical to)

14
If a system is stable, then all the coefficients of the

characteristic polynomial are positive. L)
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Routh’s Stability Criterion

B Once the elementary necessary conditions have been satisfied, a
more powerful test is needed.

¥ Routh in 1874 proposed a test that requires the computation of a
triangular array that is a function of the coefficients of the
characteristic equation.

A system is stable if and only if all the elements in the first
column of the Routh array are positive. T

f—(identical to)

11
If a system is stable then all the elements in the first
column of the Routh array are positive, and vice versa.

7

Routh’s Stability Criterion

B Consider the characteristic equation
a(s)=s"+as" +a,s"*+...+a, _,s+a,
B First, arrange the coefficients of the characteristic polynomial in two

rows, beginning with the first and second coefficients and followed by
the even-numbered and odd-numbered coefficients:

1 a, a,
n-1.
STl a a a
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Routh’s Stability Criterion

B Then add subsequent rows to complete the Routh array:

Row n SN
Rown-1 s"*:
Rown—-2 s"?%:
Rown-3 s"°:
Row 2 s%:
Row 1 st:
Row 0 0

First column of
Routh’s array

O If the elements of the first column
are all positive, then all the roots
are in the LHP.

O If the elements are not all
positive, then the number of roots
in the RHP equals the number of
sign changes in the column.

aiaz_aal b1a3_b2a1
a, a b=""=—" ¢=""""75=,
2 4 ai 1 b1
as a5 b :a1a4_a51 szblas_bsa1
b, Ca bl blb

_a1a6_a71 _ a;, —b,a
Ez ba_—al =S
[

= Example:

Example 1

D(s)=s3+20s2+9s+100

Passes Hurwitz test !

(20)(9)-(1)(100) _ ,
20

=100

c, = (4)(100)-(20)(0)
1 4
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Example 2

s D(s)=s3+52+25+24  [LAiaaatn _
s; = 1.0000 + 2.6458i

Passes Hurwitz test ! PREEE B R LT
2
24

b = M2)-(1)23) _

1

o =220,

Sign changes in the 1st column : Unstable system.
2 sign changes : two roots with positive real parts.

Example 3: Routh’s Test
All the coefficients of the characteristic equation
a(s) =s® +4s’ +3s" +2s° +1s* +4s +4
are positive. This means that ...

- the system maybe stable or maybe not.
We have to determine whether all of the roots are in the LHP

1 3 1 4
;4 2 40
st 2 2 2
S3. t) D)

s 2 ?

st: 2

% 2
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Example 3: Routh’s Test

$:1 3 1 4 h=2372_ 75
$S: 4 2 40 4
s“:am bz_—4'14_4_o
$?: 2 2
s’ ? 2 b3:4.4;r_0:4
st: 2
% 2

Example 3: Routh’s Test
$: 1 3 1 4 . _25:2-0-4_
s 4 2 4 0 ' 25
s 25 0 4 02:2.5-4—4-4:_2.4
2 |2]-24 2.5
2 |31 2 OIl:2-0—(—2.4)2.5:3
st: 2 2
0. o - 2-4—20-2.5:4
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Example 3: Routh’s Test

6.f \ 3:(-2.4)-4.2

S 1 1 4 e = ( ) —_5.067
s° 2 40 3
34 : 25 0 4 fo -5.067-4-0.3 _4
| 2 |24 b -5.067
s?: 3 4
s':|| -5.067
s0: 4

:- The elements of the first column are not all positive

= The characteristic equation has at least one RHP root

= The system is unstable

» There are two sign changes (+to —and —to +)
= There are two poles in the RHP

Example 3: Routh’s Test

B Roots of polynomials can also be found by using MATLAB:

#\ MATLAB R2016b - [m} X
=) '|\_,ﬂ.—|. Jocumentation ¥

@ HFE |« MATLAB » R2016b » bin » -
>> roots([1 4 3 2 1 4 4])

ans =

-3.2644 + 0.0000i

0.6797 + 0.74881 ) )

0.6797 - 0.7488i » - Roots in the RHP, i.e.,
TR EEEE roots with positive real parts o
-0.6046 - 0.9935i * There are two roots of characteristic
—0.8858 + 0.0000i equation in the RHP

* There are two unstable poles

S>>




Example 4. Low-Order Polynomials

n=2 ]J():.sg+als+ag

s
52 1 as
st a; 0

1 a
0. _ _1 2 _
s b1 b = ol det (a-l 0) a9

— p is stable iff a;, ag > 0 (necessary and sutlicient).

n=23 p(s) = s® +a;5® +ass + as

g3 1 as
s :a1 as
1 a: _
Sl : b 0 by = _1 det 2 _ ajag—ag
a1 a1 ag ai
0. 1 ap aszy\
s : ; 4 = ——+ det — a
1 c1 5 det (bl 0 as

— p is stable iff a1, a2, a3 > 0 (nece. cond.) and ajas > ag

Example 5: Routh’s Test

Given the characteristic equation:
a(s) =s°® +4s° —4s* + 65> +8s”* +1s+1
Is the system described by this characteristic equation stable?

(11
If a system is stable, then all the coefficients of the characteristic

polynomial are positive. T

= (identical to)

(11
If not all the coefficients of the characteristic

polynomial are positive, then
a system is not stable. T

Lpo>ge ~qg>~p
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Example 5. Routh’s Test

a(s) =s°® +4s° —4s* + 65> +8s”* +1s+1

\_’ » There is a negative coefficient

=>» The system is not stable

dA MATLA R2016D L. + Necessary condition for stability is not
B s ch Documentation ) even fulfilled )
&b 15 |« MATLAB b R2076b b bin b B => No need to continue to Routh’s
>> roots([1 4 -4 6 8 1 1]) Test
ans =
-4.9814 + 0.0000i

0.8927 + 1.17/371 | _ ) )

0.8927 - 1.17374 » ¢ Roots in the RHP, i.e.,
TR roots with positive real parts
-0.0190 + 0.3466i |
-0.0190 - 0.3466i |

fx >>

Example 6: Stability Versus Parameter Range

Consider the system shown below. The stability properties of the system
are a function of the proportional feedback gain K.
Determine the range of K over which the system is stable.

r [+ Y
K T s(s—1)(s+6) ©

(s+1)
Y(s) s(s-1)(s+6) K(s+1) _ b(s)
RS) 1.k +D s(s-D(s+6)+K(s+1) a(s)
s(s—1(s+6) = ~ -/

» The characteristic equation
* Which is the denominator of the transfer
function
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Example 6: Stability Versus Parameter Range

a(s) =s®+5s* + (K —6)s+ K 5.(K—6)—K 4K —30
1 (K-6) 43 5 G
s?: 5 K bzz(;l.K_b -

s': b b, C1=b—12:K

s C, C, C2=0

The system is stable if and only if b, and c, are positive.
4K-30>0=K >75
K>0

S K>7.5

Example 6: Stability Versus Parameter Range

Generating the step responses of the transfer function in MATLAB, for 3
different values of K:

Y(s) Ks+K
R(s) s®+5s*+(K-6)s+K

Amplitude

10

0 5 Time (sec)
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Special Cases

= Special Cases :

There are some cases in which
problems appear in completing the
Routh’s array.

They are encountered in the case of

systems that are not stable, and means
are devised to allow the completion of
the Routh’s array.

Special Case 1

= Special Case 1 :

When a first column term in a row
becomes zero with all other terms
being nonzero, the calculation of the
rest of the terms becomes impossible

due to division by zero.

In such a case the system is unstable
and the procedure is continued just to
determine the number of roots with
positive real parts.
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Example 1. Special Case 1

= Example : D(s)=s>+2s%+2s3+4s2+11s+10

(2)(11)-(1)20) _

2

: 0

Example 1: Special Case 1

= Example ; D(s)=s>+2s%+2s3+4s2+11s+10

In such a case,
replace zero term

by a very small

and positive

number €.
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Example 1. Special Case 1

= Example ; D(s)=s%+2s%+2s3+4s2+11s+10

Example 1: Special Case 1

= Special Case 1 : D(s)=s>+2s%+2s3+4s2+11s+10

2 sign changes :

2 roots with

positive real part.

s; = 0.8950 +1.4561i

S2
S3

Sq4 =

S5

0.8950 -1.4561i

-1.2407 +1.0375i
-1.2407-1.0375i

-1.3087
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Example 2: Special Case 1

u If the sign of the coefficient above the zero (¢) is opposite that below
it, it indicates that there is one sign change.

a(s)=s’+3s" +25° +65° +65+9

S° I+ 126

4.
S it 3 6 'I_')he r?pposite signs ab%ve and below ¢

3. _ There is one sign change
S i+ O=¢ 3 = The 1stroot in t%e RHPg
g2 69 9

y < Another sign change between s? and st
g => The 2" root in the RHP

L4 3.(828) o

S I+
6c-9 s, = —2.9043
& .

0oy o S, = 0.6567 + j1.2881

S,5 =—0.7046 % j0.9929

Special Case 2

m If all the coefficients in any derived row are zero, it indicates that there
are roots of equal magnitude lying radially opposite in the s-plane, that
is, two real roots with equal magnitudes and opposite signs and/or two
conjugate imaginary roots.

e

B In such a case, the evaluation of the rest of the array can be
continued by forming an auxiliary polynomial from the last nonzero
row, and then using the coefficients of the derivative of this auxiliary
polynomial to replace the zero row.
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Example 1. Special Case 2

= Example : D(s)=s3+2s?+s+2 Passes Hurwitz test !

[ W Q(s)= (2)52 +(2)S°

Replace

row of
dQ(s) _ 0
::ai:zes ds = (4)s+(0)s

dQ/ds

No sign changes in the 1st column :

No roots with positive real parts.

Example 1: Special Case 2

= Example: D(s)=s"+2s“+s+2 Passes Hurwitz

test!
Q(s)=25% +2-0
3 2
s*+2s“+s+2 s
=—+1
5 t1llss =-2]

252 +2
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Example 2: Special Case 2

a(s) =s’ +5s* +11s® + 23s* + 285 +12

New

5

S
4.

v un un unu un u

3.

[ N

(SN

last nonzero row

3| 12 <« a(s)=3s*+12

1|11 28
5| 23 12
6.4]1256 O Auxiliary polynomial from the

0 » Zero row
- Derivative of the auxiliary
6 0 <~ ds =6s polynomial
12 ero row is s, =—3
replaced 1 ]
S,, =%]J2
* One zero row
= Radially opposite roots S4 =-1
* No sign change .
= No root in the RHP S5 = 1

= Means, mirrored by real axis

Example 3: Special Case 2

Unstable
a(s) =s’ +2s” + 24s® + 48s* — 25s —6'

New

8 9% 0 (—M=853+968

1] 24 -25 B oo
2 | 48 -50 <«-a(s)=2s"+48s’-50
0 0 0 —— /€70 [OW

S  Derivative of the auxiliary

24 -50 polynomial
112.7 0 Zero row is =
_50 replaced 51’2 =+ J5
\ S3 e 1
> One zero row s, =-1
=» Radially opposite roots g
* One sign change S5 =-2

=> One root in the RHP
= Means, mirrored by imaginary axis
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28.02.2024

LYAPUNOV METHODS

Aleksandr Mikhailovich Lyapunov (1857-1918)
developed an approach to stability analysis

The highlight of the method is that “only the form of
differential equations need be known”

There is no need for solving the equations
It is widely used in stability analysis

Energy concept is a way of viewing Lyapunov
methods (direct method)

Sayasun 107

28.02.2024

ENERGY CONCEPT

Consider

s
=T
. ]

Let the capacitor voltage (v) and inductor current (i)
be state variables x

The total energy at any given time is

R (_‘
E==i+—v

Thus

E>0 1if x=0, E=0 onlyif x=0

Sayasun 108

54



ENERGY CONCEPT

If £ is always negative, the E will decrease and
approach zero (x(1)—0)
The above argument is asymptotic stability

If £ is never positive, ;£ can neverincrease,
and it need not approach zero.

This is i.s.L. stability
We express the energy in the form of

1 , 1 N
and E(x) == a,x +=a,]
2 2

E=axx +a,x,x,

(No knowledge of the solutions is required)

28.02.2024 Sayasun 109

THE DIRECT METHOD

Let a single value function V(x) be continuous and
has continuous partial derivatives

V(x) is said to be positive definite (P.D.) if

a V=0

2 V(x) > 0 for all nonzero x

If W(.a.relax th.e 2f.‘d .condition to V(x) 2H]en V(x) is
positive semidefinite

Reversing the inequalities leads to corresponding
negative definite and negative semidefinite

28.02.2024 Sayasun 110
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THE DIRECT METHOD

Consider the following autonomous system

x =f(x)
The origin is assumed to be an equilibrium point that
f(0)=0
Theorem : if a positive definite function V(x) can be

determined s.t. V(x) <0, then the origin is stable
I.s.L.

Theorem: if a positive definite function V(x) can be
determined s.t. V(x) <0, then the origin is
asymptotically stable

****Inability to find, V(x), does not mean that the system is unstable****
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THE DIRECT METHOD

Theorem: The origin is a globally asymptotically
stable equilibrium point if a Lyapunov function, V(x)
can be found s.t. (1) V(x) >0 forall x=0 and
V(0)=0, (2) V(x)<0 forall x=0, and (3)V(x) > =
as x| =

The Lyapunov theorems give no indication of how a
Lyapunov function might be found

The Lyapunov function for any given system is not
unique

If a system is stable, it is ensured that an appropriate
Lyapunov function does exist
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EIGENVALUES

Consider

Av=/v > (A-ADv=0
a where A is an nxn matrix, ¥ is an nx1 vector
A nontrivial solution

|A-21=0

o Expansion of the determinant the characteristic equation
o The n solutions of 4 are eigenvalues of A
Eigenvalues may be real or complex

[m]

o If A isreal, complex eigenvalues must occur in
conjugate pairs
o A matrix and its transpose have the same eigenvalues
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EIGENVECTORS

Consider Av, =V,
o Forany eigenvalue /4, the eigenvector v, has the

form

T
V:‘_[Vn Vor vni]

o v, is known as the right eigenvector
Similarly,
2 The n-row vector w, satisfies W,A=4W,

o w; is known as the left eigenvector 0
V. V. =

q A Jo!

For different 4, and 4, ->

The same eigenvalue  w,v, =1

28.02.2024 Sayasun
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MODAL MATRICES

Introduce V=lv, v, — v]
W= I:wf wg wﬂr
;1
A= /"- ............

This can be expanded as AV =VA
Recallthat Wv=I and W=V~
It follows that | V'AV = A
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FREE MOTION OF DYNAMIC SYSTEM

Consider a zero input system AX=AAx
Define a new state vector z s.t.
A)q{z[v1 v, - v”]z =Vz
This means that
Vi=AVz
The new state equation is

2=[V'AV]z=Az
This gives us

Il
o

z. i=12,....n

and the solution is
z.(1) =z.(0)e"
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FREE MOTION OF DYNAMIC SYSTEM

The original system state vector is o
(7
AX =Vz(7) =[vl v, - v”] Zgz(f)

This implies that z, ()

Ax=>"v,z,(0)e*
i=1

The time dependent characteristic is upto an
eigenvalue

Stability can be determined by eigenvalues
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EIGENVALUE AND STABILITY

Real eigenvalue - non-oscillatory mode
o Negative real eigenvalue = decaying mode
o Positive real eigenvalue = aperiodic instability
Complex eigenvalues - Each pair corresponds to
an oscillatory mode

A=0ctjo
2 Negative real part = damped oscillation
o Positive real part = oscillation of increasing amplitude
Frequency of oscillation  f=«/27

Damping ratio (rate of decay of amplitude)

c=—c/Jo' +o’
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EIGENVALUE AND STABILITY

= Stable spiral node

jo 2z,
(o] . Z
! K/?
= Unstable spiral node
jo Z
] c z;
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EIGENVALUE AND STABILITY

= Stable node

jo Z)

: N\ L

= Unstable node
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EIGENVALUE AND STABILITY

N

N
N7

(o)
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= Cycle

= Saddle node

jo

EXAMPLE

Examine the modal characteristics of the following
second order system

-lo ol-

The governed differential equation for input vs.
output

LC d-‘:o +RC , TV, =V
dr’ dt
Standard form Ir
oy " o, =1/LC
= +(2¢m,) 2 +wv, =V, c=(R/2NL/C
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EXAMPLE

State-space form
olet =V, X, =X=V,u=v,y=v, =X

o The system becomes
dx

_1 — x")

dt i

dx, 2 2
d_r- =-m,x, —(2cm,)x, + ou

o In matrix form
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EXAMPLE

The eigenvalue

—A |
) =0 = A+2co A+ @ =0
-, 250, —A S "
This gives us /e
A Q- w1-¢*
}’1’;"" =—gﬂ)” i.li(”)n gz _1 i
2 A\ F \o,
. 0 V]
Damping angle ,
_(’wn i
_ 1-¢
0 =tan' = |
S A&
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EXAMPLE

The right eigenvector

-4 1 ‘ 0
A-Dv=0 = 4 Yl
_(U; _2 g(“’)n - ):'i sz’ O

The first eigenvector

v, 1 1
VY, = = =
1 Vay Z —co, +@,\¢ =1

Similarly, the 2" eigenvector

Vi |:1 } 1
VYV, = = =
Sl LA o, -0, -1
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