POWER SYSTEM DYNAMICS (STABILITY)
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TRANSIENT STABILITY
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the disturbance on the system is quite severe and sudden and the machine is unable to
maintain synchronism under the impact of this disturbance. In this case, there is a large
excursion of the rotor angle (even if the generator is transiently stable).

Figure shows various cases of stable and unstable behavior of the generator. In case 1,
under the influence of the fault, the generator rotor angle increases to a maximum,
subsequently decreases and settles to a steady state value following oscillations with
decreasing magnitude.

In case 2, the rotor angle decreases after attaining a maximum value. However,
subsequently, it undergoes oscillations with increasing amplitude. This type of instability is
not caused by the lack of synchronizing torque; rather it occurs due to lack of sufficient
damping torque in the post fault system condition.

In case 3, the rotor angle monotonically keeps on increasing due to insufficient
synchronizing torque till the protective relay trips it. This type of instability, in which the rotor
angle never decreases, is termed as ’first swing instability’.
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TRANSIENT STABILITY

« The ability of the power system to remain in synchronism
when subject to large disturbances

+ Large power and voltage angle oscillations do not permit
linearization of the generator swing equations

« Lyapunov energy functions
+ simplified energy method: the Equal Area Criterion
« Time-domain methods

+ humerical integration of the swing equations
+ Runga-Kutta numerical integration techniques
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ROTOR ANGEL STABILITY

Ability of interconnected synchronous machines to
remain in synchronism after being subjected to a
disturbance

Depends on the ability to restore equilibrium between
electromagnetic torque and mechanical torque of each
synchronous machine

Instability is a result of a runaway situation due to
torque imbalance

o Key factor: output power varies as rotor angles swing

Instability occurs in the form of increasing angular
swings of some generators = loss of synchronism




FAULT SEQUENCE

£ CB1 cB2
OB

Vg

Prefault: the system is in steady-state condition
During fault: fault occurs = CBs open simultaneously
- fault cleared

Postfault (after fault): CBs reclose and remain closed

Mote: 2nd and 3+ steps are considered dynamics
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SPRING MASS ANALOGY
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NONLINEAR SWING EQUATION

. Recall MG +D3d+Py(3) = Py

= Neglect the very small mechanical damping (D = 0)
= Three stages of fault sequence

. Stagel: &=6".35=0 B(5)=F]

= Stage 2: With the transmission line openand D =0

Mé& =P} 0<t<T
= By integration
. p° . P
S(1)="Lr+5(0)= TJo7M ¢ rad/sec
M H
= Pt
S(f)="2 4 +5%= ZhoPu 2,50 1ag

2M 2H
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NONLINEAR SWING EQUATION

= State-space description

5—5“=—Eﬂ p_M 3‘3;_— M5
oM 2P (M | 2B
b

(5(T), 5(T)) = &(T)

0=t<T

k=

(5% 0y = 4"

= Stage 3:The transmission line is reconnected att =T

M&+F;(8)=P; L) MG&+P(@G)=0 where P(6)=E,(5)-Py
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NONLINEAR SWING EQUATION
= Total energy

V(5) = %Mﬁ': [ P(u)du
w'

—

Mote: 1. Both kinetic energy and potential energy at equilibrium
are zero

2. The kinetic energy of the actual turbine is Ja 12
= Af the beginning of stage 3

. R
V(5) = %M 87 + [ P(u)du = %Mﬁf + [2 Pu)du =V ()

= Let define the potential energy

W(S) = [, Pw)du
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KE AND PE /PHASE DIAGRAM

Pi&y=P (5= F,

1ea’ss
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NONLINEAR SWING EQUATION

= Let bring back the damping (D # 0) = the energy is slowly

drained
= Using the chain rule
V() =299 VA5 _ 1135 4 p(5)s
a5 dt 85 dt
- [M5+P(5}]3
= Hence

V(S(#)=—-D5" <0

= Instead of the closed curve, the trajectory will spiral inward
toward the equilibrium point
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KE AND PE /PHASE DIAGRAM
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= Is 1“?(51"};

TRANSIENT STABILITY

- W 7

= V(&;)<W_, implies

1 iy "':TJ "-:Tr 1 ) '-"-..
5 M S +L+ P(u)du -c:j . P(u)du 1) EM 57 < L P(u)du
= Recall
2P, M (PEY M . 5
§-5" = - — -"fr] =——=3&" ) PYS,-8")< [ " P(u)du
oM 2P\ M | 2R : 15
= We can calculate ,
Gy = B 72 5% rad
M
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EQUAL-AREA STABILITY CRITERION
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EQUAL-AREA STABILITY CRITERION

V() = W(Se) = |

L ACE N

- 5=
_ P(8)ds

T P(5)ds
&

FEE oot
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EQUAL-AREA STABILITY CRITERION

« Quickly predicts the stability after a major disturbance

+ graphical interpretation of the energy stored in the rotating
masses

+ method only applicable to a few special cases:
= one machine connected to an infinite bus
m two machines connected together

« Method provides physical insight to the dynamic behavior
of machines

+ relates the power angle with the acceleration power

3.04.2023
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EQUAL-AREA STABILITY CRITERION

» For a synchronous machine connected to an infinite bus

H d°o
f 2 _EH_I_ZE_RJCMJ
T f, dt
d’s 1 f T
2 = ‘ D( m_"FZ?}: fﬂ‘ accel
dt H H

« The energy form of the swing equation is obtained by
multiplying both sides by the system frequency (shaft
rotational speed)

ET
dr \ dt” H | dt

3.04.2023
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EQUAL-AREA STABILITY CRITERION

{282 2p (et
dit= )\ dt H dt

« The left hand side can be reworked as the derivative of
the square of the system frequency (shaft speed)

d (a’&T 27 fo(p _p)dd
dt |\ dt H " " dt

dﬂ""s” 27 Jo(p, —p)is
dt H

3.04.2023
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EQUAL-AREA STABILITY CRITERION

+ Integrating both sides with respect to time,

ds\ 2x f, s i
= ==L (P, -P)ds
(er H 5.;]( m e)d(

) 5
d_f\/zf /o [*(p, - P)ds
dt H % |
« The equation gives the relative speed of the machine.
For stability, the speed must go to zero over time
)
qo _
dt

t—3oo

(B, —P)ds

)
0=
Jg
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EQUAL-AREA STABILITY CRITERION

« Consider a machine operating at equilibrium
+ the power angle, 6= ¢,
+ the electrical load, P_, =P _,

« Consider a sudden increase in the mechanical power
input
« P_, > P_, . the acceleration power is positive

+ excess energy is stored in the rotor and the power frequency
increases, driving the relative power angle larger over time

. I
LII Potential - ’Ln (P o I__)é )d(s > 0

ml

(P, —P)d5 >0

~ II _,_)
@:&): |||_Ef0j§
dt \' H ‘&

3.04.2023
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EQUAL-AREA STABILITY CRITERION

+ with increase in the power angle, o, the electrical power
increases

P =P__sino

+ when ¢ = ¢,, the electrical power equals the mechanical power,
P

m]

+ acceleration power is zero, but the rotor is running above
synchronous speed, hence the power angle, o, continues to
increase

+ now P_, < P_, the acceleration power is negative (deceleration),
causing the rotor to decelerate to synchronous speed at 6= ¢,

+ an equal amount of energy must be given up by the rotating
masses

-
I}

/

(B, —P)d5— [ (P, — P,)d5 =0

o
Potential L’fc, 5,
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EQUAL-AREA STABILITY CRITERION

A

ml] cl b

g 4
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EQUAL-AREA STABILITY CRITERION

« The result is that the rotor swings o a maximum angle

+ at which point the acceleration energy area and the deceleration
energy area are equal

0]
(P, —P)dd =areaabc = area 4,
'I'I"jﬂ i &

'Jmax (

P, —P.)dS = areabde = area A,

Jé,

|area A1| = ‘area A4,

+ this is known as the equal area criterion

+ the rotor angle will oscillate back and forth between oand o__, at
its natural frequency

3.04.2023
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EQUAL-AREA STABILITY CRITERION
AP MECHANICAL

ml|

PmZ

80 81 8J:ualx T
The equal-area criterion is used to determine the maximum additional power P,
which can be applied for stability to be maintained. With a sudden change in the
power input, the stability is maintained only if area Ag at least equal to A1 can be
located above P,,. If area Ag is less than area A1, the accelerating momentum can

never be overcome. The limit of stabilitv occurs when d..... s at the intersection of
line P, and the power-angle curve for 90° < 0 < 180°, as shown

3.04.2023
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EQUAL-AREA STABILITY CRITERION
AP MECHANICAL

P (51 -0, )— :Pm SINO do = :1m P_smodo—P, ((?um —0, )
P (f?nm -0, ) =P (cos 0, —CO0SO,___ )
Pml = R_uax Siﬂ (jhmax

(6, —3J,)sind,  =cosd, —cosd,
— P

ml

=P __sino,

Function is nonlinear in o

max
Solve using Newton-Raphson

3.04.2023
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Solution by Newton-Raphson Algorithm
(6maz — 00) SIN Omaz + COS Omaz = €088y mmmmmmm)  f(mez) =c

Newton-Raphson Algorithm:

. . k) d
A0, = S Cnte) ey ] ) = (e~ ) o,

Iterative procedure:

ﬂ',fz < 551}:;11: < T,

Oz = Onae + ASE),
Convergence Criterion:

651 — 5k) | < e
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Example

A 60-Hz synchronous generator having inertia constant H = 9.94 MJ/MVA and
a transient reactance X,; = 0.3 per unit is connected to an infinite bus through
a purely reactive circuit as shown in Figure 11.7. Reactances are marked on the
diagram on a common system base. The generator is delivering real power of 0.6
per unit, 0.8 power factor lagging to the infinite bus at a voltage of V = 1 per unit.

(a) The maximum power input that can be applied without loss of synchronism.
(b) Repeat (a) with zero initial power input. Assume the generator internal voltage
remains constant at the value computed in (a).

X', =03 X, =03

()31 -
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Solution

The transfer reactance between the generated voltage and the infinite bus is

X=03+02+ 9;- = 0.65
The per unit apparent power is
0.6 _1 o
S = -ﬁécos 0.8 =0.75/36.87

The current 1s

S*  0.75/—36.87°

= r = s = 0.75/-36.87

I

The excitation voltage is

E' =V +jXI =1.0/0° + (j0.65)(0.75/—36.87°) = 1.35/16.79°

3.04.2023 28
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Solution by Matlab

PO = 0.6; E=1.35; V=1.0; X = 0.65;
eacpower (PO, E, V, X

29
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Solution by Matlab

Equal-area criterion applied to the sudden change in power

2 A

T T

p—

N

1.5

Power, per unit

0.5

0 20 40 60 80

100

120 140

Power angle, degree

Initial power
Initial power angle
Sudden initial power

n

Total power for critical stability =

Maximum angle swing
New operating angle

160 180

0.600 pu
16.791 degree
1.084 pu
1.684 pu
125.840 pu
54.160 degree
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Solution by Matlab

Equal-area criterion applied to the sudden change in power

]

2 y N

Power, per unit

0 20 40 60 80 100 120

Power angle, degree

Initial power

Initial power angle

Sudden initial power

Total power for critical stability
Maximum angle swing

New operating angle

140 160 180

0.00 pu
0.00 degree
1.505 pu
1.505 pu
133.563 pu
46.437 degree
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3-PHASE FAULT AT BUS 1

o=t

A generator is connected to an infinite bus bar through two parallel
lines. Assume that the input power Pm is constant and the machine is
operating steadily, delivering power to the system with a power angle g,.
A temporary three-phase bolted fault occurs at the sending end of

one of the line at bus 1.
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EQUAL-AREA CRITERION 3-PHASE FAULT

P, « When the fault is at the sending end of
/ﬂ--\ the line, point F, no power is transmitted
to the infinite bus.

« Since the resistances are neglected, the
P, y X electrical power Pe is zero, and the

/ \\ power-angle curve corresponds to the
horizontal axis.
/ \ « The machine accelerates with the total
/ input power as the accelerating power,
— thereby increasing its speed, storing
S, 9, O nax n added kinetic energy, and increasing the

angle o.

* When the fault is cleared, both lines are assumed to be intact. The fault is cleared at J,
which shifts the operation to the original power-angle curve at point e. The net power is
now decelerating, and the previously stored kinetic energy will be reduced to zero at point f
when the shaded area (defg), shown by A, equals the shaded area (abcd), shown by A;.

« Since P,is still greater than P, the rotor continues to decelerate and the path is retraced
along the power-angle curve passing through points e and a, The rotor angle would then
oscillate back and forth around &, at its natural frequency.

» Because of the inherent damping, oscillation subsides and the operating point returns to
the original power angle §,.
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EQUAL-AREA CRITERION 3-PHASE FAULT

A4,|

larea 4| =

.[ﬂ:F do = .[Jm {P SN O — ]::f ]

o 5

P(6.-8,)=P, cosd. —cosd,. )—-P (5. —35.)

M & NAax s 1max &
Cosd_ = i (O paxe — G ) +€OSES
e p max © Y max
max

3.04.2023
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CRITICAL CLEARING TIME

P, cosd. = L (6 —08 )+cosd,
Pmﬂx
c

COsO__ = Ly

Pmﬂx

p a d f
b c O
0

3.04.2023
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CRITICAL CLEARING TIME

4’5 _7fyp
i’ H
Q9 _Zlopg="top,
at H " H
5="Lop s

2H

3.04.2023
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3-PHASE FAULTS ALONG THE LINE

®—>’} %Dz Q z@

« Now consider a three-phase fault along one of the line away from the
sending end of the line.
 The faulted line is opened and remians opened. One line is active only

3.04.2023
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EQUAL-AREA CRITERION

«— P, Pre-fault
P, Post-fault

P, during tfault

38
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CRITICAL CLEARING TIME

e «— P, Pre-fault
P, Post-fault

S P_ during fault
d

f

v
c

b
0

39



CRITICAL CLEARING ANGLE

a Critical clearing angle

A4,|
P& ~8,)- j.::sz sind dd = [1 sinddd-P (5 . —~36.)
iy wit
a Finally
- B ({ﬂﬂu'{_at]}_i_Pfrnux ‘:DE":} ¢ ~Pomax ":DSJG
Cos o, =

E‘tnu:-: _Piulax

3.04.2023
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Example 1

A 60-Hz synchronous generator having inertia constant H = 5 MJ/MVA and a
direct axis transient reactance X; = 0.3 per unit is connected to an infinite bus
through a purely reactive circuit as shown in Figure 11.21. Reactances are marked
on the diagram on a common system base. The generator is delivering real power
P, = 0.8 per unit and @ = 0.074 per unit to the infinite bus at a voltage of V' =1
per unit.

(a) A temporary three-phase fault occurs at the sending end of the line at point ',
When the fault is cleared, both lines are intact. Determine the critical clearing angle
and the critical fault clearing time.

(b) A three-phase fault occurs at the middle of one of the lines, the fault is cleared,
and the faulted line is isolated. Determine the critical clearing angle.

1 2
X, =02 Xz, = 0.3
E L | U v=10
3 3O
-
(3¢ o
X', =03 O Lz — T
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Solution

The current flowing into the infinite bus is
_ 5 08-,0.074
SV 10400
The transfer reactance between internal voltage and the infinite bus before fault is

I = 0.8 — j0.074 pu

0.
X1=03+02+ —;: = (.65

The transient internal voltage is

E' =V + X3 = 1.0 + (§0.65)(0.8 — j0.074) = 1.17/26.387° pu

3.04.2023



Solution

(a) Since both lines are intact when the fault is cleared, the power-angle equatlon
before and after the fault is

(1.17)(1.0)
0.65

The 1nitial operating angle is given by

Prorsind = sind = 1.8sind
1.8sin 50 = {.8
or
dg = 26.388° = 0.46055 rad
and referring to Figure 11.17

Omaz = 180° — g = 153.612° = 2.681 rad

3.04.2023



Solution

Since the fault is at the beginning of the transmission line, the power transfer during
fault is zero, and the critical clearing angle as given by (11.91) is

cos 0, = %2(2.681 —0.46055) + cos 153.61° = 0.09106

Thus, the critical clearing angle is
de = cos~1(0.09106) = 84,775° = 1.48 rad

From (11.92), the critical clearing time is

. \/2H(5¢ — &) _ \/(2)(5)(1.48 —046055) _ o

V 7foPn (m)(60)(.8)

3.04.2023



Solution by Matlab

The use of function eacfault(P,, E, V, X;, X3, X3) to solve the above problem
and to display power-angle plot with the shaded equal-areas is demonstrated below.
We use the following commands

Pm = 0.8; E=1.17; V = 1.0;
X1 0.65; X2 = inf; X3 = 0.65;
eacfault(Pm, E, V, X1, X2, X3)

i

3.04.2023
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Solution by Mat

ab

Application of equal area criterion to a critically cleared system

Critical clearing angle = 84.7745

1.8 ]

h

1.4 \
1.2

Pm

0.8

Power, per unit

0.6

-

0.2

0 20 40 60 80 100 120 140
Power angle, degree

Initial power angle = 26.388
Maximum angle swing = 153.612
Critical clearing angle = 84.775
Critical clearing time = 0.260 sec.

160

180

46



Solution

(b) The power-angle curve before the occurrence of the fault is the same as before,
given by

Pl ez = 1.88inéd

and the generator is operating at the initial power angle dp == 26.4° = 0.4605 rad.
The fault occurs at point F' at the middle of one line, resulting in the circuit shown
in Figure 11.23. The transfer reactance during fault may be found most readily by
converting the Y-circuit ABF to an equivalent delta, eliminating junction C. The
resulting circuit is shown in Figure 11.24.

A | 0.5 C 0.3 B

YT

C)E 0.15 0.15 (oo V=10
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Solution

A Xg =1.8 _ B
CDE §0.9 " 0.543 0.15 <00>V= 1.0
.
ja

The equivalent reactance between generator and the infinite bus is
_(0.5)(0.3) + (0.5)(0.15) + (0.3)(0.15)

X2 0.15 =1.8 pu
Thus, the power-angle curve during fault is
1.17)(1.
Py onarsind = ( I)é 0) sind = 0.65sin ¢

When fault is cleared the faulted line is isolated. Therefore, the postfault transfer
reactance is

X3=03+02+40.3=0.8 pu
and the power-angle curve is '

(1.17)(1.0)
0.8

sind = 1.4625sin §

P3 max sind =



Solution

0.8
- ° _ ain—l — o
dmax = 180° — sin (1.4625) = 146.838° = 2.5628 rad
Applying (11.93), the critical clearing angle is given by

0.8(2.5628 — 0.46055) + 1.4625 cos 146.838° — 0.65 cos 26.388°

o8, ==

= =0.15356

1.4625 — 0.65

Thus, the critical clearing angle is

dc = cos~1(—0.15356) = 98.834°

3.04.2023



Solution by Matlab

Application of equal area criterion to a critically cleared system

Critical clearing angle = 98.8335

1.8

1.6

1.4

1.2

0.8

Power, per unit

0.6

0.4

0.2

3.04.2023

20

40 60 80 100 120 140 160 180
Power angle, degree

Initial power angle
Maximum angle swing
Critical clearing angle

Pm = 0.8; E=1.17; V = 1.0;
X1 = 0.65; X2 =1.8; X3 = 0.8;
eacfault(Pm, E, V, X1, X2, X3)

26.388
146.838
98.834

50
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Example 2

Example 11.8: A 50Hz, synchronous generator capable of supplving 400 MW of power is
connected to a large power system and is delivering 80 MW when a three phase fault occurs at
its terminals, determine,

(a) The time in which the fault must be cleared if the maximum power angle is to be —85°.

Assume H =7 MJ/MVA on a 100 MVA base.

(b) The critical clearing angle. 20
P.=P__ sing, . B [?) B
400 80 ‘ o0 o= ﬂJ -0
P = 3 MW, P. = 3 MW 3

8, = 11.54° = 0.2 radian

cos §, = cos &, + (8, — §,) sin §,
cos O, = cos(1.48) + (1.48 — 0.2) sin (0.2)
cos o, = 0.343

0. = 1.22 radian.

5y = 857 145 radinn -

80
P&(Sﬂ])-BﬁMw-m = 0.8 pu_

.= \/ZH(SE‘SDJ H =17MJ/MVA

<L ‘

, J2><7><(1.48-0.2)
’ 1t x50 x 0.8
t.=0.377 secs = 377 ms.

51



Example 3

= A round-rotor generator with X =0.4 and X;=X_=1.0. Assume

IE,| = 1.8, |V,] = 1.0, H = 5 sec and Bl =05
= Critical clearing time (T zc4)
P.(&) —E“'v*”' nd =1.286sinJ
= Sy =1. S1m
XX,
].EE-IEI __________ P-I'.:i'{” = L:E{'l sin &
A tomax P‘.il; = ()5
0.5 . : . 8% = 22.89°
. Y i = (0,400 rad
g gl -
] EII'.I 15';' m -EIU m ]

3.04.2023
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Example 3

« Initially, P;(6")=1286sin6" =05 () &°=0400rad=2289°

= Equal area
A +A =Ad, _+A

5
ﬂ-S(E—E§U)=Ij 1.2865in 5d5

1.1708 =1.286(cos &, +0.9211)
5, =1.581rad =90.61°

= Critical clearing time

, 60x0.5 _,
5. =1581="2"""""272 040

2}{5 CrIinca

T

critical

=0.354sec

3.04.2023
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H adans

b

Example 3

/ ]

| !

I / Curvedal: T=0.319
[} Cumvedb): "= 0,356
] F oniticat = e

Curve (b)

- Curve [a)

3.04.2023
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Homework Questions 1 and 2

A 60-Hz synchronous generator has a transient reactance of 0.2 per unit and
an inertia constant of 5.66 MJ/MVA. The generator is connected to an infinite
bus through a transformer and a double circuit transmission line, as shown
below. Resistances are neglected and reactances are expressed on a
common MVA base and are marked on the diagram. The generator is
delivering a real power of 0.77 per unit to bus bar 1. Voltage magnitude at
bus 1is |V1|:1.1pu pu. The infinite bus voltage V, =1.0.0° pu pu.

1

i

_ 0 158 X71=0.8
g =018 L v=1.020
O3&afm-u  L®
Xh=0.2 Sn A12=08 [+

3.04.2023



Homework 1 (20 points)

= The generator in the previous is delivering a real power input of 0.77
pu to the infinite bus at a voltage of 1.0 pu. The generator excitation
voltages is E, = 1.25 pu. Use eacpower(Pm,E, V,X) to find

3.04.2023

(a) The maximum power input that can be added without loss
of synchronism.

(b) Repeat (a) with zero initial power input. Assume the
generator internal voltages remains constant at the value
computed in (a).



Homework 2 (40 points)

s The same generator is delivering a real power input of 0.77 pu to the
Infinite bus at a voltage of 1.0 pu. The generator excitation voltages is
E,=1.25 pu.

(a) A temporary three-phase fault occurs at the sending end of one of

the transmission lines. When the fault is cleared, both  lines are intact.

Using equal area criterion, determine the critical clearing angle

and the critical fault clearing time. Use eacfault(Pm,E, V,X1,X2,X3) to

check the result and to display the power angle plot.

(b) A three-phase fault occurs at the middle of one of the lines, the fault is
cleared, and the faulted line is isolated. Determine the critical clearing
angle. Use eacfault (Pm,E,V,X1,X2,X3) to check the results and to
display the power-angle plot.

3.04.2023



POWER SYSTEM DYNAMICS (STABILITY)

AND CONTROL

Lecture Notes 5

Transient Stability:
Numerical Integration Methods and
Multi-Machine System

Prof. Dr. Saffet AYASUN
Department of Electrical and Electronics Engineering
Gazi University
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SOLVING NONLNEAR ODE

» Objective
+ Time domain solution of a system of differential equations
m Given a function or a system of functions: f{x) or F(x)
= Seek a time domain solution x(7) or x(f) which satisfy f{x) or F(x)
» Integration of the differential equations
+ Linear equations - Closed form solutions:
m Laplace transforms

+ Non-linear equations - Frequently no closed form solutions:

= Numerical integration
o Taylor Series
o Euler
o Runga-Kutta

3.04.2023
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Euler Method

Consider the first-order differential equation

dx
a':f(w)

i
— At ——>§<-~— At —e— At —

t‘0 1 t2 t3

3.04.2023

Nd:c

AL'CNE

At

Lo

the value of = at ty + Atis

d
$1=$0+A$=$0+-—x- At
di |,
dx
Tiy1 = i + 5 ) At




Modified Euler Method

By using the derivative at the beginning of the step, the value at the end of the
step (t1 = to + At) is predicted from

dzx
a:l--:zzg+——-

7 At

Zo

Using the predicted value of 7, the derivative at the end of interval is determined
by
dx

= ¢
dt = f(t1,21)

mp

Then, the average value of the two derivatives is used to find the corrected value

dz

dx
dt -

dx
+dtP T

9 - | At Tip1 = Ti+

' dz
T &

P

i+1 At

.

] = xo +

2
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MATLAB
ORDINARY DIFFERENTIAL EQUATION
(ODE) SOLVER
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Introduction

= Analytical solutions of linear time-invariant equations are obtained
through the Laplace transform and its inversion.

= The analytical methods are normally restricted to linear differential
equations with constant coefficients.

=  Numerical techniques solve differential equations directly in the time
domain; they apply not only the linear time-invariant, but also to
nonlinear and time varying differential equations.

= The value of the function obtained at any step is an approximation of
the value which would have been obtained analytically; whereas, the
analytical solution is exact

= However, an analytical solution may be difficult, lime consuming, or
even impossible to find.
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Matlab ODE Solvers

= MATLAB provides two functions for numerical solutions of
differential equations employing the Runge-Kutta method.

s These are ode23 and ode45, based on the Fehlberg-
second and third-order pair of formulas for medium accuracy
and fourth- and fifth-order pair for high accuracy.

= The nth-order differential equation must be transformed into
n first-order differential equations and must be placed in an
M-file that returns the state derivatives of the equations.
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State-Space Equation Model
the second-order differential equation

ad2$+adx+a:c—c
gz gy TR T

the initial conditions zg and ‘fi—f at o,
o

L1 — &
dz
o = —
dt
.’ifl = I9
C ag a)
) — — —T1 — —T9
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Example 1. A Simple Mechanical System

LS S L L L L LS A

K B
T
ﬂj x(1)
J(t)
dt
dﬂ}g 1

 Three forces influence the motion of the

mass, namely, the applied force, the
frictional force, and the spring force.

* Applying Newton's law of motion, the force

equation of the system is

d’r dx
M—+ B— —
7 ~+- 7 + Kz = f(t)
dx
 Define states 1 = x T = E

= —[f(t) — By — Ky

@t M

3.04.2023
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Example 1: M-File and Function

function xdot = mechsys(t, x); % returns the state derivatives

F = 25; % Step input
M=1; B=5; K= 25; xdot = [x(2); 1/Mx(F - Bxx(2)-K*x(1) ) ];

tgpan = [0, 3]; % time interval

x0 = [0, 0]; /4 initial conditions
[t,x] = ode23(’mechsys’, tspan, x0); subplot(2, 1, 1), plot(t, x),
xlabel(’t, sec’) title(’Time response of mechanical translational
system’) text(2, 1.2, ’Displacement’), text(2, 0.2, ’Velocity’) d
= x(:, 1); v =x(:, 2); subplot(2, 1, 2), plot(d, v)
title(’Velocity versus displacement ’) xlabel{(’Displacement’),
ylabel (’Velocity’), subplot{(1i1l)
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Example 1: Results

Time response of mechanical translational system

3 | I I I I
2 =
11 Displacement
0 Velocity
“1 1 1 i 1 1
0 0.5 1 i.b 2 2.5

t, secC
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Example 1: Phase-Potrait

Velocity versus displacement

I ] I I [

3.04.2023
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Displacement
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Example 2: Electric Circuit

The circuit elements in Figure A.12are R = 1.4 8}, L — 2H, and C = 0.32 F. The
initial inductor current 1s zero, and the initial capacitor voltage is 0.5 volts. A step

voltage of 1 volt is applied at time ¢t = 0. Determine #(¢) and v{f) over the range
0 < £ < 15 sec. Also, obtain a plot of current versus capacitor voltage.

1.4 ) 2 H
4/\/\/\/\/_/‘\4’\'%__]_
i(t) —
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Example 2. State-Space Equations

« Apply KVL
, AV,
di i =0

 Define states

« Obtain state-space equations

1

$1 — — L

1
Xo = E(V; — x1 — Rxs)

3.04.2023
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Example 2: M-file and Function

function xdot = electsys(t, x);
% returns the state derivatives

V= 1; % Step input
R =1.4; L =2; C=0.32; xdot = [x(2)/C; 1/L*+( V - x(1) - R*x(2)
)1 ;

tspan = [0, 1B]; % time interval

x0 = [0.5, 0]; % initial conditions

[t,x] = 0ode23(’electsys’, tspan, x0); subplot(2, 1, 1), plot(t, x)
title(’Time responge of an RLC series circuit’) xlabel{(’%, sec’)
text(8,1.05, 'Capacitor voltage’), text(8, .05,’Current’) vc= x(:,
1); i=x(:, 2); subplot(2, 1, 2), plot(ve, i) title{’Current
versus capacitor voltage °) xlabel(’Capacitor voltage’),

ylabel (’Current’) subplot(111)
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Example 2: Results

Time response of an RLC circuit

1.5 :
. /\/%citor voltage
0.5
Current
0 T T~
u( ‘i"" ! !
ol 5 10

1, sec
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Example 2: Phase-Potrait

Current versus capacitor voltage

0.15‘ T T 1 T
0.01 -
0.00

—0.05 -

s 06 07 08 09 1

Capacitor voltage
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Example 3: Pendulum

Consider the simple pendulum illustrated in Figure A.14, where a weight of W =

maq ke is hung from a support by a weightless rod of length 1. meters. While usually
approximated by a linear differential equation, the system really is nonhnear and

includes viscous damping with a damping coefficient of B kg/m/sec.

mLO + BLO + W sin 8 = 0

Letz1 =@ and 29 = 0 (angular velocity), then

X1 = T2

_ B W .
o= ——=Fy— ——HH1 I
m mi
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Example 3: M-file and Function

function xdot = pendulum(t,x);ireturns the state derivatives
W=2; L=.6;B=0.02;, g=9.8l; m=Wg; xdot = [x(2) ;
~B/m*x (2) -W/ (m*L) *sin(x (1)) 1;

tspan = [0, 5]; £ time interval

x0 = [1, 0]; % initial conditions
[t,x] = ode23(’pendulum’, tspan, x0); subplot(2, 1, 1), plot(t, =)
title(’Time response of a rigid pendulum’) xlabel(’t, sec’)

text (3.2, 3.5, 'Velocity’) , text(3.2, 1.2, ’Angle-rad.’) th= x(:,
1); w = x(:, 2); subplot(2, 1, 2), plot(th, w)} title(’Phase
plane plot of pendulum’) xlabel(’Position, rad’), ylabel(’Angular
velocity?) subplot{11i)
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Example 3: Results

Time response of pendulun on rigid rod
4: t i | |

Velocity
Angle, rad
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Numerical Solution of Swing Equation

1 2
-0 {1~

O3 c= —)
-0 % -

the input power P, is constant.

Under steady state operation P, = P,,, and the initial power angle is given by

1P b _ BV
leaa: 1 max — Xl

dop = sin™

and X; is the transfer reactance before the fault. The rotor is running at syn-
chronous speed, and the change in the angular velocity is zero, i.e.,

Awg =0
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Numerical Solution of Swing Equation

Now consider a three-phase fault at the middle of one line

The equivalent transfer reactance between bus bars is increased, lowering the power
transfer capability, and the amplitude of the power-angle equation becomes

|E'||V]
P maxr —
92 %,

where X5 is the transfer reactance during fault,

The swing equation given by

2
d5_7rfg(P

7 fo
P
dt?

— Pymar 8ind) = 7
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Numerical Solution of Swing Equation

The above swing equation is transformed into the state variable form as

ds dd

dt Aw 5z+1 %t dt | Aw;
& H e Awgyy = Aw; + l At

Using the predicted value of 47, ;, and Aw?, ; the derivatives at the end of interva]
are determined by

dd

dt|age = Awiyy
dAw om fg
dt 5? - H (SP

. i1 141
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Numerical Solution of Swing Equation
the average value of the two derivatives is used to find the corrected value

dé dd
+ dt 'Aw

@t | A,
i1 =0; + 5 = At
dAwl + d
y 4
Awi = Aw; + 5':“ At

2
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Matlab Function

Based on the above algorithm, a function named swingmeu(F,, B, V, X,
X9y X3, H, f, tc, t5, Dt) is written for the transient stability analysis of a one-
machine system. The function arguments are

3.04.2023

Per unit mechanical power input, assumed to remain constant
Constant voltage back of transient reactance in per unit
Infinite bus bar voltage in per unit

Per unit reactance between buses E and V before fault

Per unit reactance between buses E and V' during fault

Per unit reactance between buses E and V after fault clearance
Generator inertia constant in second, (MJ/MVA)

System nominal frequency

Fault clearing time

Final time for integration

Integration time interval, required for modified Euler



EXAMPLE

» Consider the following system

+ a three-phase fault at the middle of one line is cleared by
isolating the faulted circuit simultaneously at both ends.

+ The fault is cleared in 0.3 seconds, perform several steps of the
numerical solution of the swing equation using the modified Euler
method with a step size of
At = 0.01 seconds.

+ graph the swing equation for clearing times of 0.3 s,

04 s,and 0.5 s.
=10.3 70.2

Power Systems |

3.04.2023 83



e

H

=

0

P

m

max

EXAMPLE

5 Machine parameters
0.8
0.8—-70.074
E=V+ jX,I=1.0+(;0.65) 1J0 =1.17.£26°
o 7o) oo
B SINO = 065 sino =1.8s1m 0 Pre-fault equation
26.4°=0.46061ad  1pitial conditions
0.8 Aw=0rad/s
1.17(1.0) . . e a
plat — (117X )5111 0 =0.65sin 0
R fault parameters

P =P —PY" =08-0.65sind

3.04.2023
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EXAMPLE

do

— = Aw

dt
ds
— =0rad/s (_:l_l}_c:)_ = ﬂ_iqpa
dt |sm, dt H
”Tj‘” =799 (0.8~ 0.655in(0.4606 rad)) = 19.27 rad/s’

tls, S

67 =0.4606+(0)(0.01)= 0.4606 rad
Aw? =0+(19.27)(0.01)=0.1927 rad/s

o 0.1927 rad/s

dt | s

djru _" -_6D (0.8—0.65sin(0.4606 rad))=19.27 rad/s’
S
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EXAMPLE

F

5 =0.4606+1(0+0.1927)(0.01) = 0.4615 rad
Awf =0+1(19.27+19.27)(0.01)=0.1927 rad/s

End of first step. Next step:

ﬁ =0.1927 rad/s

At |z

dAc 60, » .f,
f“’ =% (0.8-0.65sin(0.4615 rad ) = 19.25 rad/s’
ar 5F D

The process is continued for the successive steps, until at t = 0.3 second when the
fault is cleared. From Example 11.5, the postfault accelerating power equation is

P, = 0.8 - 1.4625sin §
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EXAMPLE

One-machine system swing curve. Fault cleared at 0.3s
100 T T T T

Power angle / time
fault clearingin 0.3 s

Delta, degree

Pm = 0.80; E =1.17; V = 1.0;
X1 = 0.65; X2 = 1.80; X3 = 0.8;
H=25; £f=60; tc =0.3; tf = 1.0; Dt = 0.01;

swingmeu(Pm, E, V, X1, X2, X3, H, f, tc, tf, Dt)
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EXAMPLE

One-machine system swing curve. Fault cleared at 0.4 sec and 0.5 sec
250 s ! ’

b= 0.5 sec

200
9,150
deg

100

50 ;
0 1 1 ] 1
0 0.2 0.4 0.6 0.8 1.0

t, sec
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Simulink Model

P, =0.8 Aw
B : Aw 0
> + |~ pi*60/5 %3- > % 0 , 180/pi 0
Step > — Integl  Integ2 Rad. to Scope
Sum Degree

«—11.4625%sin(u)

A

P, Fault cleared

+—(Dr

During fault

[H< 0.65*sin(u) |«
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MULTI-MACHINE SYSTEMS

» Each synchronous machine is represented by a constant
voltage source behind the direct axis transient reactance

» The input powers are assumed to remain constant

» Using the pre-fault voltage, all loads are converted to
equivalent admittances to ground and are assumed to

remain constant
» Damping or asynchronous powers are ignored

» The mechanical rotor angle of each machine coincides
with the electrical angle of the excitation voltage source
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MODELING STEPS

» Solve the initial load flow and obtain the initial bus
voltage magnitude and phase angle

» Calculate the machine currents prior to the disturbance
— “mach—i

mach—i I;,*

mach—i

» Obtain the voltages behind the transient reactances
Er:r.:;rc.ﬁ—? — ¥ mach—i T j‘ ‘Y-r:; 1 mach—i

«» Convert all loads to equivalent admittances

&

S.-' _ E o J Qs‘
V. J

i

Yio = .2 2

i
Power Systems |

3.04.2023

91



| Tntm
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Multi-Machine System

n-bus network
Loads are converted to
constant admittances

Ilms — Ybus Vbus

Yi Yin Yl(n+1) }fl(n+m) 11 Vi]
Yo Yon Yoty Yo(nam) Va
Yo Yon Yn(n+1) Yn(n+m) Va
Y(_n+1)1 Y(n-f-l)n Y(n+1)(n+1) Y(n-l—l)(n-i—m) E;;—s-l
| 1,(ﬂ+m)1 T Y(n—{—m)n Y(n+m)(n+1) tor Y(n+m)(n+m) J L En’n+m i



Modeling Steps

» Combine the generator models with the network’s bus
admittance matrix with converted loads

0 _ Y.???‘E‘ YH —mach V M
— . ,
_Im‘ﬂﬂr"f _ _lyn —mach lymac?:"f —mach | _EF?HH" h_|

The voltage vector V,, may be eliminated by substitution as follows

0= Ynnvn + YnmE’m
I, = Yimvn + YmmE’m

V'n - _Ynn_lYnmE,m

Im - [Ymm — Y;mYnn_lYnm]E’m
— Yred E’m

bus
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Modeling Steps

» EXxpress in terms of the machines’ excitation voltages, the
power output

s =E"
mach—i =~ mach—i" mach—i
mach —i — j{[ m:;rrh —i mm:‘h z]
m
=2 B i,
mad} —i mach— j ij

Jj=1

m
rmch —i Z‘ mach—i
-jl':

6, -35,+35))

mf;rr:h —J ‘

3.04.2023
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Multi-Machine Transient Stability

® A solid three-phase fault at bus k (Vk = 0)

® Remove kth row and column from prefault bus admittance matrix to
simulate the fault

" Reduce the bus admittance matrix by eliminating all nodes except the
Internal generator nodes

® The generator excitation voltages during fault and post faults modes are
assumed to remain constant

H; d?%6; N o ot

e R Pri ~ > |E]||Ej||Yj] cos(8i5 — 6; + 6;)
Jj=1
H; = SGiHG¢

Sp
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Multi-Machine Transient Stability

» Solve the system of ODE’s of the faulted network
H dzb

7 f, dr Z

» Solve the system of ODE’s of the post-fault network
H. d’ (3

cm(é‘ —0. + 5}.)

?—g i

T f, df Z Y ; cm(é‘j_g -0, + -:3})
dd; |
E’ - sz 1 = 1’ ., m
dAwi 7rf0 (P _ Pf)

dt
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Multi-Machine Transient Stability: Steps

= We have two state equations for each generator

s Matlab ode23 solver is employed to solve 2m first-order differential
equations

=  When the fault is cleared, which may involve the removal of the faulty
line, the bus admittance matrix is recomputed to reflect the change in
the network

s The postfault reduced bus admittance matrix is evaluated and the
postfault electrical power of the ith generator is determined

= Using the postfault power, the simulation is continued to determine
stability

= Usually, the solution is carried out for two swings to show that the
second swing is not greater than the first one
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EXAMPLE

» Consider the 3 machine system below

+ select generator #1 as the swing machine with a constant angle
of O degrees

+ determine the system stability when a fault on the line 5-6 near
bus 6 is cleared in 0.4 and 0.5 seconds

;13 3 ﬂ1
H=20
X, =702 4 X S

;,' =j0.1:-

Power Systems |
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» Load Data
P Q
1 0 0
2 0 0
3 0 0
4 1.0 0.7
5 059 0.3
6 1.6 1.1
» Generator Data
V P
1 1.06
2 1.04 1.5

3.04.2023

3 1.03 1.0

EXAMPLE

+ Line Data

14
15
16
24
35
46
56

R
0.035
0.025
0.040
0.000
0.000
0.028
0.026

X
0.225
0.105
0.215
0.035
0.042
0.125
0.175

VB
0.0065
0.0045
0.0055
0.0000
0.0000
0.0035
0.0300
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EXAMPLE

FPhase angle difference (fault cleared at 0.4s)

150 T

Power angle / time
fault clearing in 0.4 s 100

Delta, degree
n
—

=]

-20

-100
0

Power Systems | t, sec
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EXAMPLE

Phase angle difference (fault cleared at 0.5s)

e e il Al
gy PR S

L

B T g I [ = I TS S )

oo oooooooo oo o oo Ao oo e Ao oo oo

1400

1000 [~ ---===--=======-==n-

Power angle /time ol ... _________
fault clearing in 0.5 s

BOQ [—----- --------=--------

saibap ‘elaq

t, sec

Power Systems |
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Homework 1 (20 points)

1 2
. X:=0.158 ] X11=038 - V'=1.0/0
(O3 &oH{ml=1. (=)
X' =0.2 Xr0=0.8
a=V. — 1 {1

. The machine of Problem 1.6 1s delivering a real power input of 0.77 per
unit to the infinite bus at a voltage of 1.0 per unit. The generator excitation
voltage is B/ = 1.25 per unit. A three-phase fault at the middle of one line

1s cleared by 1solating the faulted circuit stimultaneously at both ends.

(a) The fault is cleared in 0.2 second. Obtain the numerical solution of the
swing equation for 1.5 seconds. Select one of the functions swingmeu, swingrk2,
or swingrk4.

(b) Repeat the simulation and obtain the swing plots when fault is cleared in

0.4 second, and for the critical clearing time.
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Homework 2: One-line diagram

2 1 4

OR300

ST_ 4]

7 9

11
OBt —sp -
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Homework 2: Load and generator data

LOAD DATA
Bus Load Bus Load
No. MW Mvar || No. MW Myvar
1 0.0 0.0 7 0.0 0.0
2 0.0 0.0 8§ 1100 90.0
3 150.0 120.0 9 80.0 50.0
4 0.0 0.0 [{ 10 0.0 0.0
5 120.0 60.0 [} 11 0.0 0.0
6 140.0 90.0
GENERATION SCHEDULE
Bus Voltage Generation, Mvar Limits
No. Mag. MW Min. Max.
1 1.040
10 1.035 200.0 0.0 180.0
11 1.030 160.0 0.0 120.0
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Homework 2: Line and generator data

LINE AND TRANSFORMER DATA

Bus Bus R, X, %B,

No. No. PU PU PU
0.000 0.006 0.000
0.008 0.030  0.004 MACHINE D:%TA
0.004 0.015  0.002 Gen. R, X, H
0.012 0.045  0.005 I 0 020 12
0.010 0.040  0.005 160 015 101
0.004 0.040  0.005 11 0 025 9

0.015 0.060 0.008
0.018 0.070 0.009
0.000 0.008 0.000
0.005 0.043 0.003
0.006 0.048 0.000
0.006 0.035 0.004
0.000 90.010 0.000
0.005 0.048 0.000

L~ ~-1 bk bR WWDNDNDN—
[
WD 00010 RN W
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Homework 2 (20 points)

A three-phase fault occurs on line 4-9, near bus 4, and is cleared by the
simultaneous opening of breakers at both ends of the line. Using the trstab
program, perform a transient stability analysis. Determine the stability for
(a) When the fault 1s cleared 1n 0.4 second

(b) When the fault is cleared in 0.8 second

{(c) Repeat the stimulation to determine the critical clearing time.
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