EEE472 POWER SYSTEM ANALYSIS II

BUS ADMITANCE MATRIX

Prof. Dr. Saffet AYASUN

Department of Electrical and Electronics Engineering
Gazi University

What is a Power System?

- A large interconnected system or network that provides energy from the sources to the customers through transmission lines
- Key Components:
- Generators
- Transformers
- Transmissión lines
- Loads
- Points of connections: buses

Electric Power Network

Bus Admittance Matrix

- The injected currents at the nodes of the interconnected network are related to the voltages at the nodes via an admittance representation

$$
\mathbf{I}=\mathbf{Y}_{\text {bus }} \mathbf{V}
$$

$$
\left[\begin{array}{c}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
\vdots \\
\mathrm{I}_{\mathrm{N}}
\end{array}\right]=\left[\begin{array}{cccc}
\mathrm{Y}_{11} & \mathrm{Y}_{12} & \cdots & \mathrm{Y}_{1 \mathrm{~N}} \\
\mathrm{Y}_{21} & \mathrm{Y}_{22} & \cdots & \mathrm{Y}_{2 \mathrm{~N}} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{Y}_{\mathrm{N} 2} & \cdots & \mathrm{Y}_{\mathrm{NN}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{1} \\
\mathrm{~V}_{2} \\
\vdots \\
\mathrm{~V}_{\mathrm{N}}
\end{array}\right]
$$

where I = vector of injected node currents $Y_{\text {bus }}=$ bus admittance matrix
$\mathrm{V}=$ vector of node voltages

Bus Admittance Matrix

- Used to form the network model of an interconnected power system
- Nodes represent substation bus bars
- Branches represent transmission lines and transformers
- Injected currents are the flows from generator and loads
- Notes on bus admittance:
- Large
- Has a large number of zero entries

Bus Admittance Matrix or $\mathrm{Y}_{\text {bus }}$

- First step in solving the power flow is to create what is known as the bus admittance matrix, often called the $\mathbf{Y}_{\text {bus }}$.
- The $\mathbf{Y}_{\text {bus }}$ gives the relationships between all the bus current injections, \mathbf{I}, and all the bus voltages, $\mathbf{V}, \mathbf{I}=\mathbf{Y}_{\text {bus }} \mathbf{V}$
- The $\mathbf{Y}_{\text {bus }}$ is developed by applying KCL at each bus in the system to relate the bus current injections, the bus voltages, and the branch impedances and admittances.

Bus Admittance Matrix

- Let bus j be an arbitrary bus

$$
\sum_{i=1}^{n} I_{j i}=I_{j}
$$

where $\quad I_{j} \quad$ injected current at bus j
$I_{i j} \quad=$ current leaving bus j to bus i

- Branch current $I_{j i}$

$$
I_{j i}=y_{j i}\left(V_{j}-V_{i}\right) \quad y_{i j}=\frac{1}{z_{i j}}=\frac{1}{r_{i j}+j x_{i j}}
$$

where $y_{i j} \quad=$ line admittance from bus j to bus i

$$
V_{j}, V_{i}=\text { bus voltages }
$$

Bus Admittance Matrix

- Injected current I_{j}

$$
I_{j}=\sum_{i=1}^{n} y_{i i}\left(V_{j}-V_{i}\right)
$$

- n equations

$$
\begin{aligned}
& I_{1}=\left(\sum_{i=1}^{n} y_{1 i}\right) V_{1}+\left(-y_{12}\right) V_{2}+\cdots+\left(-y_{1 n}\right) V_{n} \\
& I_{2}=\left(-y_{21}\right) V_{1}+\left(\sum_{i=1}^{n} y_{2 i}\right) V_{2}+\cdots+\left(-y_{2 n}\right) V_{n} \\
& \vdots \\
& I_{n}=\left(-y_{n 1}\right) V_{1}+\left(-y_{n 2}\right) V_{2}+\cdots+\left(\sum_{i=1}^{n} y_{n i}\right) V_{n}
\end{aligned}
$$

Ybus Building Algorithm

- "Inspection" method
- Diagonal entries $Y_{j j}$: summing the primitive admittance of lines and ties to the reference at bus $j \quad\left(Y_{j j}=\sum_{i}^{n} y_{j i}\right)$
- Off diagonal entries $Y_{i j}$: the negatives of the admittances of lines between buses i and j

$$
\left(Y_{j i}=Y_{i j}=-y_{i j}\right)
$$

- If there is no line between i and j, this term is zero

Properties of Ybus Matrix

- The matrix is complex and symmetric
- The matrix is sparse since each bus is connected to only a few nearby buses
- The percent sparsity increases with the matrix dimension
- If there is a nonzero admittance tie to the reference bus, Ybus is nonsingular
- If there are no ties to the reference bus, Ybus is singular

$\mathbf{Y}_{\text {bus }}$-Summary

- The diagonal terms, $\mathrm{Y}_{\mathrm{j} j}$, are the "self admittance" terms, equal to the sum of the admittances of all devices incident to bus k.
- The off-diagonal terms, $Y_{i j}$, are equal to the negative of the admittance joining the two buses.
- With large systems $Y_{\text {bus }}$ is a sparse matrix (that is, most entries are zero):
- sparsity is key to efficient numerical calculation.
- Shunt terms, such as in the equivalent π line model, only affect the diagonal terms.

Example 1

(1)
(2) (3)
(1)
(2)
(3) $\left[\begin{array}{ccc}1+1 & -1 & -1 \\ -1 & 1+1 & -1 \\ -1 & -1 & 1+1+1\end{array}\right]$
$=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 3\end{array}\right]$

Example 2

$\left.\begin{array}{c}\text { (1) } \\ \text { (2) } \\ \text { (2) } \\ \text { (3) }\end{array} \begin{array}{ccc}1+1 & -1 & -1 \\ -1 & 1+1 & -1 \\ -1 & -1 & 1+1\end{array}\right] \quad=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]$

Example 3

Example 3

Example 3

Rearranging the KCL Equations

$$
\begin{aligned}
& I_{1}=\left(y_{10}+y_{12}+y_{13}\right) V_{1}-y_{12} V_{2}-y_{13} V_{3} \\
& I_{2}=-y_{21} V_{1}+\left(y_{20}+y_{21}+y_{23}\right) V_{2}-y_{23} V_{3} \\
& 0=-y_{31} V_{1}-y_{32} V_{2}+\left(y_{31}+y_{32}+y_{34}\right) V_{3}-y_{34} V_{4} \\
& 0=-y_{43} V_{3}+y_{43} V_{4}
\end{aligned}
$$

Matrix Formation of the Equations

$$
\left[\begin{array}{c}
I_{1} \\
I_{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccc}
\left(y_{10}+y_{12}+y_{13}\right) & -y_{12} & -y_{13} & 0 \\
-y_{21} & \left(y_{20}+y_{21}+y_{23}\right) & -y_{23} & 0 \\
-y_{31} & -y_{32} & \left(y_{31}+y_{32}+y_{34}\right) & -y_{34} \\
0 & 0 & -y_{43} & y_{43}
\end{array}\right] \cdot\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]
$$

Example 3

Completed Matrix Equation

$$
\begin{aligned}
& Y_{11}=\left(y_{10}+y_{12}+y_{13}\right)=-j 8.50 \quad Y_{23}=Y_{32}=-y_{23}=j 5.00 \\
& Y_{12}=Y_{21}=-y_{12}=j 2.50 \quad Y_{33}=\left(y_{31}+y_{32}+y_{34}\right)=-j 22.50 \\
& Y_{13}=Y_{31}=-y_{13}=j 5.00 \quad Y_{34}=Y_{43}=-y_{34}=j 12.50 \\
& Y_{22}=\left(y_{20}+y_{21}+y_{23}\right)=-j 8.75 \quad Y_{44}=y_{34}=-j 12.50 \\
& {\left[\begin{array}{c}
I_{1} \\
I_{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{cccc}
-j 8.50 & j 2.50 & j 5.00 & 0 \\
j 2.50 & -j 8.75 & j 5.00 & 0 \\
j 5.00 & j 5.00 & -j 22.50 & j 12.50 \\
0 & 0 & j 12.50 & -j 12.50
\end{array}\right] \cdot\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]}
\end{aligned}
$$

Modeling Shunts in $\mathrm{Y}_{\text {bus }}$

Since $I_{i j}=\left(V_{i}-V_{j}\right) Y_{k}+V_{i} \frac{Y_{k c}}{2}$

$$
Y_{i i}=Y_{i i}^{\text {from other lines }}+Y_{k}+\frac{Y_{k c}}{2}
$$

Note $\quad Y_{k}=\frac{1}{Z_{k}}=\frac{1}{R_{k}+j X_{k}} \frac{R_{k}-j X_{k}}{R_{k}-j X_{k}}=\frac{R_{k}-j X_{k}}{R_{k}^{2}+X_{k}^{2}}$

Example 4

Two bus Example

$$
\begin{aligned}
& I_{1}=\frac{\left(V_{1}-V_{2}\right)}{Z}+V_{1} \frac{Y_{c}}{2} \text {, where } \frac{1}{Z}=\frac{1}{0.03+j 0.04}=12-j 16 \text {. } \\
& {\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
12-j 15.9 & -12+j 16 \\
-12+j 16 & 12-j 15.9
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]}
\end{aligned}
$$

Using the $\mathrm{Y}_{\text {bus }}$

If the voltages are known then we can solve for the current injections:

$$
\mathbf{Y}_{\mathrm{bus}} \mathbf{V}=\mathbf{I}
$$

If the current injections are known then we can solve for the voltages:

$$
\mathbf{Y}_{\mathrm{bus}}^{-1} \mathbf{I}=\mathbf{V}=\mathbf{Z}_{\mathrm{bus}} \mathbf{I}
$$

where $\mathbf{Z}_{\text {bus }}=\mathbf{Y}_{\text {bus }}^{-1}$ is the bus impedance matrix.

Example 5:Solving for Bus Currents

For example, in previous case assume:
$\mathbf{V}=\left[\begin{array}{c}1.0 \\ 0.8-j 0.2\end{array}\right]$.
Then
$\left[\begin{array}{cc}12-j 15.9 & -12+j 16 \\ -12+j 16 & 12-j 15.9\end{array}\right]\left[\begin{array}{c}1.0 \\ 0.8-j 0.2\end{array}\right]=\left[\begin{array}{c}5.60-j 0.70 \\ -5.58+j 0.88\end{array}\right]$
Therefore the power injected at bus 1 is:
$S_{1}=V_{1} I_{1}^{*}=1.0 \times(5.60+j 0.70)=5.60+j 0.70$
$S_{2}=V_{2} I_{2}^{*}=(0.8-j 0.2) \times(-5.58-j 0.88)=-4.64+j 0.41$

Example 6: Solving for Bus Voltages

As another example, in previous case assume

$$
\mathbf{I}=\left[\begin{array}{r}
5.0 \\
-4.8
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{ll}
12-j 15.9 & -12+j 16 \\
-12+j 16 & 12-j 15.9
\end{array}\right]^{-1}\left[\begin{array}{c}
5.0 \\
-4.8
\end{array}\right]=\left[\begin{array}{c}
0.0738-j 0.902 \\
-0.0738-j 1.098
\end{array}\right]
$$

Therefore the power injected is

$$
\begin{aligned}
& S_{1}=V_{1} I_{1}^{*}=(0.0738-j 0.902) \times 5=0.37-j 4.51 \\
& S_{2}=V_{2} I_{2}^{*}=(-0.0738-j 1.098) \times(-4.8)=0.35+j 5.27
\end{aligned}
$$

Modifications in Bus Admittance Matrix

Line Outages

- Line outages
- Let $Y_{\text {bus }}$ be given for a system in which a line is to be outaged
- The line outage is equivalent to adding a new line of admittance $-y_{\text {out }}$ in parallel with the line to be outaged
- The combination of $y_{\text {out }}$ and $-y_{\text {out }}$ is a zero admittance (open circuit)
- Procedure
- Diagonal entries: Add $-y_{\text {out }}$ to the ii and jj entries
- Off diagonal entries: Add $y_{\text {out }}$ to the ij and ji entries

Deletion of a Bus-Kron Reduction

- A system of n buses in which m buses to be deleted ($\mathrm{m}<\mathrm{n}$)
- Partition $\mathrm{I}_{\text {bus }}$ and $\mathrm{V}_{\text {bus }}$

$$
\left.I_{b u s}=\left[\begin{array}{c}
\\
I_{a} \\
\ldots \\
I_{b}
\end{array}\right]\right\}_{m} n-m
$$

$$
\left.\left.V_{b u s}=\left[\begin{array}{c}
\\
V_{a} \\
\cdots \\
V_{b}
\end{array}\right]\right\} n=\right\}_{m} n-m
$$

- Deleted buses = no injected currents
- Let $I_{b}=0$

Deletion of a Bus-Kron Reduction

- Need to find an equivalent admittance matrix with m buses deleted
- Note: the equivalent admittance matrix is (n-m)x(n-m)

$$
I_{b u s}=Y_{b u s} V_{b u s}
$$

Deletion of a Bus-Kron Reduction

- Set $\mathrm{I}_{\mathrm{b}}=0$ and eliminate V_{b}

$$
\begin{aligned}
& I_{b}=0=Y_{a b}^{T} V_{a}+Y_{b b} V_{b} \\
& V_{b}=-Y_{b b}^{-1} Y_{a b}^{t} V_{a} \quad \Longrightarrow \text { Ybb is assumably invertible }
\end{aligned}
$$

- Substitute Vb in $\mathrm{n}-\mathrm{m}$ rows

$$
\begin{aligned}
I_{a} & =Y_{a a} V_{a}+Y_{a b} V_{b} \\
& =Y_{a a} V_{a}-Y_{a b} Y_{b Y}^{-1} Y_{a b}^{t} V_{a} \\
& =\left[Y_{a a}-Y_{a b} Y_{b b}^{-1} Y_{a b}^{t}\right] V_{a}
\end{aligned}
$$

Example 1

For the two-bus system given below.

a) Find $Y_{\text {bus }}$ matrix (15).
b) Eliminate buses 3 and 4 using Kron Reduction metod (15).
c) Find the reactances of generators and the line of the reduced 2-bus system (5).

Example 1: Solution

$$
\begin{aligned}
& \begin{array}{l}
\text { a) } y_{B(1)}=(2)\left[\begin{array}{cc:cc}
-j 10.5 & 0 & j 5 & j 5 \\
0 & -j 8 & j 2.5 & j 5 \\
\text { (10) } & \text { (3) } & j 5 & j 2.5 \\
\text { (4) } & -j 18 & j 10 \\
j 5 & j 5 & j 10 & -j 20
\end{array}\right] .
\end{array} \\
& \text { b) } y_{a a}=\left[\begin{array}{cc}
-j 10.5 & 6 \\
0 & -j 8
\end{array}\right] \\
& Y_{a b}=\left[\begin{array}{ll}
j 5 & j 5 \\
j 2,5 & j 5
\end{array}\right] \\
& Y_{a b}^{\top}=\left[\begin{array}{ll}
j 5 & j 2.5 \\
j 5 & j 5
\end{array}\right] \\
& Y_{b b}=\left[\begin{array}{ll}
-j 18 & j 10 \\
j 10 & -j 20
\end{array}\right] \\
& Y_{r e d}=Y_{a a}-Y_{a b} Y_{b b}^{=1} Y_{a b}^{T} \\
& y_{b b}^{-1}=\frac{1}{(-260)}\left[\begin{array}{ll}
-j 20 & -j 10 \\
-j 10 & -j 18
\end{array}\right] 5
\end{aligned}
$$

$Y_{b b}^{-1}=\left[\begin{array}{ll}j 0.0769 & j 0.0385 \\ j 0.0385 & j 0.0692\end{array}\right]$
$Y_{a b}^{-1} Y_{b b} Y_{a b}^{\top}=\left[\begin{array}{cc}-j 5.575 \\ -j 4.135 & -j 3.1735\end{array}\right]$
$Y_{\text {red }}=\left[\begin{array}{cc}-j 4.925 & j 4.135 \\ j 4.135 & -j 4.827\end{array}\right]$ 5
c) $x_{62}^{(1)}$
c) $x_{62} \stackrel{y_{12}}{x_{12}} \stackrel{y_{62}}{(}$

$$
\begin{aligned}
& y_{61}\left(x_{12}=j 4.135 \rightarrow y_{12}=-j 4.135\right. \\
& x_{12}=j 0.242 p 4 \\
& y_{61}=-j 4.925+j 4.135=-j 0.79 \rho 4 \\
& y_{62}=-j 4.827+j 4.135=-j 0.69284 \\
& x_{61}=\frac{1}{5}=-j 1.266 p 4 \\
& x_{62}=\frac{1}{-j 0.692}=j 10445
\end{aligned}
$$

Example 2

Namel-Lat name: SAYASUN
Department:

G1 and G2: $x=j 0.15 \mathrm{pu}, \mathrm{T}_{1}$ and $\mathrm{T}_{2}: x=j 0.1 \mathrm{pu}$, Lines: $\mathrm{x}_{12}=j 0.2 \mathrm{pu}, \mathrm{x}_{13}=j 0.25 \mathrm{pu}$, $\mathrm{x}_{23}=\mathrm{x}_{34}=j 0.4 \mathrm{pu}$ and $\mathrm{x}_{24}=j 0.5 \mathrm{pu}$
2. For the power system given above
a) Find $Y_{\text {bus }}$ matrix ($\mathbf{1 5}$ pts).

$$
\begin{aligned}
I_{a} & =Y_{a a} V_{a}+Y_{a b} V_{b} \\
0 & =Y_{a b} V_{a}+Y_{b b} V_{b}
\end{aligned}
$$

b) Eliminate the bus\# 3 and 4 using Kron Reduction method ($\mathbf{1 5} \mathbf{~ p t s) .}$
c) Find the reactances of generators and the line of the 2 -bus reduced system (5 pts)

Example 2: Solution

$$
\begin{aligned}
& \text { b) } Y_{b \omega}^{\text {red }}=Y_{a a}-Y_{a b} Y_{b b}^{-1} Y_{a b}^{\top} \\
& Y_{b b}=\left[\begin{array}{ll}
-j 9 & j 2.5 \\
j 2.5 & -j 4.5
\end{array}\right] \\
& Y_{b b b}^{-1}=\frac{1}{(-34.25)}\left[\begin{array}{ll}
-j 4.5 & -j 2.5 \\
-j 2.5 & -j 9
\end{array}\right] \\
& Y_{b b}^{-1}=\left[\begin{array}{ll}
j 0.13 & j 0.073 \\
j 0.073 & j 0.26
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& Y_{a b} y_{b b}^{-1} Y_{a b} \\
& =\left[\begin{array}{ll}
j 4 & 0 \\
j 2.5 & j 2
\end{array}\right]\left[\begin{array}{cc}
j 0.13 & j 0.073 \\
j 0.073 & j 0.26
\end{array}\right]\left[\begin{array}{ll}
j 4 & j 2.5 \\
0 & j 2
\end{array}\right]
\end{aligned}
$$

Example 3

suocnt ID F:
POWER SYSTEM ANALYSIS
2017-2018 FALL TERM MIDTERM EXAM, Nov. 05, 2017 100 MINUTES, PLEASE SHOW ALL YOUR EFFORTS.

GOOD LUCK!!!
PROF. DR. SAFFET AYASUN

a) Find $\mathbf{Y}_{\text {bus }}$ matrix ($\mathbf{1 0} \mathrm{pts}$).
$y_{n}=-j 3.67$
b) Eliminate the bus\#3 using Kron Reduction method (10 pts).
$y_{20}=-j 6.33+j 3.67$
c) Find bus voltages V_{1} and V_{2} if current injections are $=-\dot{j} 2.67$ $I_{1}=1.0 \mathrm{pu}$ and $I_{2}=1.2 \angle-10^{\circ} \mathrm{pu}(10 \mathrm{pts})$
d) Find the reactances of generators and the dines ff the 2-bus reduced system (5 pts)

Example 3: Solution

$$
\begin{align*}
& \text { Y) } \begin{array}{l}
\text { red }=Y_{a a}-Y_{a b} Y_{b b}^{-1} Y_{a b}^{\top} \\
=\left[\begin{array}{cc}
-j 9 & j 2 \\
j 2 & -j 8
\end{array}\right]-\left[\begin{array}{cc}
j 5 \\
j 5
\end{array}\right]\left(\frac{1}{-j 15}\right)\left[\begin{array}{ll}
j 5 j 5
\end{array}\right] \\
=\left[\begin{array}{cc}
-j 9 & j 2 \\
j 2 & -j 8
\end{array}\right]+\left[\begin{array}{ll}
j 1.67 & j 1.67 \\
j 1.67 & j 1.67
\end{array}\right] \\
=\left[\begin{array}{cc}
-j 7.33 & j 3.67 \\
j 3.67 & -j 6.33
\end{array}\right]
\end{array} . \begin{array}{l}
5
\end{array},
\end{align*}
$$

$$
\begin{aligned}
& \text { c) } I=Y V \\
& {\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=Y\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]-1.1 .0} \\
& =\left[\begin{array}{cc}
-j 7.33 & j 3.67 \\
j 3.67 & -j 6.33
\end{array}\right]\left[\begin{array}{l}
1.2 L-10^{\circ}
\end{array}\right] \\
& =\left[\begin{array}{ll}
j 0.192 & j 0.111 \\
j 0.111 & j 0.223
\end{array}\right]\left[\begin{array}{l}
1.0 \\
1.2 L-10^{\circ}
\end{array}\right] \\
& =\left[\begin{array}{l}
00.324\left[85.93^{\circ}\right. \\
0.378 L 82.95^{\circ}
\end{array}\right] \mathrm{pu}
\end{aligned}
$$

Example 4

Department:

- Student ID \#:

2. For the power system given above
a) Find $Y_{\text {bes }}$ matrix (10 pts).
b) Eliminate buses 3 and 4 using Kron Reduction method ($\mathbf{1 5} \mathbf{~ p t s) .}$

Example 4: Solution

$$
\begin{aligned}
& \begin{array}{l}
Y_{11}=-j 4-j 4-j 2-j 10=-j 20 p u \\
Y_{22}=-j 5-j 5-j 4=-j 14 p u \quad y_{r e d}=Y_{a a}-Y_{a b} Y_{b b}^{-1} Y_{a b}^{\top}
\end{array} \\
& y_{22}=-j 5-j 5-j 4=-j 14,0 \\
& \begin{array}{l}
Y_{22}=-j 5-j 5-j 4=-j 15,04 \\
y_{33}=-j 10-j 5=-j \\
y_{44}=-j 5-j 2-j 5=-j 12
\end{array} \quad 5 X_{b n}^{-1}=\frac{1}{-155}\left[\begin{array}{lll}
-j 12 & -j 5 \\
-j 5 & -j 15
\end{array}\right]=\left[\begin{array}{ccc}
j 0.077 & j 0.032 \\
j 0.032 & j 0.097
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& V_{a a}=\left[\begin{array}{cc}
-j 20 & j 4 \\
j 4 & -j 14
\end{array}\right] 5 \\
& Y_{a b}=\left[\begin{array}{cc}
j 10 & j 2 \\
0 & j 5
\end{array}\right] \\
& y_{a b}^{\top}=\left[\begin{array}{ll}
j 10 & 0 \\
j 2 & j 5
\end{array}\right], y_{b b}=\left[\begin{array}{cc}
-j 15 & j 5 \\
j 5 & -j 12 \\
{[}
\end{array}\right] \\
& \begin{array}{l}
y_{\text {ab }} Y_{b b}^{T} Y_{a b}^{T}=\left[\begin{array}{ll}
-j 9.363 & -j 2.57 \\
-12.57 & -j 2.425
\end{array}\right] \\
Y_{\text {red }}=\left[\begin{array}{ll}
520 & j 4 \\
j 4 & -j 14
\end{array}\right]-\left[\begin{array}{cc}
-j 9.360 & -j 257 \\
-j 2.57 & -j 2.425
\end{array}\right.
\end{array} \\
& \text { pred }=\left[\begin{array}{cc}
-j 10.632 & j 6.57 \\
j 6.57 & -j 11.575
\end{array}\right] \text {. }
\end{aligned}
$$

Example 5

Name/Last Name:
Student ID \#f:
Signature:
3. For the two-bus system given below.

a) Find $Y_{\text {bus }}$ matrix (15).
b) Fliminate buses 3 and 4 using. Kron Reduction metod (15).

Example 5:Solution
$\left.Y_{B L D}=\left[\begin{array}{cccc}-j 10 & j 2.5 & j 2.5 & 0 \\ j 2.5 & -j 9 & j 2.5 & 0 \\ j 2.5 & j 2.51 & -j 11 & j 4 \\ 0 & 0 & j 4 & -j 6\end{array}\right]-\right]=$

$$
\begin{aligned}
& Y_{b b}^{-1} Y_{a b}^{\top}=\left[\begin{array}{ll}
j 0.12 & j 0.08 \\
j 0.08 & j 0.22
\end{array}\right]\left[\begin{array}{cc}
j 2.5 j 2.5 \\
0 & 0 \\
=\left[\begin{array}{cc}
j 0.3 & -0.3 \\
-j 0.2 & -0.2
\end{array}\right] & (-) 11 \\
\text { jign } & 1 .
\end{array}\right.
\end{aligned}
$$

b) $Y_{b b}=\left[\begin{array}{cc}-j 11 & j 4 \\ j 4 & -j 6\end{array}\right]$
$.6+16$

$$
\begin{aligned}
& Y_{\text {lab }} Y_{b b}^{-1} Y_{a b}^{\top} \\
& =\left[\begin{array}{cc}
j 2.5 & 0 \\
j 3.5 & 0
\end{array}\right]\left[\begin{array}{cc}
-0.3 & 0.3 \\
-0.2 & -j 0.2
\end{array}\right] \overline{5} \\
& =\left[\begin{array}{cc}
-j 0.75 & -j 0.75 \\
-j 0.75 & -j 0.75
\end{array}\right] \\
& Y^{r e d}=\left[\begin{array}{cc}
-j 10 & j 2.5 \\
j 2.5 & -j 9
\end{array}\right]-\left[\begin{array}{cc}
-j 0.75-j 077 \\
-j 0.75-j a 7!
\end{array}\right. \\
& =\left[\begin{array}{cc}
-j 9.35 & j 3.25 \\
j 3.25 & -j 8.25
\end{array}\right](5)
\end{aligned}
$$

