GAZİ UNIVERSITY ENGINEERING FACULTY 2023-2024 FALL MATH101-MATHEMATICS I MIDTERM QU

- 1. Let $f(x) = \frac{1}{1-x}$ and $g(x) = \sqrt{x-1}$. How many of the following statements are true? I) The domain of $(f \circ f)(x)$ is $\mathbb{R} \setminus \{0\}$. II) The domain of $(f \circ g)(x)$ is $[1, 2) \cup (2, \infty)$. III) $(f \circ f)(x)$ is an increasing function. IV) $(f \circ g)(x)$ is a one-to-one function.
 - A) 1 B) 2 C) $3\checkmark$ D) 4 E) 0
- 2. Which of the following is true about
 - $f(x) = (x+2)^2(x-1)$ at $x_0 = -2?$
 - A) The equation of the tangent line is x + y 2 = 0.
 - B) The equation of the normal line is x 2y 1 = 0.
 - C) The equation of the tangent line is x = 0.
 - D) The equation of the tangent line is y = -2.
 - E) The equation of the normal line is $x = -2.\checkmark$
- 3. Let f be a function defined by

$$f(x) = x^2 + sgn(x^2 - 4).$$

Which one of the following is true?

- A) f is continuous on \mathbb{R} .
- B) f has removable discontinuity at the point -2.
- C) f has jump discontinuity at the point 0.
- D) f has removable discontinuity at the point 2.
- E) f has jump discontinuity at the point $2.\checkmark$

4. Which of the following statement is FALSE?

A) If g(x) is an odd function defined for all values of x, then g(0) = 0.

B) If f(x) is odd, then g(x) = f(x) - 2 is also an odd function.

C) There are two functions f and g such that $f \circ g = g \circ f$.

D) There are two functions f and g such that their graphs are not straight lines but the graph of $f \circ g$ is a straight line.

E) If f(x) is one-to-one and f(x) is never zero, then $h(x) = \frac{1}{f(x)}$ is also one-to-one.

FACULTY FALL MIDTERM QUESTIONS

Α

- 5. For any $x \in \mathbb{R}$, let the function $f:\mathbb{R} \to \mathbb{R}$ satisfies $|f(x)| \leq 3$. I) $\lim_{x\to 0} e^{f(x)} \arctan x = 0$ II) $\lim_{x\to\infty} e^{f(x)} \frac{x^2 + 4x}{x^3 + x} = 0$ III) $\lim_{x\to\infty} e^{f(x)} \sin x = 0$ which of the above statements are true? A) Only I B) $I - II\sqrt{}$ C) I - IIID) II - III E) I - II - III
- 6. Which of the following can be obtained using the Intermediate Value Theorem?

A) The equation $e^x + x - 4 = 0$ is solvable on the interval [0,1].

B) The equation tan x + x + 1 = 0 is solvable on the interval $[0, \frac{\pi}{4}]$

C) The equation $x^2 sinx - 1 = 0$ is solvable on the interval $[0,\pi]$.

D) The equation $x^4 - 2x^2 - 1 = 0$ is solvable on the interval [0,2].

E) The equation $x^3 + x^2 + 1 = 0$ is solvable on the interval [-1,1].

7. For what values of a and b is

$$f(x) = \begin{cases} \frac{\sin(ax)}{x} + \cos bx & if \quad x < 0\\ ax^2 + b(x-1) & if \quad x > 0\\ 3 & if \quad x = 0 \end{cases}$$

continuous at every x?

A) $a=2, b=-3\checkmark$ B) a=0, b=2C) a=2, b=1D) a=-1, b=0E) a=-2, b=-1

- 8. What is the value of $f^{-1}(-3)$ for f(x) = x. |x| + 1?
 - A) 2 B) $-2\checkmark$ C) 1 D) -1 E) None

9. Let f be a function defined by $f(x) = \ln x \sin x$. Then, what is the value of $f''(\pi)$?

A)
$$\frac{-2}{\pi} \checkmark$$
 B) $\frac{\pi}{2}$ C) $\frac{-4}{\pi}$ D) $\frac{\ln \pi - 2}{\pi}$ E) 0

10. Let $(f \circ g)'(2) = 4$, f'(0) = 1, g(2) = 0 be given. Then, what is the value of $\lim_{h \to 0} \frac{g(h+2)}{h}$?

A) 0 B) 1 C) 2 D) $4\checkmark$ E) Does not exist

11. What is the value of

$$\lim_{x \to 2} \frac{\sin^2 (4x - 8) - \sin^2 (4x - 8) \cos (3x - 6)}{24 (x - 2)^2 (x^2 - 3x + 2)^2}?$$

A) 1 B) 2 C) $3\checkmark$ D) 6 E) 12

- 12. What is the value of $\lim_{x\to 4} \frac{(\sqrt{x}-2).sgn(x^3-64)}{x^2-16}$? A) $\frac{-1}{32}$ B) 0 C) $\frac{1}{32}$ D) 1 E) Does not exist
- 13. Determine the largest possible domain of

$$f(x) = \left| \frac{\ln\left(\lfloor x - 1 \rfloor - 2\right)}{sgn\left(2 - x\right)^3} \right|$$

Here $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x.

- 14. Find the following limit without using L'Hospital's rule: $\lim_{x\to 0^+} \frac{\sqrt{x^2+4} \sqrt{x+4}}{x \sqrt{x}}.$
- 15. Let the function $f:\mathbb{R}\to\mathbb{R}$ be defined as

$$f(x) = \begin{cases} x \lfloor x+1 \rfloor \cos\left(\frac{1}{x}\right) & , \quad x \neq 0 \\ 0 & , \quad x = 0 \end{cases}$$

- a) Is f continuous at x = 0?
- b) Is f differentiable at x = 0?

16. Let f be a function defined by $f(x) = \log_2\left(\frac{5^{-x}\cot(\ln x)}{\cos^3(x^2-1)}\right)$. Then, find the derivative of f.

*The duration is 100 minutes.

*For multiple choice questions, do not forget to mark the answers to table. Otherwise, you will not get points for those questions.

*The value of each multiple choice question is 5 points.

*The value of each classical question is 10 points.

*Use 3^{rd} and 4^{th} pages for answers of 13^{th} , 14^{th} , 15^{th} & 16^{th} questions. Good Luck!

GROUP A					
	Α	В	С	D	Е
1			\checkmark		
2					\checkmark
3					\checkmark
4		\checkmark			
5		\checkmark			
6				\checkmark	
7	\checkmark				
8		\checkmark			
9	\checkmark				
10				\checkmark	
11			\checkmark		
12					\checkmark