Name Surname:
Student Number:
A
27.11.2023

17:30

GAZİ UNIVERSITY
 ENGINEERING FACULTY
 2023-2024
 MATH101-MATHEMATICS I

1. Let $f(x)=\frac{1}{1-x}$ and $g(x)=\sqrt{x-1}$.

How many of the following statements are true?
I) The domain of $(f \circ f)(x)$ is $\mathbb{R} \backslash\{0\}$.
II) The domain of $(f \circ g)(x)$ is $[1,2) \cup(2, \infty)$.
III) $(f \circ f)(x)$ is an increasing function.
IV) $(f \circ g)(x)$ is a one-to-one function.
A) 1
B) 2
C) $3 \checkmark$
D) 4
E) 0
2. Which of the following is true about $f(x)=(x+2)^{2}(x-1)$ at $x_{0}=-2$?
A) The equation of the tangent line is $x+y-2=0$.
B) The equation of the normal line is $x-2 y-1=0$.
C) The equation of the tangent line is $x=0$.
D) The equation of the tangent line is $y=-2$.
E) The equation of the normal line is $x=-2 . \checkmark$
3. Let f be a function defined by

$$
f(x)=x^{2}+\operatorname{sgn}\left(x^{2}-4\right)
$$

Which one of the following is true?
A) f is continuous on \mathbb{R}.
B) f has removable discontinuity at the point -2 .
C) f has jump discontinuity at the point 0 .
D) f has removable discontinuity at the point 2 .
E) f has jump discontinuity at the point $2 . \checkmark$
4. Which of the following statement is FALSE?
A) If $g(x)$ is an odd function defined for all values of x, then $g(0)=0$.
B) If $f(x)$ is odd, then $g(x)=f(x)-2$ is also an odd function. \checkmark
C) There are two functions f and g such that $f \circ g=$ $g \circ f$.
D) There are two functions f and g such that their graphs are not straight lines but the graph of $f \circ g$ is a straight line.
E) If $f(x)$ is one-to-one and $f(x)$ is never zero, then $h(x)=\frac{1}{f(x)}$ is also one-to-one.
5. For any $x \in \mathbb{R}$, let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)| \leq 3$.
I) $\lim _{x \rightarrow 0} e^{f(x)} \arctan x=0$
II) $\lim _{x \rightarrow \infty} e^{f(x)} \frac{x^{2}+4 x}{x^{3}+x}=0$
III) $\lim _{x \rightarrow \infty} e^{f(x)} \sin x=0$
which of the above statements are true?
A) Only I
B) $I-I I \checkmark$
C) $I-I I I$
D) $I I-I I I$
E) $I-I I-I I I$
6. Which of the following can be obtained using the Intermediate Value Theorem?
A) The equation $e^{x}+x-4=0$ is solvable on the interval $[0,1]$.
B) The equation $\tan x+x+1=0$ is solvable on the interval $\left[0, \frac{\pi}{4}\right]$
C) The equation $x^{2} \sin x-1=0$ is solvable on the interval $[0, \pi]$.
D) The equation $x^{4}-2 x^{2}-1=0$ is solvable on the interval $[0,2] . \checkmark$
E) The equation $x^{3}+x^{2}+1=0$ is solvable on the interval $[-1,1]$.
7. For what values of a and b is

$$
f(x)= \begin{cases}\frac{\sin (a x)}{x}+\cos b x & \text { if } x<0 \\ a x^{2}+b(x-1) & \text { if } \quad x>0 \\ 3 & \text { if } x=0\end{cases}
$$

continuous at every x ?
A) $a=2, b=-3 \checkmark$
B) $a=0, b=2$
C) $a=2, b=1$
D) $a=-1, b=0$
E) $a=-2, b=-1$
8. What is the value of $f^{-1}(-3)$ for $f(x)=x .|x|+1$?
A) 2
B) $-2 \checkmark$
C) 1
D) -1
E) None
9. Let f be a function defined by $f(x)=\ln x \sin x$. Then, what is the value of $f^{\prime \prime}(\pi)$?
A) $\frac{-2}{\pi} \checkmark$
B) $\frac{\pi}{2}$ C)
C) $\frac{-4}{\pi}$
D) $\frac{\ln \pi-2}{\pi}$
E) 0
10. Let $(f \circ g)^{\prime}(2)=4, f^{\prime}(0)=1, g(2)=0$ be given.

Then, what is the value of $\lim _{h \rightarrow 0} \frac{g(h+2)}{h}$?
A) 0
B) 1
C) 2
D) $4 \checkmark$
E) Does not exist
11. What is the value of
$\lim _{x \rightarrow 2} \frac{\sin ^{2}(4 x-8)-\sin ^{2}(4 x-8) \cos (3 x-6)}{24(x-2)^{2}\left(x^{2}-3 x+2\right)^{2}} ?$
A) 1
B) 2
C) $3 \checkmark$
D) 6
E) 12
12. What is the value of $\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2) \cdot \operatorname{sgn}\left(x^{3}-64\right)}{x^{2}-16}$?
A) $\frac{-1}{32}$
B) 0
C) $\frac{1}{32}$
D) 1 E) Does not exist $\sqrt{ }$
13. Determine the largest possible domain of

$$
f(x)=\left|\frac{\ln (\lfloor x-1\rfloor-2)}{\operatorname{sgn}(2-x)^{3}}\right|
$$

Here $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to x.
14. Find the following limit without using L'Hospital's rule: $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x^{2}+4}-\sqrt{x+4}}{x-\sqrt{x}}$.
15. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
f(x)= \begin{cases}x\lfloor x+1\rfloor \cos \left(\frac{1}{x}\right) & , \\ 0 \neq 0 \\ 0 & , \quad x=0\end{cases}
$$

a) Is f continuous at $x=0$?
b) Is f differentiable at $x=0$?
16. Let f be a function defined by $f(x)=\log _{2}\left(\frac{5^{-x} \cot (\ln x)}{\cos ^{3}\left(x^{2}-1\right)}\right)$.

Then, find the derivative of f.
*The duration is 100 minutes.
*For multiple choice questions, do not forget to mark the answers to table.
Otherwise, you will not get points for those questions.
*The value of each multiple choice question is 5 points.
*The value of each classical question is 10 points.
*Use $3^{r d}$ and $4^{\text {th }}$ pages for answers of $13^{\text {th }}, 14^{\text {th }}, 15^{t h} \& 16^{\text {th }}$ questions.

GROUP A					
	A	B	C	D	E
1			\checkmark		
2					\checkmark
3					\checkmark
4		\checkmark			
5		\checkmark			
6				\checkmark	
7	\checkmark				
8		\checkmark			
9	\checkmark				
10				\checkmark	
11			\checkmark		
12					\checkmark

Good Luck!

