CHE 211 BASIC PRINCIPLES IN CHEMICAL ENGINEERING 2021-2022 Fall Semester

Problem Set6

1. Sulfur dioxide is oxidized to sulfur trioxide in a reactor: $\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} . \mathrm{SO}_{2}$ and 100% excess air are fed to the reactor at $400^{\circ} \mathrm{C}$. Conversion of sulfur dioxide is 65% and products leave the reactor at $500^{\circ} \mathrm{C}$. The production rate of SO_{3} is $1250 \mathrm{~mol} / \mathrm{h}$.
(a) Calculate the feed rate of the SO_{2} and air streams and the extent of reaction.
(b) Calculate the heat in kW that must be transferred from the reactor.
(c) The reactor is surrounded with a water jacket. Into this jacket water is fed at $25^{\circ} \mathrm{C}$ and heat is transferred to this water. Exit temperature of the water is $40^{\circ} \mathrm{C}$. If the heat transferred from the reactor is 0.50 kW , What is the flow rate of this cooling water? Use the heat capacity data given below and the additional tabulated enthalpy data for oxygene, nitrogene and water. $\mathrm{SO}_{2}: \mathrm{C}_{\mathrm{p}}\left(\mathrm{kJ} / \mathrm{mol} .{ }^{\circ} \mathrm{C}\right)=38.91 \times 10^{-3}+3.9 \times 10^{-5} \mathrm{~T}\left(\mathrm{~T}\right.$ is in $\left.{ }^{\circ} \mathrm{C}\right)$ $\mathrm{SO}_{3} \mathrm{C}_{\mathrm{p}}\left(\mathrm{kJ} / \mathrm{mol} .{ }^{\circ} \mathrm{C}\right)=48.5 \mathrm{x} 10^{-3}$
2. Liquid hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is injected in a combustion chamber at 400 K and burned with 100% excess air at 298 K . The combustion chamber is jacketed with water. The combustion products leave at 900 K . In the test; 50.0 gmol of $\mathrm{N}_{2} \mathrm{H}_{4}$ are burned per hour and water at $25^{\circ} \mathrm{C}$ enters the water jacket for cooling at the rate of $1.00 \mathrm{~kg} / \mathrm{min}$. The reaction is:
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad$ Calculate: (a)The heat that is added or removed from the reactor to the water jacket, b)Exit temperature of water from the water jacket, (c) Volumetric flow rate of the water at exit.

Data:

Heat capacity is in the form; $\quad \mathrm{C}_{\mathrm{p}}\left(\mathrm{kJ} / \mathrm{gmol} .{ }^{\circ} \mathrm{C}\right)=\mathrm{a}+\mathrm{bT}\left(\mathrm{T}\right.$ is in $\left.{ }^{\circ} \mathrm{C}\right)$

Component | T | $\mathrm{a} * 10^{3}$ | $\mathrm{~b} * 10^{5}$ | $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{gmol})$ |
| :---: | :---: | :---: | :---: |

$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l}) \quad\left({ }^{\circ} \mathrm{C}\right) \quad 139 \quad 44.77$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad\left({ }^{\circ} \mathrm{C}\right) \quad 75.4 \quad-285.84$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad\left({ }^{\circ} \mathrm{C}\right) \quad 33.5 \quad 0.7 \quad$-241.83
$\begin{array}{llll}\mathrm{N}_{2}(\mathrm{~g}) & \left({ }^{\circ} \mathrm{C}\right) & 29.0 & 0.22\end{array}$
$\begin{array}{llll}\mathrm{O}_{2}(\mathrm{~g}) & \left({ }^{\circ} \mathrm{C}\right) & 29.1 & 1.2\end{array}$
3. Superheated steam at 40 bar absolute and $500{ }^{\circ} \mathrm{C}$ flows at a rate of $250 \mathrm{~kg} / \mathrm{min}$ to an adiabatic turbine. Exit pressure from turbine is 5 bar. The turbine develops a work of $1500 \mathrm{~kJ} / \mathrm{s}$. From the turbine the steam flows to a heater, where it is reheated at constant pressure to $500{ }^{\circ} \mathrm{C}$. Neglect kinetic and potential energy changes.
(a) Write an energy balance on the turbine and use it to determine the outlet stream temperature.
(b) Write an energy balance on the heater and use it to determine the required heat input (kJ / s) to the steam in the heater.
(c) Assuming ideal gas behavior, find the volumetric flow rate of feed to turbine.
4. Carbon monoxide at $25^{\circ} \mathrm{C}$ and steam at $150{ }^{\circ} \mathrm{C}$ are fed to a continuous water-gas shift reactor. The product gas which contains 40 mole $\% \mathrm{H}_{2}, 40$ mole $\% \mathrm{CO}_{2}$, and the balance $\mathrm{H}_{2} \mathrm{O}$ (v) . Its temperature is $500{ }^{\circ} \mathrm{C}$ and flow rate is $112 \mathrm{~mol} / \mathrm{h}$. Product gas enters a condenser and some part of $\mathrm{H}_{2} \mathrm{O}$ vapor is condensed. Condensed liquid water is pure water. Temperature of gas and liquid stream from condenser is $15^{\circ} \mathrm{C}$. Mole fraction of water vapor is 0.017 in the gas stream leaving the condenser. Pressure is 1 atm throughout the process.
(a) Calculate the percent excess steam fed to the reactor and the rate of condensation of water (kg/h).
(b) Calculate the rate (kW) at which heat must be transferred from the over-all system.

The reaction is: $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{v}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

Data : $\quad \mathrm{C}_{\mathrm{p}, \mathrm{H} 2 \mathrm{O}(\mathrm{I})}=75.4 \times 10^{-3} \mathrm{kj} / \mathrm{mol} .{ }^{0} \mathrm{C}$

Component	$\Delta \hat{\mathrm{H}}^{0} \mathrm{f}, \mathrm{kj} / \mathrm{mol}$
$\mathrm{CO}(\mathrm{g})$	-110.52
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.83
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.84

5) Metalic iron is produced in the reaction between ferrous oxide and carbon monoxide The flow chart shown below depicts this process for a basis of 1 mol FeO fed.

$$
\mathrm{FeO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \hat{\mathrm{H}}_{\mathrm{r}}^{0}=-16.480 \mathrm{~kJ} / \mathrm{mol}
$$

If the mole ratio of $\mathrm{FeO}(\mathrm{s})$ to $\mathrm{CO}(\mathrm{g})$ in feed is $1 / 0.8$, calculate the heat duty $\mathrm{Q}(\mathrm{kJ})$ when fractional conversion of $\mathrm{FeO}(\mathrm{s})$ is $0.5 . \mathrm{C}_{\mathrm{p}}(\mathrm{kJ} / \mathrm{mol} . \mathrm{K})$ in terms of $\mathrm{T}(\mathrm{K})$ adapted from Perry’s Chemical Engineeers’ Handbook
$\mathrm{FeO}(\mathrm{s}): \quad \mathrm{C}_{\mathrm{p}}=0.0528+6.243 \times 10^{-6} \mathrm{~T}$
$\mathrm{Fe}(\mathrm{s}): \quad \mathrm{C}_{\mathrm{p}}=0.01728+2.67 \times 10^{-5} \mathrm{~T}$
$\mathrm{CO}(\mathrm{g}): \quad \mathrm{C}_{\mathrm{p}}=0.02761+5.02 \times 10^{-6} \mathrm{~T}$
$\mathrm{CO}_{2}(\mathrm{~g}): \quad \mathrm{C}_{\mathrm{p}}=0.04326+1.146 \times 10^{-5} \mathrm{~T}$
6. Coke can be converted into CO according to following reaction $\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{C}_{(\mathrm{s})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\mathrm{r}}{ }^{\circ}=74210 \mathrm{Btu} / \mathrm{lb}-m o l e$

A coke that contains 84% carbon by mass and the balance noncombustible ash is fed to a reactor with a stoichiometric amount of CO_{2}. The coke is fed at $77^{\circ} \mathrm{F}$, and the CO_{2} enters at $400^{\circ} \mathrm{F}$. The percentage conversion of the carbon in the coke is 80%. The gaseous products and the solid reactor effluent (the ash and unburned carbon) leave the reactor at $1830^{\circ} \mathrm{F}$. The heat capacity of both solid carbon and ash is $0.24 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} .^{\circ} \mathrm{F}\right)$. Calculate the heat transferred to the reactor in $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ of coke fed .
7. Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is cracked to produce the intermediate ketene $\left(\mathrm{CH}_{2} \mathrm{CO}(\mathrm{g})\right)$ in a furnace.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \varepsilon_{1} \quad \Delta \mathrm{H}^{0}{ }_{\mathrm{R}}(298 \mathrm{~K})=132 \mathrm{~kJ} / \mathrm{mol}
$$

The following side reaction also occurs to an appreciable extent.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \varepsilon_{2} \quad \Delta \mathrm{H}^{0}{ }_{\mathrm{R}}(298 \mathrm{~K})=-33.53 \mathrm{~kJ} / \mathrm{mol}
$$

A conversion of acetic acid is 80% and a fractional yield of ketene is 0.0722 . Yield is defined as the mole of ketene formed / the maximum ketene would be obtained when all reactant completely consumed without side reaction.
a. Complete mass balance calculation.
b. Calculate required furnace heating rate for a furnace feed of $100 \mathrm{~mol} / \mathrm{h}$ acetic acid by using Heat of Reaction Method. The temperature of the feed is $300^{\circ} \mathrm{C}$ and the temperature of the products is $700^{\circ} \mathrm{C}$.
\underline{C}_{p} Data in $\mathrm{J} / \mathrm{K}, \mathrm{T}$ in K
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{g})\right) \mathrm{C}_{\mathrm{p}}=6.899+0.257 \mathrm{~T}$
Ketene $\left(\mathrm{CH}_{2} \mathrm{CO}(\mathrm{g})\right) \mathrm{C}_{\mathrm{p}}=17.2+0.123 \mathrm{~T}$
Metan $\mathrm{CH}_{4}(\mathrm{~g}) \quad \mathrm{C}_{\mathrm{p}}=38.38-0.00736 \mathrm{~T}$
Water $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{C}_{\mathrm{p}}=34-0.00965 \mathrm{~T}$
Carbondioxide $\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{C}_{\mathrm{p}}=19+0.0796 \mathrm{~T}$

