Morphological and radiative characteristics of soot aggregates: Experimental and numerical research


Creative Commons License

Sutcu E., DÖNER N., Liu F., ERÇETİN Ü., ŞEN F., Yon J., ...Daha Fazla

SCIENTIFIC REPORTS, cilt.10, sa.1, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 1
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1038/s41598-019-57045-y
  • Dergi Adı: SCIENTIFIC REPORTS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Gazi Üniversitesi Adresli: Evet

Özet

The study is aimed at investigating the radiative properties of soot aggregates at determined morphological features using both experimental and numerical methods. Soot aggregates collected from air monitoring stations in different locations were examined. The locations were divided into three groups. The first group (Case 1) included the coastal and industrial zone; the second group (Case 2) consisted of small and large cities; and the third group (Case 3) included areas in the neighbourhood of thermal power plants. The absorbance measurements of the soot aggregates were conducted in the visible and near-infrared spectra, and in the wavelength range of 2 mu m-20 mu m. The samples were characterised by scanning electron microscopy (SEM), and their radiative properties were assessed using the discrete dipole approximation (DDA) for numerically generated fractal aggregates with two popular refractive indices of m = 1.60 + 0.60i and m = 1.90 + 0.75i. Calculations were conducted for primary particles in point-contact, with 20% overlapping and with a coating (50% and 80%) in the wavelength range of 0.4-1.064 mu m. The largest measured absorbance values in both the winter and summer seasons were found in the cities in Case 1, and the x-ray diffraction (XRD) phases of the samples were also presented. The radiative properties of the aggregates, i.e., D-f = 1.78 and k(f) = 2.0 representing Case 3, were close to those of aggregates with D-f = 2.1 and k(f) = 2.35 representing Case 1 in the investigated wavelength range. The calculated radiative properties and the experimental absorbance measurements for point-contact and overlapping situations showed the same trend in the examined wavelengths. The absorbance properties of the samples of coastal and industrial zones were distinctively higher than others in the wavelength range of 2 mu m-20 mu m which could be attributed to the PAH effects.