Feasibility study of grid-connected solar plant: An in-depth analysis of system modeling and proper technology selection


Stephens G., Dieterle C., Hossain E., BAYINDIR R.

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 2020 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume:
  • Publication Date: 2020
  • Doi Number: 10.1177/0020720920928543
  • Title of Journal : INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION

Abstract

One of the most significant issues arising from the intermittency of renewable sources is the discrepancy between the hours of peak generation and hours of peak load. This issue complicates the process of supply and demand balancing because the electrical energy generated by photovoltaic arrays cannot be directly stored. Energy storage systems provide a solution to this issue by storing the excess energy generated during peak generation time which will be delivered to the grid during peak load, increasing system energy efficiency. In this work, the possibility of utilizing a Megawatt scale energy storage system, such as a battery bank, to improve the efficiency of a proposed 10-MW Biglow Canyon solar array through solar peak shaving is discussed in detail. With an overview of the benefits of peak shaving and a comparative study of energy storage technologies, an assessment of the most suitable commercially available storage systems is broadly discussed in the paper. Three control algorithms based on battery storage, state of charge, and constant output are proposed to balance the difference between generation and usage using appropriate energy storage system. Simulations are performed with System Advisor Model software to gain an insight of the possible losses and to forecast the monthly energy production costs.