EUROPEAN JOURNAL OF ORTHODONTICS, sa.4, ss.413-417, 2008 (SCI-Expanded)
The objective of the present investigation was to determine the intrapulpal temperature changes and to compare the shear bond strength (SBS) of bondable buccal tubes bonded by high-intensity light sources. Ninety caries-free human first molar teeth extracted for periodontal reasons were used. For the temperature measurement test, 30 teeth were randomly divided into three groups (n = 10) whereas 60 teeth were used in three groups (n = 20) for SBS testing. Three light sources, high-intensity halogen, blue light-emitting diode (LED), and xenon plasma arc (PAC), were used for polymerization of Transbond XT. Temperature variations (Delta T) were recorded by a K-type thermocouple wire connected to a data logger. For SBS testing, a universal testing machine was used at a crosshead speed of 1 mm/minute until buccal tube bonding failure occurred. Data were analyzed using the Kruskal-Wallis test. The high-intensity halogen light resulted in significantly (P < 0.01) higher intrapulpal temperature changes than the LED or PAC. The results of the shear bond test revealed significant (P < 0.05) differences only between the halogen and LED groups. The findings of the present investigation showed that high-intensity curing devices can safely be used in bonding buccal tubes to molar teeth without causing a deleterious effect on the dental pulp.