Dissociative chemisorption of an H-2 (v,j) molecule on rigid Ni (100) surface: Dependence on surface topologies and initial rovibrational states of the molecules

Evecen M., Boyukata M., Civi M., Guvenc Z.

CHINESE PHYSICS LETTERS, vol.22, no.2, pp.420-423, 2005 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 22 Issue: 2
  • Publication Date: 2005
  • Doi Number: 10.1088/0256-307x/22/2/042
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.420-423
  • Gazi University Affiliated: No


The H-2(v,j)+Ni(100) collision system has been studied to understand the effects of the surface sites and initial rovibrational states of the molecule on molecule-surface interactions, by a quasiclassical molecular dynamic simulation method. Dissociative adsorption of an H-2 molecule on the rigid Ni(100) surface is investigated at topologically different three sites of the surface. Interaction between the molecule and Ni surface was described by a London-Eyring Polani-Sato (LEPS) potential. Dissociative chemisorption probabilities of the H-2(v, j) molecule on various sites of the surface are presented as a function of the translation energies between 0.001-1.0eV. The probabilities obtained at each collision site have unique behaviour. At lower collision energies, indirect processes enhance the reactivity, effects of the rotational excitations and impact sites on the reactivity are more pronounced. The results are compared with the available studies, The physical mechanisms underlying the results and quantum effects are discussed.