Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter


JOURNAL OF ELECTRONIC MATERIALS, vol.47, no.8, pp.4486-4492, 2018 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 47 Issue: 8
  • Publication Date: 2018
  • Doi Number: 10.1007/s11664-018-6319-1
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.4486-4492
  • Keywords: Gas discharge, plasma, ZnSe photodetector, DISCHARGE, SEMICONDUCTORS
  • Gazi University Affiliated: Yes


Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.