The histological and biochemical analysis of the effects of radiofrequency radiation on testis tissue of rats and the protective effect of melatonin


Creative Commons License

Yardim A., ARAL B., TOMRUK A., Oruç S., Delen K., Kuzay D., ...Daha Fazla

Turkish Journal of Medical Sciences, cilt.54, sa.4, ss.858-865, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 54 Sayı: 4
  • Basım Tarihi: 2024
  • Doi Numarası: 10.55730/1300-0144.5857
  • Dergi Adı: Turkish Journal of Medical Sciences
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CAB Abstracts, MEDLINE, Veterinary Science Database, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.858-865
  • Anahtar Kelimeler: hematoxylin-eosin, Radiofrequency, rat, reactive oxygen species, testis
  • Gazi Üniversitesi Adresli: Evet

Özet

Background/aim: Primarily due to wireless communication devices, especially mobile phones, there has been a steady rise in the intensity of nonionizing radiofrequency radiation (RFR). In recent years, increased human health problems raised concerns about whether there is a positive relationship between intense exposure to RFR and public health. The present study aims to investigate the effects of GSM-like RFR exposure on the male reproductive system and the impact of melatonin treatment (synergistic, antagonist, or additive). Materials and methods: Thirty-six male Wistar Albino rats were used and separated into six groups: i. Control; ii. Sham; iii. RFR exposure; iv. Control-melatonin; v. Sham-melatonin; vi. Melatonin + RFR exposure. Animals were exposed to 2600 MHz RFR with electric (E) field levels of 21.74 V/m for 30 min per day, 5 days per week, for 4 weeks. All testicular tissue samples were evaluated under a light microscope for hematoxylin-eosin staining. Biochemical analyses were performed by measuring malondialdehyde, total nitric oxide, glutathione, and glutathione peroxidase levels. We evaluated the combined effects of prolonged RFR exposure and melatonin treatment on ROS-mediated structural changes in testicular tissues. Results: Results showed that reactive intermediates (malondialdehyde and total nitric oxide) increased significantly with RFR exposure, while the protective effect of melatonin effectively reduced the radical levels of the tissues. Histological evaluation revealed a decrease in cell population and connective tissue elements under RFR exposure, accompanied by marked edema in the testicular tissues. Conclusion: The structural and functional effects of prolonged RFR exposure might be ROS-based. Moreover, these adverse effects might be compensated with externally treated supplements. There is a need for new extensive research.