Integral-type generalizations of operators obtained from certain multivariate polynomials


Erkus-Duman E., DUMAN O.

CALCOLO, cilt.45, sa.1, ss.53-67, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 1
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1007/s10092-008-0143-6
  • Dergi Adı: CALCOLO
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.53-67
  • Gazi Üniversitesi Adresli: Evet

Özet

In this work, we mainly focus on the Kantorovich-type (integral-type) generalizations of the positive linear operators obtained from the Chan-Chyan-Srivastava multivariable polynomials. Using the notion of A-statistical convergence, we obtain various approximation theorems including a statistical Korovkin-type result and rates of A-statistical convergence with the help of the modulus of continuity, Lipschitz class functionals and Peetre's K-functionals. We also introduce an sth order generalization of our approximating operators.