Evaluation of the Binding Properties of A New Phenylurea Appended Carbazole Compound to Pepsin/Trypsin by Computational and Multi-Spectral Analysis


GÖKOĞLU E., Doyuran B., Özen G., Duyar H., Taskin-Tok T., SEFEROĞLU Z.

JOURNAL OF FLUORESCENCE, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2023
  • Doi Number: 10.1007/s10895-023-03451-5
  • Journal Name: JOURNAL OF FLUORESCENCE
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Biotechnology Research Abstracts, Chimica, Compendex, MEDLINE
  • Keywords: Carbazole, Molecular docking. FRET, Protease, Thermodynamic parameter
  • Gazi University Affiliated: Yes

Abstract

A novel carbazole compound, named 1-(9-ethyl-9H-carbazol-3-yl)-3-phenylurea (Cpu) was synthesized and its binding properties with protease enzymes (pepsin and trypsin) has been examined by steady-state fluorescence measurements, UV/vis absorption, infrared (FT-IR) and circular dicroism (CD) spectroscopies and also computational methods. The fluorescence experimental results indicated that the quenching mechanism of enzyme by Cpu is static process. The thermodynamic parameters (both negative Delta H/Delta S) and molecular docking results suggested that the binding of Cpu to pepsin/trypsin were driven by hydrogen bonds and van der Waals forces. Based on Forster's theory, the binding distance (r) between pepsin/trypsin and Cpu was calculated to be 3.072/2.784 nm, which implies that non-radiative energy transfer occurs from enzyme to Cpu. Furthermore, absorption, CD, and FT-IR spectral analysis provided an evidence that the presence of Cpu induced notable changes in the secondary structures and microenvironmental of both pepsin and trypsin, supporting its significant influence on these enzymes.