JOURNAL OF COORDINATION CHEMISTRY, vol.75, pp.84-106, 2022 (SCI-Expanded)
This study was set out to introduce a newly synthesized cadmium complex, [Cd(4-tertbutyl-pyridine)(2)I-2], where t-BP = 4-tert-butyl pyridine. The complex was synthesized and characterized using elemental analysis, X-ray diffraction, FTIR, and photoluminescence combined with DFT calculations. The X-ray analysis of (Cd(t-BP)(2)I-2) revealed that the Cd center is approximately tetrahedrally coordinated with two nitrogen atoms from the 4-tertbutylpyridine groups and the two I ions forming an approximately tetrahedral geometry with tau(4) = 0.89. The presence of various intermolecular interactions and 2 D-fingerprint regions is supported by the Hirshfeld surface analysis. In the theoretical calculations, the density functional theory (DFT) method with the PBEPBE functional, the SDD basis set for Cd and I, and the 6-311 G(d) basis set for C, N, and H at the B3LYP/LANL2DZ level were chosen as the computational method. Systems based on electronic and optical properties were also discussed. The frontier molecular orbitals (FMO) analysis, chemical activity, local reactivity descriptors (Fukui functions), and NLO properties were examined for the compound at the LANL2DZ level of theory. The Cd(II) complex was studied by using molecular docking analysis to identify the active site and binding energies with anti-cancer receptors.