12th International Symposium on Intelligent Manufacturing and Service Systems, IMSS 2023, İstanbul, Türkiye, 26 - 28 Mayıs 2023, ss.347-358
There is a remarkable increase in the number of electric vehicles (EV) with the increase in the demand for renewable energy sources. The integration of EVs into the grid has become an important issue with the widespread use of EVs. The grid integration of EVs has detrimental effects on power quality. The charging topologies such as vehicle-to-grid energy transfer (V2G), grid-to-vehicle energy transfer (G2V), vehicle-to-vehicle energy transfer (V2V) have been developed in order to overcome this problem. In this study, a microgrid using V2G and G2V topologies has been designed for a building and the EVs in this building. In this designed microgrid, 120 kw energy flow is provided for the loads in the building and the charging of EVs. When an extra load is added to the grid in the building, the energy above 120 kw is supplied from the EVs in the microgrid (V2G) to support the grid. The LCL filter design has been carried out for the grid connected inverter used in the V2G topology in the microgrid. After determining the output power, switching frequency, busbar voltage, etc. values of the three-phase inverter for the designed V2G topology, the LCL filter parameters have been calculated. The total harmonic distortion (THD) has been determined according to the calculated parameter values. It has been observed that the THD performance of the LCL filter is better than the THD performance of the LC and L filters. The designed microgrid simulations and LCL filter analyses have been carried out in the MATLAB 2020b Simulink program. With the simulations, G2V and V2G topologies have been analysed and LCL filter design has been carried out for the grid connected inverter used in the V2G topology.