TURKISH JOURNAL OF MATHEMATICS, vol.46, pp.1369-1383, 2022 (SCI-Expanded)
It is rigorously proven under certain assumptions that a quasilinear system with discontinuous right-hand side possesses a unique unpredictable solution. The discontinuous perturbation function on the right-hand side is defined by means of an unpredictable sequence. A Gronwall-Coppel type inequality is utilized to achieve the main result, and the stability of the unpredictable solution is discussed. Examples with exponentially asymptotically stable and unstable unpredictable solutions are provided.