Neuroprotective effects of melatonin upon the offspring cerebellar cortex in the rat model of BCNU-induced cortical dysplasia


Uyanikgil Y., Baka M., Ates U., Turgut M., Yavasoglu A., Uelker S., ...Daha Fazla

BRAIN RESEARCH, cilt.1160, ss.134-144, 2007 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1160
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1016/j.brainres.2007.05.025
  • Dergi Adı: BRAIN RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.134-144
  • Gazi Üniversitesi Adresli: Evet

Özet

Cortical dysplasia is a malformation characterized by defects in proliferation, migration and maturation. This study was designed to evaluate the alterations in offspring rat cerebellum induced by maternal exposure to carmustine-[1,3-bis (2-chloroethyl)-1-nitrosoure] (BCNU) and to investigate the effects of exogenous melatonin upon cerebellar BCNU-induced cortical dysplasia, using histological and biochemical analyses. Pregnant Wistar rats were assigned to five groups: intact-control, saline-control, melatonin-treated, BCNU-exposed and BCNU-exposed plus melatonin. Rats were exposed to BCNU on embryonic day 15 and melatonin was given until delivery. Immuno/histochemistry and electron microscopy were carried out on the offspring cerebellum, and levels of malondialdehyde and superoxide dismutase were determined. Histopathologic ally, typical findings were observed in the cerebella from the control groups, but the findings consistent with early embryonic development were noted in BCNU-exposed cortical dysplasia group. There was a marked increase in the number of TUNEL positive cells and nestin positive cells in BCNU-exposed group, but a decreased immunoreactivity to glial fibrillary acidic protein, synaptophysin and transforming growth factor beta 1 was observed, indicating a delayed maturation, and melatonin significantly reversed these changes. Malondialdehyde level in BCNU-exposed group was higher than those in control groups and melatonin decreased malondialdehyde levels in BCNU group (P<0.01), while there were no significant differences in the superoxide dismutase levels between these groups. These data suggest that exposure of animals to BCNU during pregnancy leads to delayed maturation of offspring cerebellum and melatonin protects the cerebellum against the effects of BCNU. (C) 2007 Elsevier B.V. All rights reserved.