On Kantorovich process of a sequence of the generalized linear positive operators


İSPİR N., ARAL A., Dogru O.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, cilt.29, ss.574-589, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 29
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1080/01630560802099365
  • Dergi Adı: NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.574-589
  • Anahtar Kelimeler: bounded variation, derivatives of bounded variation, Kantorovich-type operators, linear positive operators, rate of convergence, total variation, weighted approximation, CONVERGENCE, POLYNOMIALS, DERIVATIVES
  • Gazi Üniversitesi Adresli: Evet

Özet

We define the Kantorovich variant of the generalized linear positive operators introduced by Ibragimov and Gadjiev in 1970. We investigate direct approximation result for these operators on p-weighted integrable function spaces and also estimate their rate of convergence for absolutely continuous functions having a derivative coinciding a.e., with a function of bounded variation.