P(HPMA/EGDMA) beads grafted with fibrous chains by SI-ATRP method: agmatine functionalized affinity beads for selective separation of serum albumin


BAYRAMOĞLU G. , Arica M. Y.

BIOPROCESS AND BIOSYSTEMS ENGINEERING, cilt.37, sa.2, ss.205-215, 2014 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Konu: 2
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1007/s00449-013-0987-2
  • Dergi Adı: BIOPROCESS AND BIOSYSTEMS ENGINEERING
  • Sayfa Sayıları: ss.205-215

Özet

In this paper, novel core-shell polymeric affinity beads based on fibrous grafting and functionalization with a salt resistance affinity ligand were developed to separate and deplete serum albumin (SA) from human serum. Poly(hydroxypropyl methacrylate/ethyleneglycole dimethacrylate), p(HPMA/EGDMA), beads were prepared via suspension polymerization, and were grafted with poly(glycidyl methacrylate) (p(GMA)) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The grafted p(GMA) fibrous chains on the beads were modified with an affinity ligand (i.e., agmatine). The binding capacity of the affinity beads to SA was determined using aqueous solution of SA in a batch system. Batch adsorption studies showed that the amount of adsorbed SA was found to be 156.7 mg/g at 25 A degrees C. The maximum adsorption capacity for affinity beads was observed at around pH 5.5. Adsorption of SA onto affinity beads significantly increased with increasing temperature, and reached a value 177.8 mg/g beads at 35 A degrees C. The equilibrium data were found to be well described by Langmuir model, while the kinetic data were well fitted to the pseudo-second-order kinetic. The degree of the purity of SA was determined by using HPLC. Before and after adsorption, the peak areas of SA were used in the calculation of separated SA.