Relatively Uniform Weighted Summability Based on Fractional-Order Difference Operator


Kadak U., Srivastava H. M. , Mursaleen M.

BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, cilt.42, ss.2453-2480, 2019 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 42 Konu: 5
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1007/s40840-018-0612-2
  • Dergi Adı: BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY
  • Sayfa Sayıları: ss.2453-2480

Özet

In the present paper, we introduce the notion of relatively uniform weighted summability and its statistical version based upon fractional-order difference operators of functions. The concept of relatively uniform weighted alpha beta-statistical convergence is also introduced and some inclusion relations concerning the newly proposed methods are derived. As an application, we prove a general Korovkin-type approximation theorem for functions of two variables and also construct an illustrative example by the help of generating function type non-tensor Meyer-Konig and Zeller operators. Moreover, it is shown that the proposed methods are non-trivial generalizations of relatively uniform convergence which includes a scale function. We estimate the rate of convergence of approximating positive linear operators by means of the modulus of continuity and give a Voronovskaja-type approximation theorem. Finally, we present some computational results and geometrical interpretations to illustrate some of our approximation results.